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ABSTRACT
We propose a simple and effective metric for automatically evaluating discourse coherence
of a text using the outputs of a coreference resolution model. According to the idea that a
writer tends to appropriately utilise coreference relations when writing a coherent text, we
introduce a metric of discourse coherence based on automatically identified coreference rela-
tions. We empirically evaluated our metric by comparing it to the entity grid modelling by
Barzilay and Lapata (2008) using Japanese newspaper articles as a target data set. The results
indicate that our metric better reflects discourse coherence of texts than the existing model.
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1 Introduction

The task of automatically evaluating discourse coherence has recently received much atten-
tion (Karamanis et al., 2004; Barzilay and Lapata, 2008; Lin et al., 2011, etc.) because it is
essential for several NLP applications such as generation (Soricut and Marcu, 2006), sum-
marisation (Lapata, 2003; Okazaki et al., 2004; Bollegala et al., 2006) and automated essay
scoring (Miltsakaki and Kukich, 2000; Higgins et al., 2004). Researchers in these areas have
mainly been concerned with introducing the linguistic notions of cohesion or coherence ad-
dressed in discourse theories, such as Centering Theory (Grosz et al., 1995) and Rhetorical
Structure Theory (Mann and Thompson, 1988), into computational models for each task,
ranging from heuristic rule-based to sophisticated machine learning-based approaches.

Some of this research has relied on the occurrence of discourse entities (e.g. NPs and
pronouns) to capture cohesion of a text for indirectly estimating discourse coherence.
Barzilay and Lapata (2008)’s approach, for instance, models the transition of discourse enti-
ties appearing in adjacent sentences for capturing local discourse coherence, which is derived
from the notion of Centering Theory. In their approach, the plausible transition of discourse
entities in a coherent text is trained together with a set of incoherent texts by using a rank-
ing SVM (Joachims, 2002), making use of a grid of each discourse entity with regard to its
grammatical role, called an entity grid representation.

Their approach to evaluating discourse coherence is quite useful when discourse entities ex-
plicitly appear in languages such as English. In their evaluation, they reported their coherence
modeling based on the entity grid representation contributes to drastically improving accuracy
on the information ordering task, which is the pairwise ranking problem given a pair of co-
herent and incoherent texts in English. However, in languages such as Japanese and Italian,
capturing the transition of discourse entities is relatively difficult due to the frequent use of
ellipses. As an example of employing the entity grid model in Japanese, Yokono and Okumura
(2010) directly attempted this for representing grid using typical Japanese grammatical
roles (wa (topic), ga (subj), o / ni (obj / i-obj) and others). They conducted an empirical
evaluation of pairwise ranking of Japanese texts, replicating the experimental settings by
Barzilay and Lapata (2008). Their result shows their model achieved around 70% in accuracy,
whereas the evaluation result on the English data set reaches around 90%. This difference of
performance might be caused by the frequent occurrence of ellipses. In Japanese, for example,
subjects in a sentence are frequently unrealised, resulting in the less frequent occurrence of ad-
jacent discourse entities in a same coreference, which are essential for capturing the transition
of discourse entities in entity grid modelling (Barzilay and Lapata, 2008).

Against this background, we propose a metric of discourse coherence, which takes into ac-
count any pair of discourse entities in a text to capture the relationship of the entities distantly
appeared in a text, which cannot not be directly exploited in the entity grid approaches. In
order to evaluate discourse coherence using our metric, we utilise the outputs of a coreference
resolution model (especially, the reliability of each output of the model). The assumption be-
hind it is that one tends to appropriately utilise coreference relations when writing a coherent
text, i.e. the better use of coreference relations is considered as a good indicator of coherent
texts.

This paper is organised as follows. Section 2 briefly reviews the previous work on auto-
matically evaluating discourse (local) coherence. Section 3 explains the proposed metric of
evaluating discourse coherence exploiting the outputs of coreference resolution and Section 4
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s1: [John] bought [iPad2] as [a gift] for [Lucy].
s2: However, [it] has [something amiss] with [the sound system].
s3: As a result, [he] went to [[Lucy]’s birthday party] with no [gift].

