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Abstract

The generalized LR (GLR) parser devised by Tomita is very efficient and has been used for the
natural language processing systems such as machine translation and speech understanding systems.
Although the time complexity of Tomita’s parser exceeds O(n3) for the general context-free grammars
(CFGs), empirically it is proved to be very efficient in practical natural language processing. Kipps
modified Tomita’s algorithm and proposed an algorithm with O(n?®) time complexity for general
CFGs. But this modified algorithm can not be considered as a practical parser due to its unability
to generate parse trees. However, with some modifications to the Kipps algorithm, we propose an
algorithm to generate all the parse trees and complete the Kipps algorithm as a practical parser.
The parsing time and the space complexity of our improved algorithm remains the same as O(n%)
and O(n?) respectively for general CFGs. We proved the complexity results practically as well as
theoretically. We show a preliminary experiment giving support to our theoretical expectations.

1 Introduction sky normal form to parse in O(n3) time. Kipps
[5] pointed out that this is due to the dupli-
The generalized LR parser devised by Tomita cated traversal of the same edges and the access
has been used for the natural language process- of the same ancestors repeatedly during reduce
ing systems such as machine translation systems action on the graph-structured stack (GSS). To
and speech understanding systems (10, 11]. The avoid this problem, Kipps himself gave a modi-
reasons are as follows: At first, GLR parser fied algorithm which can perform in O(n?) time
such as Tomita’s, is very efficient compared to complexity for any CFG, by introducing a data
other parsers even though the time complex- structure called ancestors table. But this modi-
ity of Tomita’s parser exceeds O(n®) for general fied algorithm can not be considered as a prac-
CFGs, where through out this paper n stands tical parser [5, 6]. The reason may be its unabil-
for the length of the input sentence. Secondly, itiness to generate parse trees.
parsing proceeds incrementally from left to right
of the input sentence enabling real time process- However, with some modifications to the
ing. Kipps method, we propose a method to generate
The time complexity of Tomita’s GLR all the parse trees and complete Kipps method
(TGLR) algorithm becomes O(n!*?) for general as a practical parser. The parsing time of our
context-free grammars (CFGs), where p is the improved parser remains the same as O(n3) for
length of the longest production in the grammar. any CFG, even after modifying the important
Thus TGLR needs its grammars to be in Chom- data structure called ancestors table and we
386

AT

PR T AT

Mol abiias i

\



proved the complexity results both theoretically
and practically. The most important feature of
our method is that, the partial parse informa-
tions can be obtained from the ancestors table of
the top vertex alone. (Thus avoiding the traver-
sal of GSS). In this paper, we call our improved
GLR parser as AGLR (Ancestors table based
GLR) parser. In order to extract a parse tree
from the partial parse informations of AGLR, it
takes O(n?) time.

In this paper we assume the familiarity of
Tomita’s algorithm. In the rest of this paper
we give a brief introduction to Kipps algorithm
in section 2. In section 3 we outline AGLR. pars-
ing process. In this section, we give some theo-
retical results and tree generation algorithm of
AC ., and a note on the property of ances-
tors table. In section 4, we give practical results
with discussions. Finally in section 5, we give
our conclusion.

2 The Kipps Recognizer

Figure 2.1 shows a schematic example of a GSS.
Here v; represents a vertex (the vertex v, is the
root of GSS and v, is a leaf or top vertex) and w;
represents -th input word. The leaves of a GSS
grows in stages. At each stage U; the i-th word
w; of the input sentence is processed with help
of the next look-ahead word w;4;. For example,
the vertex v, in stage U covers wg and ws we,
vy in stage Us covers wyws, and so on.

