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1 Introductidn

The history of parsing natural languages began with the formal linguistic theory
developed by N.Chomsky who classified languages into four classes, unrestricted lan-
guages, context-sensitive languages, context-free languages and regular languages.
These languages are produced by applying rewriting rules, or otherwise called pro-
duction rule, in the form of @ — £ in which a string « is rewritten as another string
3. Chomsky pointed out that only context-free grammar is not enough to specify a
natural language, and he insisted on the necessity of context sensitiveness. However
from the point of practical parsing, it is very difficult to device a parsing algo-
rithm for context-sensitive grammar. Recently, Gazdar et.al., advocate the power of
context-free grammar in covering broad range of natural languages [Gazdar, 85]. As
many efficient parsing algorithms have been developed for context-free grammars,
most natural language processing systems make use of context-free grammars. The
following is a sample of English contezt-free grammar (CFG).

(1) S — NPVP (8 n - T
2) S - SPP (9) n - man
(3) NP — n (10) n — park
(4) NP — detn (i;) St - s
(5) NP — NPPP (12) det — a
(7) VP — vNP (14) p — in

Figure 1-1: A sample of English context-free grammar

Each rule in CFG is in the form of lhs — rhs asin fig.1-1 where lhs (left hand side)
is allowed to have only one symbol. The symbols appeared on the lhs of each rule
are called nonterminal symbols. In case of fig.1-1, “S, NP, PP, VP, n, v, det, p” are
nonterminal symbols. The symbols not appeared on the left hand side are termed as
terminal symbols such as “’I’, man, park, saw, a, the, in”. The nonterminal symbols,
which directly produce terminal symbols are called preterminal symbols such as “n,
v, det, p” in fig.1-1. A symbol S is called a start symbol and if an input sentence 1s




deri-v.ed from S applying CFG rules, the input sentence is recognized or parsed by
the CFG. The following is a derivation of the sentence “I saw a man” from S:

S=NPVP=nVP="TVP="TvNP = Tsaw NP = 'I'"saw det n = 'I’ saw
an = I’ saw a man, which corresponds to the following tree derivation process.

Figure 1-2 : Derivation tree of the input “’I’ saw a man”

The above derivation is called a leftmost derivation, which rewrites the leftmost Q,}
nonterminal symbols in each step. Similarly we can define a rightmost derivation by
rewriting the rightmost nonterminal symbols.

Now we can give an informal definition of parsing:
Given a CFG and an input sentence, find a derivation of the input sentence from
a start symbol S applying CFG rules.

There are two strategies to find these derivations; one is top-down and the other
is bottom-up. In case of top-down parsing, the parser reads a CFG rule in a usual
way along with the direction of the arrow in CFG rules. The lhs symbol (goal)
is rewritten into rhs symbols (subgoals) until a sequence of terminal symbols (an
input sentence to be parsed) is obtained. For example, using the rule (1) in fig.1-1,
in order to accomplish S, we have to examine whether NP and VP will be able to
be accomplished under the constraints that the terminal symbols derived from NP
and VP are adjacent in the input sentence (see fig.1-3).
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I saw a man

Top-down
Figure 1-3 : Top-down parsing

On the contrary, in case of bottom-up parsing, the parser reads a CFG rule
in a reverse direction. In case of rule (1), after accomplishing NP and VP, S is
accomplished combining the NP and VP (see fig.1-4).

I saw a man

Bottom-up

Figure 1-4 : Bottom-up parsing

In the current trends on natural language parsing, Earley’s parsing algorithm has
been used because of its efficiency in parsing. In section 2, we will explain Earley’s
parsing algorithm [Earley, 70],[Aho, 72].

In section 3, Chart parsing algorithm will be explained which is developed by
M.Kay [Kay, 80] and its bottom-up version has been used in practical natural lan-
guage processing systems as well as speech recognition systems. Both the Earley’s
and Chart parsers can handle any general CFG.