Square-bracketed words (or phrases) stand for discourse entities.

Figure 1: Coherent input example for entity computation

introduces an NP coreference resolution model employed in the metric. Section 5 reports
performance of NP coreference resolution on coherent and incoherent texts in Japanese and
the effectiveness of the proposed metric on the task of information ordering comparing to an
existing model. Section 6 concludes the paper and discuss our future directions.

2 Related work

There has been an increase in recent work for evaluating discourse (local) coher-
ence of a text (Barzilay and Lapata, 2008; Karamanis et al., 2004; Lin et al., 2011;
Miltsakaki and Kukich, 2000; Higgins et al., 2004, etc.), which strongly relates to the co-
hesion of discourse entities appearing in the text from the theoretical perspective mainly
based on Centering Theory (Grosz et al., 1995). For example, Karamanis et al. (2004) and
Miltsakaki and Kukich (2000) proposed a metric of coherence directly utilising the transition
of centers in a text, as Centering Theory does. According to the analysis by Poesio et al. (2004),
Karamanis et al. (2004) define a metric based on the numbers of missing backward-looking cen-
ters, each of which is a discourse entity appearing in the current utterance and was realised as
most salient in the previous utterance. On the other hand, Miltsakaki and Kukich (2000) fo-
cused on investigating the relationship of the coherence of a text and the transition of centers
and revealed that the rough-shift transition of centers correlates to incoherence of a text.

In these studies, one of the most important work was to represent the relationship of dis-
course entities and their occurrences in a text based on the transition of discourse entities,
which was done in a series of studies (Barzilay and Lee, 2004; Barzilay and Lapata, 2005;
Lapata and Barzilay, 2005; Barzilay and Lapata, 2008). In Barzilay and Lapata (2008), the
transition of discourse entities in adjacent discourse units (e.g. sentences) is formalised as an
entity grid, which is a matrix of discourse entities and their realised grammatical roles, because
a grammatical role of a discourse entity is a good indicator of its salience. For example, a given
input text shown in Figure 1, consisting of the three sentences, each discourse entity is repre-
sented in the entity grid shown in Table 1. In the entity grid, each column is filled with the
corresponding label (e.g. S (subject), O (object), X (others) and – (not realised)). In the grid,
the local transition of entities with regard to the labels can be seen as a generalisation of the
center transition discussed in a series of Centering studies (Walker et al., 1997; Grosz et al.,
1995). Therefore, exploiting the transition becomes a good indicator of (local) discourse co-
herence. In their work, the transition of each entity was used as a feature for distinguishing a
coherent text from an incoherent one.

As an extension of Barzilay and Lapata (2008), Lin et al. (2011) took into account the use of
discourse relations to revise the formulation of an entity grid. They used the four types of
discourse relations (Temporal, Contingency, Comparison and Expansion) defined in the Penn
Discourse Treebank (PDTB) instead of grammatical roles, which are automatically acquired
by the discourse parser by Lin et al. (2011). For grid representation, they calculated the tran-
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John iPad2 gift Lucy sound system birthday party
s1 S O X X – –
s2 – S – – X –
s3 S – X X – X

Table 1: Entity grid of the input example in Figure 1

s′1=(s1): [John] bought [iPad2] as [a gift] for [Lucy].
s′2=(s3): As a result, [he] went to [[Lucy]’s birthday party] with no [gift].
s′3=(s2): However, [it] has [something amiss] with [the sound system].

Figure 2: Incoherent input example for entity computation obtained by random reordering

sition probabilities of discourse entities in a text based on the PDTB-style discourse relations
(e.g. P(Si : Comp.Ar g1→ Si+1 : Ex p.Ar g2)), and then these probabilities are exploited as fea-
tures in a ranking SVM (Joachims, 2002). Through their empirical evaluation they reported
their extension of the entity grid representation contributes to improving performance on the
pairwise ordering task compared to the original entity grid model.

