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Abstract
Active learning (AL) is often used in corpus construction (CC) for selecting “informative” documents for annotation. This is ideal for
focusing annotation efforts when all documents cannot be annotated, but has the limitation that it is carried out in a closed-loop, selecting
points that will improve an existing model. For phenomena-driven and exploratory CC, the lack of existing-models and specific task(s)
for using it make traditional AL inapplicable. In this paper we propose a novel method for model-free AL utilising characteristics of
phenomena for applying AL to select documents for annotation. The method can also supplement traditional closed-loop AL-based CC
to broaden the utility of the corpus created beyond a single task. We introduce our tool, MOVE, and show its potential with a real world
case-study.
Keywords: corpus construction, active learning, tools

1. Introduction
In recent years, we have seen an explosion of supervised
machine learning (ML) techniques in the NLP commu-
nity. The accuracy of these supervised ML methods largely
depends on three factors: (1) the quality of the prediction
algorithm, (2) the quality of training data, and (3) the quan-
tity of training data. While research often concentrates on
improving prediction algorithms (i.e. creating/improving
models), even the best algorithms will fail if they are fed
poor quality data during training, i.e. “garbage in, garbage
out”. On the other end, corpus construction (CC) typi-
cally faces the challenge of maximising the usefulness of
annotation while keeping the costs within the allotted bud-
get. Corpus annotation is usually undergone in one of three
ways: (1) purely automatic, (2) automated annotation fol-
lowed by manual correction, and (3) purely manual anno-
tation (McEnery et al., 1995).
As active learning (AL) for CC identifies the most “infor-
mative” data for annotation (Olsson, 2009; Tomanek and
Olsson, 2009; Settles, 2009; Song and Yao, 2010), at first
glance it seems like a perfect fit when by necessity you
cannot annotate all documents. For example, consider Fig-
ure 1, which shows random input vs. input selected using
AL to consider the network structure.
However, this brings us to what we define as the chicken-
and-egg corpus and model conundrum, which refers to how
AL often happens in a closed-loop process, the underlying
model or models directly influencing which data is selected
for annotation, which improves the model’s accuracy, and
so on.
For exploratory CC in which creators may be investigating
hitherto under/unexplored phenomena, no existing corpora
and no existing models preclude the use of AL entirely –
there is no ‘loop’ yet to close. Further, even for closed-loop
AL-based CC, the resultant corpora may have very limited
or specific use.
In this paper we propose an active learning method for se-
lecting data for annotation in a model-free way, providing

(a) Random

(b) Active learning

Figure 1: Selection of nodes for annotation.

flexibility to corpus constructors by allowing iterative spec-
ification of which characteristics they are interested in, to
refine which documents they will ultimately annotate. The
method is advantageous in several regards.
First, it allows corpus creators flexibility in the often per-
formed exploratory annotation step (McEnery and Hardie,
2011), allowing them in effect to ‘project’ what the final
result of a corpus would be after choosing specific crite-
ria. For annotation involving manual effort, selecting the
most informative documents for annotation is essential for
maximising the benefit-to-cost ratio, as depending on the
task, annotation can be very expensive and cannot span all
possible or desired documents. Being able to select the best
documents for annotation can impact the coverage of a phe-
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nomenon and what can be learned about it with models later
on.
Second, even for tasks that have existing corpora and mod-
els for which a closed-loop AL process can be applied, we
can broaden the potential utility of the corpus in many cases
by considering additional characteristics for annotation that
may drastically impact the longevity of the corpus.1

Finally, when multiple characteristics are involved, it may
be difficult to envision the final outcome of what shape
the corpus will take; to mitigate this, we introduce our
tool, MOVE (Multi-criteria Optimisation and Visualisation
Experimentation tool), that gives users a playground for
tweaking and visualising how characteristics contribute to
the selection of documents for a corpus. Further, MOVE
satisfies many of the concerns raised by Tomanek and Ols-
son (2009) as obstacles to adopting AL.2

As visualisation is a key component in this exploratory pro-
cess, and networks are often visually intuitive, our method
focuses on data that can be represented as a network, i.e.
nodes with relations. Any data that can be represented in
this form is potentially applicable for use with MOVE. (See
Sections 5. and 6. for details.) All figures (excluding Fig-
ure 3) in this work were directly taken from MOVE.
The rest of the paper is as follows: We introduce our
method in Section 2., including a discussion of how we op-
timise multiple objectives without a model; we then intro-
duce our tool MOVE (Section 4.) before continuing on to a
case study (Section 5.) that demonstrates how our method
and our tool are useful in adopting AL for CC. We end with
a brief discussion on the uses of the tool (Section 6.).