" Tomita’s algorithm the same ancestors
and/or the same edges might be accessed many
times. For example, in the GSS shown in fig-
ure 2.1, in order to retrieve an ancestor vertex,
say vq, at a distance 2 from the top-of-stack v,
we have to traverse two paths from v, to vy,
namely v,-vg-vq4 and v,-v.~vg, resulting in ac-
cessing the same one ancestor v4 two times. In
general, the ancestors at a distance of ¢ from a
leaf in the stage U; will be obtained by travers-
ing every edge from the leaf to them. As the
number of parents' of each vertex is in the or-

'In the following descriptions, the term ‘parent’ of v

\
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der of i, the number of paths between the leaf
and the ancestors at a distance of ¢ becomes at
most 17. In general, i#, where p is the number
of nonterminal and preterminal symbols in the
right hand side (rhs) of the longest production.

If the access to the same ancestors and/or
same edges more than once is avoided, the time
to retrieve the ancestors can be reduced, because
this is the factor which makes the recognition
time of TGLR to O(n!*?) for general CFGs. For
this purpose, Kipps changed the data structure
of the vertex to < 1,5,A > (see fig.2.1). Here
i represents the stage number, s the state and
A is the ancestors table which consists of a set
of tuples such that {< k, Ly > |k = 1,2,---, p}
where L is a set of ancestors at a distance of k
from the vertex < i,s, 4 >. The ancestors table
is formed by at most p tuples and the number of
ancestors in Ly is in O(?). Figure 2.1 shows the
contents of each vertex along with the contents
of ancestors table, here p = 3.

When a new leaf is created during shift and re-
duce actions, each ancestors table can be formed
in a constructive way by using the ancestors ta-
bles formed in the past. Concretely, on using the
ancestors table A’ of the parent vertex of a leaf,
the tuple < k, [ > in A’ can be used to form
the tuple < k+1, L4, > of the ancestors table
A of the leaf. The time taken to fill all entries in
an ancestors table is in O(i?) in stage U;. Once
an entry in an ancestors table is filled, the time
to retrieve that entry is constant thereafter. In
other words, only looking for an entry < ¢, Lg
> in the ancestors table of a leaf, it is possible
to get a set of ancestors (=Ly) at a distance g
from the leaf. From the above arguments, it is
clear that the time complexity of Kipps recog-

nizer will become O(n?) (i.e, T, i?).

stands for all the vertices immediatcly lcft of v. That is,
all the vertices at distance 1 from v. The term ‘ancestors’
of v stands for all the vertices including the parent ver-
tices on the left of v. That is, all the vertices at distance
> 1.
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Figure 2.1: An example of GSS showing ancestors table

3 The AGLR Parsing Algo-
rithm

The Kipps algorithm described above does not
give us a way to extract any parse results and
can be considered only as a recognizer. In this
section we modify Kipps algorithm so as to gen-
erate all the parse trees. The modification is
that we add to each vertices, a link to their par-
ent in the form of stage numbers of the parent,
and then store the vertices along with the links
in a table called the vertez table. We call these
links as parent links. Using the vertex table and
the modified ancestors table, AGLR generates
all the possible parse trees. We give a naive ver-
sion of the AGLR parsing, which does this task.

3.1 The Ancestors Table of AGLR

In AGLR, the one addition in the ancestors ta-
ble is that, when a new leaf v is formed, the
ancestors table of v will record its own history
at 0-th distance, as <0, {v}>. The reason for
adding its own history is to know the rightmost
position of the rule applied in the reduce action,
which can be used during tree generation pro-
cess. The one modification is that the ancestors
in the ancestors table of AGLR points to the
vertices with parent links in the vertex table.
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In case of fig.2.1, for example, the ancestors
table of the leaf vertex vq, <6, s6, Ag> is mod-
ified as shown below.

Ag = {<0, {vg}>, <1, {ve,v¢}>,

<2, {ve,vq}>, <3, {...}>}

If the reduce action on the leaf v, specifies X
— Y Z, then the ancestors table of AGLR will
be stored along with the rule used by reduce
actions on the leaf.