3 A metric for evaluating coherence based on coreference resolution

As explained in Section 2, typical approaches to modeling discourse coherence have exploited
the transition of discourse entities in terms of grammatical roles or discourse relations defined
in PDTB. In contrast, we estimate discourse coherence by a metric relying on the outputs of an
NP coreference resolution model.

For instance, from the coherent text shown in Figure 1, the corresponding incoherent text is
generated by randomly reordering sentences, one of which is as shown in Figure 2. In this
incoherent text, as the pronoun “it” is placed relatively far from its antecedent “iPad2” and a
distractor “birthday party” is inserted between these two expressions, the interpretation of “it”
is more difficult than the case of the coherent text. As a result, applying a typical coreference
resolution model to coherent and incoherent texts gives rise to the difference in the number of
correctly identified coreference relations. In addition, if there is no difference in terms of the
number, there may be a difference in the reliability score (i.e. predicted probability outputted
by a classifier) of the resolved relations. Based on these differences, we propose a metric for
evaluating discourse coherence, which is calculated according to the following two steps:

1. a coreference (or anaphora) resolution model trained with annotated coherent texts is
applied to a target text T .

2. the coherence score of T is calculated from the outputs of step1 by

coherence(T ) =
1

N

N∑
j

scoreana(i, j), (1)

where T is a target text, j is a candidate anaphor appearing in T and i is the most likely
candidate antecedent of j. N is the number of candidate anaphors appearing in T . The
reliability score of the coreference relation of i and j, scoreana(i, j), is the output score (e.g.
predicted probability) obtained after a coreference model is applied to T in step1.
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Note that the proposed metric can also be used as one of the features for the entity grid model
because it is obtained from a different perspective from the entity grid (i.e. information of the
discourse entity transition). In Section 5.3 we will also demonstrate the results of the entity
grid model employing our metric as a feature.

4 Coreference resolution model for a coherence metric

The proposed metric introduced in Section 3 is designed for the use of any anaphora (or coref-
erence) resolution model. In this work, we employ an NP coreference resolution model.

According to formula (1) in Section 3, calculating our metric needs a reliability score of each
anaphor and candidate antecedent pair. Recent sophisticated approaches to NP coreference
range from considering the transitivity of discourse entities (Denis and Baldridge, 2007) to
clustering-based approaches (Cardie and Wagstaf, 1999; Cai and Strube, 2010), but these ap-
proaches aim at obtaining globally optimised scores for a set of mentions. Therefore, it is gen-
erally difficult using such models to get a reliability score for a pair of two mentions though
they typically achieved better performance than simple pairwise coreference resolution models
such as Soon et al. (2001) and Ng and Cardie (2002),

In the work on Japanese anaphora resolution by Iida and Poesio (2011), they employed an
ILP-based approach to optimise final outputs of NP coreference resolution in Japanese and
reported it achieved better performance than simple pairwise baselines. In spite of the global
optimisation by ILP, their formulation can be easily reinterpreted as follows due to the best-first
constraint used in their ILP formula, which is for avoiding the redundant choice of more than
one candidate antecedent:

coref(i, j) =
P(core f |i, j) + P(anaph| j)

2
(2)

where j is a candidate anaphor and i is the most likely candidate antecedent of j. P(core f |i, j)
is calculated by a simple coreference classifier such as Ng and Cardie (2002) and P(anaph| j)
is the score of anaphoricity of j, which is used to exclude typical non-anaphoric mentions such
as pleonastic it. Given equation (2), their anaphora resolution model judge as anaphoric if
coref(i, j)≥ 0.5; otherwise non-anaphoric.