2. Method Formulation
Let us formulate our proposal in the context of existing AL
approaches. The majority of AL methods are designed for
supervised learning settings, where given the training data
{(x1, y1), . . . , (xn, yn)}, the task is to learn a function f :
X 7→ Y that accurately predicts the output values Y of the
input X . For AL settings, it is assumed that we are able to
select which points x ∈ X will be annotated/labelled (i.e.
for which input point x the output value y will be obtained)
to create the training set. The task of AL is then to select
a set XL ⊂ X of the most “informative” points to label
(L). The informativeness of the points is typically evaluated
with regards to the expected predictive error of f trained on
XL (fXL

):

EPE(fXL
) =

∑
x∈X

L(fXL
(x), y), (1)

where L is a loss function, e.g. squared error loss (f(x) −
y)2. The task of active learning is then to find a set of points

1While in practice it may be sufficient to optimise a given
model, and therefore mould a corpus using AL to fit it, this loses
sight of the bigger aim, that of studying phenomena for under-
standing how something works; further, it has been shown to
even be detrimental in some cases to apply data acquired for one
model using AL to another model (Baldridge, 2004; Rubens and
Sugiyama, 2006; Sugiyama and Rubens, 2008).

2The tool is available for download at https://github.
com/move-tool.

to label XL as to minimize the expected prediction error:
argminXL

EPE(fXL
).

However, in our settings the task is unknown, i.e. y is un-
known, and therefore the function f being modelled is un-
known as well; this makes traditional methods (as described
above) that rely on these values inapplicable.
Instead of selecting points to improve a model, the points
could be selected as to capture certain characteristics of the
data, which corpus constructors typically know well. Fur-
ther, rather than assigning labels to documents (i.e. assign-
ing ys to xs), as that would require the task to be defined,
what we are doing can be seen instead as enriching a doc-
ument’s attributes (i.e. adding dimensions to x) through
annotation.
We therefore reformulate the AL task as one of multi-
criteria optimisation (Weise, 2009), where the goal is to
find the best possible elements to be annotated XL accord-
ing to a set of characteristics/criteria K = {ki(XL)}mi=1.
We then aggregate objectives into a combined utility score
U through a weighted sum3:

U(XL) =
∑
k∈K

wkk(XL). (2)

Our goal is to find XL that maximizes the utility U :
argmaxXL

U(XL).

3. Related Work
We next introduce works related to our proposed model-
free AL method.

3.1. Characteristic-based AL
There are characteristic-based methods (e.g., label entropy,
variance, etc.) in AL for collaborative filtering (CF)
(Rashid et al., 2002; Rubens et al., 2011). However, these
methods focus on the characteristics of the labels and not of
the points themselves (as is our case). In these settings it is
assumed that many of the points have already been labelled
by multiple annotators; based on multiple annotators’ la-
bels of a point, AL estimates whether additional labelling
would be beneficial. In our case labels are undefined; and
very few points could be annotated due to high cost.

3.2. Network Optimisation
Network/Graph optimisation is a broad field with one of its
many aims being to optimise the structure of a network or
to find a subgraph with regards to a fixed set of network-
centred properties. For example, connectivity, such as find-
ing the largest complete graph or finding the largest edge-
less induced subgraph; route-based properties, such as min-
imum spanning tree, shortest path, or travelling salesman;
or flow, such as max-flow min-cut (Easley and Kleinberg,
2010; Leu and Namatame, 2009; Diestel, 2010).
Similar to our method, in network optimisation a subnet-
work with desired properties is searched for. However, un-
like network optimisation our method considers not only
the network-centric properties but also the non-network

3Pareto (Van Den Berg and Friedlander, 2008) is another com-
mon aggregation procedure; however, its solution is more difficult
to interpret; hence we use the weighted sum.
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properties, moreover these properties could be specified by
a user at runtime. In addition, in network optimisation no
annotation is carried out on a selected subnetwork (unlike
in our case, where that is the end goal).