{X—-YZ}, {<0){Vg}>) <1, {ve, Vf}>}]

We call this information an ancestor item. In
the ancestor item we store the rule used for the
reduce action along with the vertices at the cor-
responding distances. Here note that the ances-
tor item has only the first two distances of the
ancestors table. This is because the rule used
for the reduce action has only two symbols in
its rhs.

During shift action, for example, let us con-
sider the parser enters into the stage U7 from
the stage Ug by shifting a look-ahead word wy
and, if we assume C be the preterminal of the
word wy, the following information is stored.

[{C = wr}, {<0,{vi}> }]
and in vertex table, < v : 7(6)>, (as explained
in sec. 3.2) which indicates that, the word wy
(the word between 6 and 7) is covered by C.
As the AGLR parser is based on Kipps algo-
rithm, and as the addition of 0-th field does not
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affect the filling of ancestors table, the time con-
sumed in filling up ancestors table will remain
the same, i.e, O(1) to fill an ancestors table in
stage U;. Since an ancestors table is filled after
every reduce and shift action, it takes O(i?) time
in stage U;. For an input sentence of length n,
the time complexity to fill the ancestors table
becomes O(n?), which is same as that of Kipps
algorithm.

3.2 The Vertex Table

In AGLR, when a new leaf v is formed during a
shift (due to a shift or a goto) action, the vertex
table will record <v, i{(PL)>. Here i is the stage
number in which v occurs and PL is a set of

ge numbers of the parent vertices of v, and
is called the parent links. In case of fig.2.1, the
vertex table is created as shown below.

[<ve © O( )>, <vp = 1(0)>, <v¢ :
2(0)>, <vq : 3(1)>, <v. : 4(2,3)>,
<vy i 5(3)>, <vq : 6(4, 5)>)

A vertex table is represented using an array
with vertices as the pointers and parent links
as their contents. Like GSS, the vertex table
should be updated after every action. The ver-
tex table differs from the GSS in a sense that,
the vertices recorded in the vertex table are not
poped. The array representation enables us to
access any vertex in the vertex table in O(1)
time. Since the number of states in a stage U; is
. .stant, say ¢, (which is equivalent to the num-
ber of states in the LR table), and each vertex
may have at most O(-) parent links in this stage
(because each vertex may have at most O(i) par-
ents), the space consumed by the vertex table in
a stage becomes ¢ * O(i) = O(7). For an input
sentence of length n, the total space consumed
by the vertex table becomes O(n?).

The time consumed to fill the parent links of a
vertex in stage U; is also in O(z). Since there are
O(n) vertices in the vertex table, the time con-
sume in filling the parent links of all the vertices
becomes O(n?). Thus addition of vertex table
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does not affect the time and space complexity
of AGLR.

3.3 Representing A Tree using Parent
Links

Using the ancestor item created during reduce
action in section 3.1 and the vertex table in 3.2,
we give an instance of tree generation in AGLR.

(1) <0,{vg}> in the ancestor item and <v, :
6(4, 5)> in the vertex table indicates that, a
sequence of words wswe (the stage number
between 4 and 6) and a word wg (the stage
number between § and 6) are covered by Z.

z
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<1, {Ve, v§}> in the ancestor item and <v,
: 4(2,3)>, <vg : 5(3)> in the vertex ta-
ble indicates that, wawy (the stage number
between 2 and 4), the word wy (the stage
number between 3 and 4), and wqws (the

stage number between 3 and 5) are covered
by Y.

Y Y Y
TR

From (1) and (2) : wiws&wswg, wydwsws
and wywsdwg are covered by YZ and thus
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Note that (2) in the above instance, teaches
just the portions covered by Y. In this way it
is possible for us to extract the partial tree in-
formation from the vertex table in co-ordination
with the ancestor item.