Knuth developed a LR parsing algorithm [Knuth, 65] which could parse an input
sentence deterministically and efficiently, but the input sentences were limited to the
ones generated by LR grammar, which is a proper subset of CFG. In section 4, we
will explain generalized LR parsing algorithm [Tomita, 86], [Kipps, 89], [Tanaka,
92|, which can handle any sentences generated by CFG. Empirically, generalized LR
parsing algorithm is the most efficient parsing algorithm.

In general, these parsing algorithms might produce a tremendous amount of
parsing results (parsing trees) for a long input sentence. From “I saw a baby with
the toy”, we will get at least two parsing results by applying the rules from (1)
to (7) of the CFG in fig.1-1. Two are correct parsing results from the syntactic
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point of view, but only one of them is a plausible parsing result from the semantic
point of view. However, semantic processing is one of the most difficult tasks of
natural language processing. Recently, many researchers pay attention to statistical
methods to select probable parsing results. For this purpose, probabilistic grammar
[Wetherell, 80], [Wright, 90], [Fujisaki, 91] has been used. This will be explained
briefly in section 5.

For the simplicity, we avoid the epsilon rule (null production as X — ¢) in the
following discussions. The readers interested in handling the epsilon rule should
consult the related works in references. As a final comment on fig.1-1, rules from
(8) to (14) are often called lexical entries in a dictionary.

2 Earley’s parsing algorithm

In this section we briefly sketch Farley’s parsing algorithm. This is basically a top-
down parsing algorithm in which all possible parses are carried simultaneously in
such a way that all identical subparses can be combined in order to avoid duplicated
efforts on computation. Thus the time complexity is restricted in the order of n3,
where n is the length of an input sentence.

Earley’s algorithm uses dotted CFG rules called items, which has a dot in its
rhs. Let the input sentence be “gI;saw;azmangingthegpark;”. Here the numbers
appeared between words are called position numbers. Considering the CFG rule (1)
of fig.1-1, we will have three types of dotted items as shown below, the notation of
which is slightly different from the one given by Earley [Earley, 70].

[S— - NP VP, 0, 0]
[S— NP - VP, 0, 1]
[S— NP VP -, 0, 4)

The first item indicates that the input sentence is going to be parsed applying
the rule S — NP VP from position 0. The second item indicates that a portion
of the input sentence from position number 0 to 1 has been parsed as NP and the
remainder left to be satisfied as VP. The third item indicates that the portion of
input sentence from position number 0 to 4 has been parsed as NP VP and thus S
is accomplished. Note that the combination of the second item and the third item
will produce a parsing tree in which NP covers the portion of the input sentence
from 0 to 1 and VP covers from 1 to 4. If we have the fourth item [S — NP VP .,
0, 7], then the combination of the second item and fourth item will produce another
parsing tree where NP covers the portion from 0 to 1 and VP covers from 1 to 7.
Thus the second item is shared by both parsing trees. The figure 2-1 will further
clarify the situation.!

1A set of items created by the Completer and Scanner operations explained in this section, are
used to generate parsing trees. The tree generation algorithm is shown in [Aho, 72] and if CFG
include ambiguities, it takes time in the order of n? to generate a parsing tree.




[S—NP - VP.0,1]
[S—NPVP- ,0,4]

[S—NPVP:- ,0,7]

7

1 saw a man in the park

Figure 2-1 : Sharing of a partially parsed tree

Earley’s algorithm uses three operators, Predictor, Scanner and Completer. In
the following a, 8,7 are a sequence of terminal and/or nonterminal symbols and S,
A, B are nonterminal symbols.

Predictor operation:

For an item of the form [A — o B f, 1, j], create [B — v, j, j] for each
production of the form B — 7.

Completer operation:

For an item of the form [B — 7-, j, k], create [A — a B -8, i, kK (1<)
< k) for each item in the form of [A — - B B, 1, j] if exists.