In this work, we adopt the above approach to obtain scoreana(i, j) needed in equation (1). By
using core f (i, j) we define scoreana(i, j) as follows:

scoreana(i, j) =− log(1−max
i

coref(i, j)) (3)

The feature set and detailed configuration for model creation generally follows the original
work by Iida and Poesio (2011). For creating a classifier, we used MegaM 1, an implemen-
tation of the Maximum Entropy model, with default parameter settings. As an anaphoricity
determination model (Iida et al., 2005), we used the selection-then-classification model, which
first selects a most likely candidate antecedent i and then determines the anaphoricity of can-
didate anaphor j referring to the information from a pair of i and j, because Iida et al. (2005)
reported their model determines anaphoricity more precisely than a simple anaphoricity model
(e.g. Ng and Cardie (2002)).

1http://cs.utah.edu/˜hal/megam/
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type #article #sentence #word coreference
train 1,753 24,263 651,986 10,206
test 696 9,287 250,901 4,396

Table 2: Statistics of annotated information in NAIST text corpus

5 Empirical Evaluation

This section first evaluates performance of NP coreference resolution on coherent and incoher-
ent texts for exploring the possible use of these results on evaluating discourse coherence; we
then conduct an empirical evaluation on ranking a pair of coherent and incoherent texts by
comparing our metric with the entity grid model.

5.1 Data set

For our evaluation, we used the NAIST text corpus, which consists of Japanese newspaper
articles containing manually annotated NP coreference relations. Because the corpus has no
explicit boundary between training and test sets, articles published from January 1st to Jan-
uary 11th and the editorials from January to August were used for training and articles dated
January 14th to 17th and editorials dated October to December are used for testing as done by
Taira et al. (2008) and Imamura et al. (2009). Table 2 summarises the statistics of annotated
coreference relations in the corpus.

Because the data set contains some texts consisting of only a sentence2, we excluded
them for our evaluation of information ordering. In line with the experiments done by
Barzilay and Lapata (2008), we created 20 different texts by randomly scrambling the order
of the sentences in an original text, each of which is henceforth called an incoherent text, while
the original text is called a coherent text. In this evaluation, we followed Barzilay and Lapata
(2008)’s experimental setting, that is, the task of pairwise ordering, i.e., to detect a coherent
text given a coherent and incoherent text pair.

5.2 Experiment 1: NP coreference resolution on incoherent texts

We first evaluate performance of NP coreference resolution on both coherent and incoherent
texts. During the training phase, we use only coherent texts as the training instances for
creating a classifier used in each model. By using only coherent texts for training, we expect
that a model appropriately identifies coreference (or anaphoric) relations in coherent texts,
while it is less successful in incoherent texts. Next, classifiers induced from coherent texts are
applied to either coherent or incoherent texts to investigate the difference of performance on
coreference resolution.

Table 3 shows the results for the recall, precision and F -score of pairwise classification on NP
coreference resolution on evaluating coherent or incoherent texts, where the ‘coherent’ which
stands for the results on coherent texts, the ‘incoherent:µ’ and ‘incoherent:σ’ which mean the
averaged score of the results on incoherent texts and its standard deviation. Table 3 demon-
strates that the ‘coherent’ obtains better performance in F -score than ‘incoherent:µ’ on NP
coreference resolution. It indicates that the performance of NP coreference resolution strongly
correlates to discourse coherence, that is, this relative difference of performance between co-

2In the NAIST text corpus, 213 articles in the training set and 156 articles in the test set consist of a sentence.
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Recall Precision F-score
coherent 0.624 0.508 0.560
incoherent 0.538± 0.004 0.496 ± 0.004 0.516 ± 0.004

Table 3: Results using NP coreference resolution

herent and incoherent texts is expected to lead to better discrimination on information order-
ing which we discuss in Section 5.3.

5.3 Experiment 2: pairwise information ordering

We next investigate the effects of the metric proposed in Section 3 for the task of pairwise
information ordering comparing the results with the entity grid model.

As a baseline model, we use a model which randomly selects a text from two given texts. Alter-
native baselines are variants of the entity grid model; one captures the transition of discourse
entities based on lexical chaining (i.e. NPs which have identical head strings are grouped as a
cluster), and the other uses the outputs of a NP coreference resolution model for the entity grid
representation instead of using lexical chaining. As for the coreference resolution model for
obtaining the entity grid representation, we employed the original selection-then-classification
model (SCM) described in Section 4 because it performed better in the final evaluation (i.e.
pairwise ordering). This may be because the original SCM tends to accurately identify corefer-
ence relations in incoherent texts as well as coherent ones, and as a result those relations are
considered as less noisy inputs to the entity grid model.