3.4 Algorithm for Tree Generation

Here we will give the algorithm for construct-
ing a parse tree using the informations asserted
from the ancestors table of the leaves and the
vertex table. The algorithm for AGLR produces
a right parse. In the following algorithm which
constructs a parse tree from a set of ancestor
items, an ancestor item is represented as < Dy,
Ag >,< Dy, Ay >, -, <Dy, A >, -+, <
Dy, A, >, where Dg, Dy, -+ D, represents dis-
tances and Ag, A1, --- A, represents ancestors
at corresponding distances. In the algorithm,
Al represents ancestors of the ancestor item and
the parent links of each ancestor is represented
by PL.

ALGORITHM :

Construction of a right parse from a unique
set of ancestor items.
Input : A CFG, G = (N,T, P, S), an input sen-
tence w = w) wy .... w, € T*, a set of ancestors
item, and a vertex table (VT).
Output : A right parse for w, or a “error” mes-
sage.
Method : If no ancestors item of the form [n,{S
— a}, Ai], st. @ = X; X2 -+ X, and if < m,
{va}>€ Ai A <v4, 0( )>¢ VT, then w is not in
L(G), so emit “error” and halt. Otherwise exe-
cute the routine O([n,{S — «}, Ai]), the routine
O is defined as follows.

Routine O([i,{A — B}, Ai]) :
(1) Ifﬁ = Xl Xz Xm—l Xm then,
setk=m,l=0,r =1. '
(2) (a) If Xi € T, subtract 1 from k and r,
add 1 to [.
(b) If X;. € N then for < Dy, E; >€ Aj,
find v), € E; s.t. <vy,, r(PL)>€ VT
and e € PL then,
find an ancestor item
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[r{Xr — 7}, A"
Then execute O([r {X; — 7}, Ai']).
Subtract 1 from k, add 1 to [,
set r = e.

(3) Repeat step (2) until £ = 0. Halt.

It is also possible to produce a left parse with a
simple modification in this algorithm. Note that
in an ancestors table, there may be more than
one ancestors grouped (as explained in sec.3.5)
at each distance Dg, Dy, -+, D,, which repre-
sents more than one way of parsing the input.
To generate a tree deterministically, in the worst
case, all the possibilities have to be considered
during the successive backtrack. This operation
makes us to use O(n?) time to generate a tree
deterministically.

3.5 A Property of the Ancestors Ta-
ble

Here we state about a property of the ancestors
table. When two or more vertices happens to be
the ancestors of a vertex (say v,), provided they
are at the same distance from v,, then those an-
cestor vertices are grouped into the ancestors
table of v, at the corresponding distance. In
contrast, in the packed forest of TGLR, if there
are two or more vertices which are parent to a
vertex, they can be packed if and only if the
parents are at the same stage.

This is one of the important properties of
the ancestors table. We call this property as
grouping, to differentiate between packing. Like
packing in TGLR, grouping also represents the
ambiguities of the parsed sentence. The ances-
tor item along with the vertex table in AGLR
and the packed forest in Tomita, both represents
partial parse informations.

The following figure shows the grouping phe-
nomenon for PP. In the figure, the dotted line
shows the grouped vertices, which are repre-
sented in the ancestor item and in the vertex
table given below.

[{PP — p NP}, {<0,{va}>, <1, {vy,
ve}>, <2, {vd, ve}>}]

-
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[ , <va s 4()>, <ve s T()>,

8(7)>, <vp :

4 7 10

In the example, the vertices vy and v, at dis-
tanc are grouped. The vertex vy is in stage
Us and vy is in Ug. Similarly, v, and v4 at dis-
tance 2 are grouped, which are in U7 and Uy
respectively. Thus in the above figure, the PP
between 4 and 10, and 7 and 10 are grouped
into one ancestor table, even though they are at
different levels.

Even though grouping does not affect other
complexities, the only disadvantage with group-
ing is that it makes the tree generation process
to cost more time. In case of packed forest repre-
sentation, a tree can be generated in O(n) time,
where as in our case, because of grouping it takes
O(n?) time to generate a tree using the ancestor
item and the vertex table.