3.3. Network Sampling
Network sampling typically tries to obtain a scaled-down
version of a network (preserving its overall characteris-
tics) (Karger, 1998), but in our case we are interested in
capturing characteristics that are important to phenomena
being studied. Network sampling is also not concerned
with the annotation of the nodes, though we are. Further,
typically the number of points for sampling is much higher
than for active learning, e.g., 15% for sampling vs. under
1% for AL (Leskovec and Faloutsos, 2006).

3.4. Multi-task Active Learning
Active learning has also been applied to multiple tasks
(Harpale, 2012). However, for corpus construction this ap-
proach faces challenges of merging corpora annotated for
different tasks with different schema using different docu-
ments (Tomanek, 2010); e.g., Buyko et al. (2009) present
a system populating a biomedical fact database first does
some syntactic analysis including, amongst others, statisti-
cal parsing, and then turns to the semantics, including NER
and relation or event extraction.

3.5. Active Learning on Networks
There is extensive work on utilising network structure
for improving AL, e.g., using additional information pro-
vided by edges (Bilgic and Getoor, 2009), network topol-
ogy (Hanneke and Xing, 2009) favouring nodes at centre
of clusters (Macskassy, 2009), high connectivity (Shi and
Zhao, 2010), and social network metrics (Macskassy, 2009;
Kuwadekar, 2010; Ji, 2012). However, these works are
model-centred, which as explained in the introduction, is
not the case for our method, which is trying to liberate the
corpus creator from needing a model.

3.6. Corpus Utility
Tomanek and Wermter (2007) state that AL-based corpora
should be reusable for training with modified or improved
classifiers to have true utility. In part, this is because it can
be difficult to predict the best suited algorithm for a task, so
swapping learning algorithms during experimentation may
be needed (Busser and Morante, 2005). Not knowing which
model will be applied to the constructed corpus may seem
minor, but it has been shown both empirically (Baldridge,
2004) and methodologically (Rubens and Sugiyama, 2006;
Sugiyama and Rubens, 2008) that samples obtained for one
model are often detrimental to another, so is in fact a crucial
requirement.
Instead of selecting points to annotate for model tuning
(which limits utility of the constructed corpus), the pro-
posed method focuses on capturing the phenomena’s char-
acteristics as deemed important by the corpus constructor.

4. MOVE: Multi-criteria Optimisation and
Visualisation Experimentation tool

The tool was developed while keeping in mind many of the
obstacles preventing the adoption of AL in CC (Tomanek

(a) Degree

(b) +Centrality

(c) +Modularity

(d) +Betweenness

Figure 2: Evolution of graph utility by adding criteria in-
crementally, shown visually top-to-bottom.

and Olsson, 2009), namely:

1. insufficient knowledge/expertise (37%),

2. implementation overhead (17.8%),

3. effectiveness doubts (20.5%),

4. incompatible with project (19.2%).

Though we cannot assess a project’s incompatibility (4),
MOVE enables users with little/no knowledge of AL (1),
eliminates potentially all overhead (2), and because of this,
allows those with doubts a means to quickly assess if AL
seems effective for them (3).
We next walk through a typical use case, and then go on to
describes various aspects of MOVE.
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Figure 3: Overall utility fitness for Figure 2

4.1. A typical Use Case
The data first needs to be converted into a network repre-
sentation if not already so (see Section 4.2.). This network
is then loaded into Gephi (Bastian et al., 2009), and us-
ing the MOVE plugin, the AL criteria is specified (Section
4.3.), and then the subnetwork selection process must be
run (Section 4.5.). Upon completion you inspect the re-
sulting subnetwork selection (Section 4.6.), and repeat the
above steps until satisfactory steps are obtained. If you are
not satisfied with the results, you may want to try adding
new criteria, changing weights, and more closely examin-
ing the results.
Once acceptable results have been obtained, the annotation
process can commence. If during annotation you discover
other criteria that is salient to the corpus, you can mark the
already annotated points, so that subnetwork optimisation
can take these into account, not invalidating invested labour.