Scanner operation:

For an item of the form [A — a- w 3,1, j], create [A = awBi i+
if w is a terminal symbol appeared in the input sentence between j and
i+l

The Predictor operations correspond to top-down parsing. Figure 2-2 illustrates
the above three operations.
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Figure 2-2 : Predictor, Completer and Scanner operations

Now we will give Earley’s parsing algorithm:

For each production S — ¢, create [S — -, 0, 0].
For j=0ton do
for each item in the form of [A — a B f, i, j], apply Predictor operation
while a new item is created.
for each item in the form of [B — - i, j], apply Completer operation
while a new item is created.
for each item in the form of [A — a- w f3, 1, j|, apply Scanner operation.
If we find an item of the form [S — o, 0, n], then accept else reject, where n is
the length of the input sentence.

Let us consider a grammar in fig.1-1 and an input sentence is “I saw a man in
the park.” Earley’s parsing will proceed as follows.




Initialization.

1) [S— - NP VP,0,0]

2) [S— -SPP,0,0]

Apply Predictor to 1) and 2)
3) [NP— -n,0,0]

4) [NP — . detn,0,0]

5) [NP — - NP PP, 0, 0]
Apply Predictor to 3)

6) [Il - ’I’» 0:- 0]

Apply Scanner to 6)

) h->T.01]

Apply Completer to 7) with 3)
8 [NP—-n.0,1]

Apply Completer to 8) with 1) and 5)
9) [S— NP-VP,0, 1]

10) [NP — NP - PP, 0, 1]
Apply Predictor to 9)

11) [VP - - v NP, 1, 1]
Apply Predictor to 11)

12) [v— -saw, 1, 1]

Apply Predictor to 10)

13) [PP — - p NP, 1, 1]
Apply Scanner to 12)

14) [v — saw -, 1, 2]

Apply Completer to 14) with 11)
15) [VP — v - NP, 1, 2]
Apply Predictor to 15)

16) [NP — - n, 2, 2]

17) [NP — - det, n, 2, 2]

18) [NP — - NP PP, 2, 2]

The reader can easily continue the rest of the parsing. When applying Predictor
operations, Earley’s algorithm often creates a set of similar items such as 3),4),5)
and 16),17),18) expecting NP in the future. On using LR table, the GLR parsing
algorithm can avoid creating such similar items by Predictor operations, and thus
make an efficient parsing. .

The careful reader will be able to understand how Earley’s algorithm blocks left
recursive derivations. Considering the item 2) with a left recursive rule [S — - S
PP, 0,0], and applying Predictor operation, it seems to create the same item as
in 2) repeatedly, but Earley’s algorithm prevents this by saying “apply Predictor
operation while a new item is created”. In other words, only new items, which were
not created before, are generated by Predictor operation.




3 Chart parsing algorithm

In recent years, chart parsing algorithm [Kay 80] have been used broadly. The
algorithm uses a data structure called chart as a book-keeping storage for all the
information produced while parsing. The information in the chart is refered to avoid
doing redundant works. This is essentially similar to the purpose of items in Earley’s
algorithm. Hence, the time complexity of parsing a sentence of length = is restricted
in the order of n® for general CFGs as in the case of using Earley’s algorithm.

The information kept in the chart are divided into a set of active edges and a
set of complete(inactive) edges. A complete edge represents a constituent that has
been completed. An active edge represents a constituent with some elements called
remainder left to be satisfied. As “edges” in chart algorithm are essentially the
same as “items” in Earley’s algorithm, we will specify an edge by using the same
representation for dotted items in last section. The elements after the dot then
represent the remainder. For example, [S — NP - VP, 0, 1] represents an active
edge of constituent S starting at position 0, ending at position 1, which has already
found its NP, and still needs a VP to be completed. [S — NP VP -, 0, 4] is an
example of a complete edge whose all elements have been found.

Chart provides a very general framework to natural language analysis. The edges
in the chart can be used by any parsing strategy up to the way they are processed. In
fact, Earley’s algorithm can be viewed as a specialization of chart parsing algorithm
which proceeds in the top-down manner. For comparison, in this section we will
discuss the bottom-up version of chart parsing.