For the entity grid representation in Japanese, we employed the work by Yokono and Okumura
(2010), which is based on Japanese case-makers (e.g. wa (topic), ga (subject), o (object)) to
simply identify grammatical roles of discourse entities3. Note that we excluded the extensions
of the base entity grid modeling (e.g. separating discourse entities into two classes based on
the salience of each, introduced by Barzilay and Lapata (2008)) for simplification. To create a
pairwise ranker based on the entity grid modelling, we used a ranking SVM (Joachims, 2002)
as Barzilay and Lapata (2008) did. In this evaluation, we also compared the entity grid models
using the coherence metric based on NP coreference as a feature.

The results are shown in Table 4. These results demonstrate the entity grid models and the
models based on our coherence metric achieved better accuracy than the random baseline. By
comparing the entity grid models with and without coreference resolution, the results show
that the former outperforms the latter. It indicates Japanese NP coreference resolution is
also useful for grid representation, the same as for English coreference resolution adopted in
Barzilay and Lapata (2008).

Furthermore, ranking based on our metric achieved better accuracy than the entity grid mod-
els. This is because our metric has an advantage of being able to capture the coherence and
incoherence resulting from the use of long-distance coreference relations, while the entity grid
model focuses on the local coherence based on discourse entities appearing in the adjacent
two or three sentences.

3In addition to the three labels (i.e. S, O and X) in the original work by Barzilay and Lapata (2008), we also use a
T(opic) label to distinguish topical words from subjects done by Yokono and Okumura (2010) to capture the Japanese
grammatical aspect.
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model accuracy (%)
random 50.0
entity grid (−coref) 67.3

(a) entity grid (+coref) 70.7
(b) proposed metric 76.1
(c) (a) + (b) 78.2

Table 4: Results of pairwise information ordering

Our metric utilises the appropriateness of anaphoric functions, one of characteristics of coher-
ence which was not directly integrated in the entity grid model. Therefore, by combining them
we can expect to see an improvement in accuracy. The last row in Table 4 shows the result of
the entity grid model using coreference resolution integrated with our metric as a feature. As
expected, the result ((c) in Table 4) obtained the best accuracy out of all the results shown in
Table 4 4. It indicates that long-distant coreference relations are also important for evaluating
discourse coherence in a text.

6 Conclusion

In this paper we proposed a metric for evaluating discourse coherence based on the outputs of
a coreference resolution model to reflect the idea that a writer tends to appropriately utilise
anaphoric or coreference relations when writing a coherent text. In order to investigate the
effects of the proposed metric, we conducted an empirical evaluation on a pairwise ordering
task, taking the NAIST text corpus as a target data set. The results of our evaluation demon-
strated that the metric calculated using the outputs of NP coreference resolution achieved
better accuracy than the entity grid model (Barzilay and Lapata, 2008). Moreover, the result
of integrating the metric with the entity grid model shows the improvement of 7 points in
accuracy.

In this work, we focused on the use of NP coreference resolution as cues for evaluating dis-
course coherence in a text. However, even if we refer to coreference relations as indicators
of discourse coherence, the relations are sometime sparse in a text, resulting in assigning an
inappropriate score to it. One simple way to avoid this problem is to take into account other
types of reference behaviour, such as zero anaphora and bridging anaphora, because this type
of reference function can often relate distant discourse fragments (e.g. two clauses placed far
from each other). In addition, although we focused on exploiting the relationship of discourse
entities in terms of anaphoric functions, the (latent) topic transition in a text is another key for
capturing text coherence, as discussed by Chen et al. (2009). Therefore, one interesting issue
for discourse coherence is how to integrate the above factors into existing coherence models.
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