4.2. Graph Data Representation
In many domains, data instances are connected by edges
representing certain relationships, forming a graph struc-
ture (Ji, 2012); MOVE visualises such relationships. While
our method is not graph dependent, the visualisation is a
crucial part of allowing users to quickly acquire an intuition
of how their criteria impact the selected documents for an
iterative process of criteria definition. Thus while the pro-
posed method could be applied to other data formats, we
have chosen to focus on graph-based data. Any data that
can be represented as nodes with relations is potentially a
target for use with MOVE. (See Sections 5. and 6. for de-
tails on how one might go about representing data that way.)
Many AL methods assume independence between points,
as a result, the utility is calculated for each point indepen-
dently (Kuwadekar, 2010). However, corpus construction
often relies on the interdependence of points. Graph-based
structures provide an excellent example of inter-point de-
pendencies since the points are literally connected. La-
belling a point can therefore go beyond the instance it-
self, as it provides information about neighbours in the
graph (Kuwadekar, 2010).

4.3. Criteria Definition
One of the assumptions is that domain experts are knowl-
edgeable about the characteristics of the phenomena that

they would like to be captured by the corpus. How-
ever, they might not predict the complex interactions be-
tween them; MOVE aims to provide said needed feedback.
MOVE allows specifying not only the network centric crite-
ria (for both graphs (Section 4.3.1.) and subgraphs (Section
4.3.2.)); but also criteria based on attributes of nodes and
edges (Section 4.4.). Finally the labeling costs and util-
ity must also be defined and taken into account (Section
4.4.1.). Below we describe how each of the criteria types
could be utilized.

4.3.1. Graph-based Characteristics
Graph-based characteristics describe the overall properties
of the graph such as graph density, modularity, number of
connected components, clustering coefficient, etc.4 Captur-
ing graph-based characteristics allows optimisation of sub-
graph selection so that it has the desired properties in rela-
tion to the parent graph. Using graph-based characteristics
allows us to provide additional information and guidance to
the optimisation procedure. Depending on the graph char-
acteristic it could be used to establish an upper bound (e.g.
number of clusters; even though a subgraph may appear
to have more clusters than the parent graph; some of the
subgraph’s clusters may indeed belong to the same cluster
within the graph), imprecise lower bound (e.g. if you are
looking for a denser subgraph, it should be at least as dense
as the parent graph), etc.

4.3.2. Subgraph-based Characteristics
Since one premise behind our method is that only a subset
of all possible documents can be annotated and thus must
be selected from the whole set, because we are using net-
works we can treat this subset of items as a subgraph of a
larger graph. Since subgraphs are also graphs, we can ap-
ply all the graph-centred metrics we apply to the graph as
a whole (Section 3.3.). Predominately, the purpose of the
subgraph-based characteristics should be to ensure proper-
ties of the whole graph are preserved well witin the sub-
graph. However, note that the subgraph does not need to
precisely reflect the characteristics of the overall graph (this
is a goal of network sampling introduced in Section 3.3.),
but to capture the phenomena of interest.

4.4. Attribute-based Characteristics
Here we consider the non-network based attributes of the
nodes. E.g., in citation networks an attribute could be the
keywords of a paper, its author, publication venue, and so
on. Attributes of the edges could indicate the type of cita-
tion, based on one of various schemes. Attributes can often
be extracted to create nodes or converted to create attributes
(e.g., an author could be a distinct node or an attribute on a
paper in a citation network).

4.4.1. Utility/Cost-based Characteristics
The aim of active learning (AL) is to select points to max-
imise utility and/or to minimise the annotation cost. It is

4It is possible to use any of the extensive graph metrics pro-
vided by the graph library Gephi (Bastian et al., 2009); new met-
rics could be added dynamically through metric plugin function-
ality.
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therefore necessary to associate characteristics with costs
and utility. In AL there are annotation costs that can be
defined in terms of negative utility; benefit is harder to de-
fine, but could be defined in relation to costs. For exam-
ple, for citation analysis, scanning each paper/node incurs
a fixed cost, as does annotating the paper’s citations (outgo-
ing edges), while incoming edges do not incur a cost since
they are not annotated (even if the source nodes are within
the corpus, the costs would be associated with the source
node, not the target). Depending on the aim of the cor-
pus, utility weights can be assigned as characteristics in this
manner.