Now we will give a left to right bottom-up chart parsing algorithm. In the
following e, 3, are a sequence of terminal and/or nonterminal symbols, and A,B,C
are nonterminal symbols. S is a special symbol representing the goal symbol.

)
Input wyw,...w,

Output a chart
Algorithm?
Fork=0ton—1do

(a) For each entry C — wpy; in the lexicon, span an inactive edge [C — wy41-, k,
k + 1] between positions k and k + 1

Then for each inactive edge between positions j and k+ 1(j < k+1) [B — ~,
7,k + 1], do the following until no new item can be created:

(b) for each rule A — B, span an inactive edge [A — B -, j,k + 1].
(c) for each rule A — B 3, span an active edge [A — B -8, 7,k +1].

%In this case eliminations of epsilon rule makes the following descriptions a slightly longer one.
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(d) for each active edge starting at position 7, ending at position j and having B
as the leftmost element of the remainder with form [A — a- B, 1, ], create
an inactive edge [A — a B -, i,k + 1} between positions i and k + 1.

(e) for each active edge starting at position ¢, ending at position j and having B
as the leftmost element of the remainder with form [A — a- B f, 1, j], create
an active edge [A — a B -8, 1,k + 1] between positions ¢ and k + 1.

If we find an edge of the form [S — a:,0,n], then accept else reject.

Note that step (b) and (d) generate new inactive edges which will be in turn
applied with step (b)-(e). The loop will be done until no more new item is generated.

To understand the algorithm more clearly, let us consider parsing the input
sentence “I saw a man in the park” using the grammar in fig. 1-1. Bottom-up chart
parsing will proceed as follows.

k=0 w =T

Apply (a) to w;

(1) p—>T-0,1]

Apply (b) to (1)

(2) [NP—-n-0,1]

Apply (c) to (2)

(3) [S— NP - VP, 0, 1]

(4) [NP — NP - PP, 0, 1]
k =1, w, ='saw’

Apply (a) to w,

(6) [v—saw -, 1,2]

Apply (c) to (5)

(6) [VP - v NP, 1,2
k= 2 wy =2

Apply (a) to ws

(7) [det — a-, 2, 3]

Apply (c) to (7)

(8) [NP — det - n, 2,3
k = 3, wy =’man’

Apply (a) to wy

(9) [n—’man’ - 3,4]

Apply (b) to (9)

(10) [NP —n -, 3, 4]

Apply (c) to (10)

(11) [S— NP . VP, 3, 4]

(12) [NP — NP - PP, 3, 4]

Apply (d) to (8) & (9)

(13) [NP — detn -, 2, 4]

Apply (c) to (13)




(14) [S — NP - VP, 2, 4]
Apply (c) to (13)

(15) [NP — NP - PP, 2, 4]
Apply (d) to (6) & (13)
(16) [VP — v NP ., 1, 4]
Apply (d) to (3) & (13)
(17) [S— NP VP -, 0, 4]
Apply (c) to (15)

(18) [S—S - PP,0, 4]

Continuing in the same way, the rest of the input would be analysised as a
preposition phrase(PP) which is represented by the following edge.

(19) [PP — p NP -, 4, 7]
Then this edge would be used to create the following.
Apply (d) to (15)&(19)
(20) [NP — NP PP -, 2,7
Apply (d) to (18)&(19)
(21) [S—=SPP.0,7
Apply (d) to (6)&(20)
(22) [VP - v NP-,1,7
Apply (d) to (3)&(22)
(23) [S—= NPVP.0,7

As two edges of the form [S — a:, 0, 7] are generated, the input is accepted as
a correct sentence that has two syntactic ambiguities.