4 ractical Results

In this section we show some practical results
giving support to our theoretical results. We
use a real grammar which is frequently applied
in the natural language processing. This gram-
mar consists of 394 rules and is same as the
grammar-IV used in [9]. The original version
of this grammar was developed by Takakura {7].
Two types of sentences were used. Sentence set
I consists of natural sentences appearing in text
books (refer [9]). The sentence set II consists
of PP-attachment sentence which has the pat-
tern n v det n (p det n)™, where m > 0. Since

[}

Parsing fime (msec)

TGLR/AGLR ratio

TGLR/AGLR ratio
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AGLR is a parser, it is unfair to compare it with
Kipps algorithm, which is a recognizer. For this
reason, we compare our practical results with
Tomita parser. Both these parsers were imple-
mented in C. For the results of other grammars,

refer (8].
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Figure 3.1(a): For sentence set II.
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Figure 3.1(b): For sentence set II
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Fig 3.2 Memory consumed for sentence set II.

Figure 3.1(a) and 3.1(b) shows the result of
parsing sentence set II using the grammar. Fig-
ure 3.1(a) shows that, AGLR performs faster as
the input length and the ambiguity increases.
The TGLR/AGLR ratio in fig. 3.1(b) makes
this point clear. On average the AGLR parser
is 1.31 times faster than Tomita parser.

Figure 3.1(c) gives the result of parsing
sentence set I. This figure shows that the
TGLR/AGLR ratio of parsing time is greater
than 1 in most of the cases, and on average
AGLR is 1.26 times faster than Tomita parser.

It should be noted that most of the rules
(about 54.1%) in this grammar is not in Chom-
sky normal form. The average length on rhs of
grammar rules in this grammar is 2.75. This
is the reason why in the above graphs, AGLR
performs faster than Tomita. If we use gram-
mars with Chomsky normal form, or whose av-
erage ths length becomes near to 2, both Tomita
and AGLR will give the same practical perfor-
mance as the theoretical time complexity be-
comes O(n?).

When using high dense ambiguous grammars
(S— 2S5 —>SS5S—S5SSS) and the
inputs like the one given in [4], when the input
length ranges from 20 to 30, AGLR performs 50
to 150 times faster than Tomita parser. For this
grammar in (4], the time complexity of TGLR
becomes O(n®), where as AGLR is O(n®), which
agrees with the theoretical results.
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In figure 3.2, we give the comparison of mem-
ory space consumed by the Tomita and AGLR
parsers. The memory space is used mainly by
GSS, packed forest in case of Tomita, and an-
cestors table and vertex table in case of AGLR.

Since we use ancestors table and vertex ta-
ble in AGLR, the memory space used by AGLR
parser is increased by a constant factor com-
pared with Tomita. This is because the ances-
tors table consumes an extra O(n?) space.

Our theoretical results on complexity are sum-
marized in table 1.

Complexity Resources | TGLR | Kipps | AGLR
Parsing Time nitte | nd n?
GSS space n? n? n?
Partial parse info. n’ - n3
Tree Extraction n - n?

Table 1 : Complexity Table

5 Conclusion

In this paper we improved Kipps algorithm and
complete it to generate all the parse trees. This
is achieved by introducing a vertex table, which
records the parent links of each vertices. Us-
ing the vertex table and the ancestors table, we
presented a method to generate a parse tree in
O(n?) time. We proved that the time and space
complexity of AGLR as O(n?) and O(n?) respec-
tively, both theoretically and practically.

It should be noted that as mentioned in
sec.3.4, even though we could able to generate
all the parse trees, it takes O(n?) time to gen-
erate a parse tree, which is same as Earley’s [,
3]. Thus we would like to conclude that our im-
proved GLR parser improves Kipps algorithm as
a practical parser by generating all the possible
parse trees and we would like to acknowledge
that, the benefits of the vertex table and the
ancestors table are nullified, because in case of
Tomita's packed forest, it takes only O(n) time
to generate a parse tree.
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