4.5. Optimisation
Many AL strategies that may yield theoretically near-
optimal sample selection are in practice infeasible for use
because of excessively high computation times (Cohn et
al., 1996). Thus, AL-based annotation should be based on
a computationally tractable selection strategy (even if this
may result in a less than optimal reduction of annotation
costs) (Tomanek and Wermter, 2007).
Many algorithms can quickly find a solution for certain
types of graphs (Karger, 1998). We selected a genetic al-
gorithm (GA) (using the watchmaker library Dyer (2006))
due to GA’s known ability to robustly handle potentially un-
known interactions of various criteria (Weise, 2009) with-
out the need for gradient information (Marler and Arora,
2004). These properties are necessary for MOVE since
users can define multiple criteria for optimisation at run-
time. However, other optimisation methods could be easily
incorporated.

4.6. User Interface
One of the main tenets for MOVE is that visual feedback is
extremely important in defining AL criteria. Further, defin-
ing active learning criteria iteratively enables the user to
modify the used characteristics and their weights, exam-
ine obtained solutions, identify any shortcomings (e.g., by
analysing why some nodes where included or excluded or
looking at the overall structure of the graph and subgraph)
until the desired outcome/solution is reached.
The MOVE UI allows for visual and numerical examina-
tion of the obtained solution (both locally and globally),
and also shows the process of the optimisation in real-time.

Subgraph Filtering / Highlighting provides a way to fil-
ter out and examine only the selected subgraph; as well as
to see the subgraph highlighted within the full network con-
text.

Utility-based Node Sizing is done by making the node
size proportional to its utility. The nodes could be sized
based on the utility within either subgraph or graph. This
allows to see which nodes have a high global or local utility;
and investigate why some nodes were either included or
excluded from the subgraph.

Automatic Graph Layout is provided to enhance visi-
bility; if a finer refinement is needed Gephi (Bastian et al.,
2009) provides a variety of layouts.

Real-time Subgraph Optimisation Visualisation al-
lows users to dynamically see which nodes are selected,

Optimization Itteration

Mean candidates Utility

Figure 4: Subgraph Utility Monitor (see Section 4.6. ‘Nu-
merical Optimisation Monitor’).

enabling the user to visually examine the intermediate re-
sults of optimisation (assisting with the decision of when to
terminate the optimisation process).

Numerical Optimisation Monitor allows users to mon-
itor optimisation from a numerical perspective (Figure 4);
it is integrated from the watchmaker genetic optimisation
framework (Dyer, 2006). In Figure 4, the red line denotes
the utility of the best solution at a given iteration; the blue
line denotes the mean utility of the solution candidates. Ge-
netic optimisation starts with a pool of random subgraphs,
so the fitness of a random solution could be seen at itera-
tion = 0. We can see the speed at which the ‘best solution’
is improved by looking at the utility score with respect to
the iteration. Once the optimisation algorithm gets stuck
within a local optimum, the subgraph utility line becomes
flat, and obtaining a significantly better solution becomes
less likely (Safe et al., 2004).

Lastly, the Gephi platform (Bastian et al., 2009) itself also
provides a variety of plugins (both visual and network-
based) that may provide additional utility.

5. Case Study: CiteNet
In our case, we wanted to create an annotated corpus of
novelty claims and citation spans, replete with citation
function, within research papers, in an interconnected net-
work so that citation-content based summarisation may be
possible. Further studies of citation and research paper phe-
nomena may be possible as well.
There is a wealth of research from over the decades focus-
ing on research paper-based phenomena, e.g. citations and
their analysis (Garfield, 1955; Giles et al., 1998; Kessler,
1963; Small, 1973; White, 2004; Hirsch, 2005), novelty
claims and argumentative zoning (Weinstock, 1971; Teufel
et al., 2006), paper and domain summarisation (Garfield et
al., 1964; Nanba et al., 2000; Radev et al., 2002; Elkiss et
al., 2008; Qazvinian and Radev, 2008; Kaplan et al., 2009),
sentiment analysis (Nakov et al., 2004; Athar, 2011), and
so on. Until recently the study of many of these phenom-
ena has been carried out in an ad-hoc fashion, selecting
papers from various domains manually (Spiegel-Rösing,
1977; Weinstock, 1971; Moravcsik and Murugesañ, 1975).
The advancement of computers and processing power has
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enabled researchers to cull data from an ever increasing sea
of information; this opens the possibility of exploring these
phenomena “in the wild”, i.e. big data-based analysis. Un-
fortunately, however, to our knowledge there is no richly
annotated resource containing this kind of information.
The goal of CiteNet is to build a citation-rich corpus (of
both cited and citing works), which also includes novelty
claims within each work, so that it can be the target of single
and multi-document summarisation tasks, both citation and
non-citation based, and that spans several disciplines so that
generalisations about phenomena can be made.
This means that we need to: (1) maximise the number of
citations, so as to increase coverage of different citation
functions and paraphrasing; (2) reduce the number of pa-
pers annotated, due to time/cost annotating each paper; (3)
maximise corpus-internal citations, so citation-based sum-
maries are possible; (4) capture networks for different gen-
res, so that variation across genres can be studied. However,
attempting this by hand is daunting, if not impossible.
We can adapt these goals into criteria for AL as follows.
The citation-network can be treated as graph-based char-
acteristics, and we have other non-graph-based charac-
teristics for incorporating annotation costs, and other data,
such as textual, occurring within each paper. We can at-
tribute two kinds of utility/costs. The first is for properties
within a subgraph, such as the utility of intra-paper links
so that the citing and cited are both within the subgraph.
The second is for properties of the graph as a whole,
where we know regardless that a citation will take mini-
mally tC constant time for an annotator to annotate. As we
know that the act of opening and scanning a paper takes a
fixed amount of time based on its length, we can model this
as a fixed cost per paper. Though incoming links within the
subgraph are desirable, even incoming links from outside
the chosen subgraph are still beneficial and should be given
some utility.
As can be seen from this example, corpus constructors may
have a rough idea of the utility/cost of characteristics, if
they can only visualise the data. Consider Figure 2, where
the selected nodes are shown in blue. At first, using the de-
gree of the (e.g. citation) network may sound promising,
but as can be seen in Figure 2a, this in fact maximises on
only a small portion of the entire network, which leads to
mis-representative data. By adding centrality to the utility
score (Figure 2b), we see the results improve, but unfor-
tunately we are now ignoring the small cluster, and so the
data is still not ideal. By adding modularity (Figure 2c) we
can incorporate both, but they are disconnected. Finally, by
adding betweenness as well (Figure 2d) we are able to cap-
ture all the salient aspects of the citation-network we care
about. Figure 3 shows how these characteristics are addi-
tive for maximising utility.
The example in Figure 2 is simplified, but illustrates the
point of having visual feedback as one works with data.
Consider the case for the citation-network, containing 4000
machine translation (MT) papers, shown in Figure 5, where
without visualisation little can be seen or decided. When
the annotation cost of a single document for CiteNet could
run many hours, it is all the more pertinent that appropriate
documents be selected.

Figure 5: MT papers from ACL, selected in blue.

6. Conclusion
In this paper we discussed the merits and shortcomings
of AL related to models and corpus construction, and in-
troduced our novel method for model-free AL to build
phenomena-driven corpora, including the development of a
tool, MOVE, and shown its use on a real world scenario of a
citation-network based corpus we are developing, CiteNet.
The case study introduced in Section 5. is typical of a wide
range of phenomena in computational linguistics where en-
tities are linked in some form and can be thus represented
as a network. For instance, in the cross-document corefer-
ence task, systems must identify noun-phrases which core-
fer across document boundaries, e.g., (Singh et al., 2011).
Our proposed method could be used to find an initial train-
ing and test set of such documents, based on obvious named
entity (NE) coreferences (e.g., those which are long enough
to be guaranteed to be unique if they are found in identi-
cal forms across documents). The point is not to find all
coreferences in advance or we would not need to make
the tool, but to insure enough variance in the documents
to produce a subnetwork representing the coreferences ad-
equately. These coreference links represent the equivalent
of the citation links from the case study, but in the cross-
document NE task, an additional parameter could be max-
imising the number of distinct obvious links across docu-
ments. Once a good subnetwork is identified, human anno-
tation would be used to verify the system’s links, as well
as identify additional cross-document coreference links for
training and evaluation. Any data capable of being repre-
sented in a network in this manner is thus capable of being
used with MOVE.
The source code for the MOVE tool is available for down-
load at: https://github.com/move-tool.
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