Simply stating, bottom-up chart parsing is started by constructing inactive edges
corresponding to the individual words and their categories. If there are more than
one category for a word, all edges corresponding to all of its categories will be
constructed. Then the algorithm tries to construct larger constituents from those
inactive edges by matching them with CFG rules or by merging them with active
edges. For example, the inactive edge (1) is matched with the rule NP — n in the
grammar to construct the active edge (3), and the inactive edge (9) is merged with
the active edge (8) to construct the inactive edge (13). If at last some edges of the
category S are spanned from position 0 to position n, the input would be parsed as
a correct sentence.

A chart can be viewed as a graph where each vertex represents a position in a
sentence and each arc linking vertices represents an edge. A visualized version of
chart is shown in fig. 3-1.
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23)

22)

21

Figure 3-1 : The chart of parsing “'I’ saw a man in the park”

The bottom-up and top-down strategies have different advantages. Since a
bottom-up strategy starts by looking at the input and then building up the larger
structures, the structures that cannot be projected down to the input words will
never be built. On the other hand, because a top-down strategy begins by looking
for a sentence and then searching for its substructures, the structures that cannot
be projected up to the structure of a sentence would not be constructed. Mixing
both strategies in a proper way can achieve more efficient parsing(Winograd 83].

4 GLR parsing algorithm

The LR(k) parser [Knuth, 65], which is one of the most efficient shift/reduce parser
based on rightmost derivations. It can parse deterministically and efficiently any
input sentences generated by a LR(k) grammar which is a subset of CFG. Tomita
extended the LR(k) parser to handle a general CFG not limited to Chomsky normal
form [Tomita 86]. The extended algorithm is called Tomita’s algorithm which is
known as one of the most efficient generalized LR (GLR) parsers. Empirically,
Tomita's algorithm is faster than Earley's algorithm. In this section we will give
a brief introduction of Tomita’s algorithm with an example and at the end we will
mention some of the problems.

GLR parsing algorithm uses a stack and an LR table constructed from general
CFG to guide the parsing process. Because of one word look-ahead, GLR parsing
algorithm inherits the merits of original LR parsing algorithm. Furthermore GLR
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parsing algorithm will be able to avoid applications of similar Predictor operations
as in Earley’s algorithm mentioned in the end of section 2. In short, all the necessary
Predictor operations are compiled into a LR table in advance. This will be clearly
understood if the reader is familiar with the method to generate a LR table from
given CFG. However, in this paper, due to the shortage of space, we skip LR table
construction algorithm. The reader who wants to know the LR table construction
algorith may refer to [Aho, 86]. An example of a LR table constructed from fig.1-1
is shown in fig.4-1 which consists of two fields, an Action field and a Goto field.

State Action field Goto field
det| n v P $ |[NP|[PP| VP
0 sh3 | sh4 2 1
1 sh6 acc 5
2 sh7 sh6 9 8
3 sh10
4 re3 re3 red
5 re2 re2
6 sh3 | sh4 11
7 sh3 | sh4 12
8 rel rel
9 red red red
10 red red re4
11 re6 | re6/sh6 | re6 9
12 re7/sh6 | re7 9

Figure 4-1 : A LR table for the grammar in fig.1-1

GLR parsing algorithm works with a stack called graph-structured stack (GSS)
and a LR table by pushing or popping a pair of vertices each of which corresponds
to a partially parsed tree and a state.

A GSS is initialized by pushing a state 0 in stage Ug, which becomes the root
vertex of the GSS with the first word w; as a look-ahead word (scanning word),
whose preterminal will be used to determine the parsing actions in the LR table.
An input sentence is parsed stage by stage for each word from left to right thus
changing the GSS.

The readers not familiar with GLR parsing may skip the following definitions
and proceed to a GLR parsing example given later in this section.

Upon scanning the i+1st word w;,; as a look-ahead word, the parsing algorithm
carries out the following four actions in stage U; after pushing i-th word.

1. Reduce : The parser pops twice the number of vertices (corresponding to the
right hand side (rhs) of the production rule specified by the reduce action)
from the top of the stack and then pushes two vertices in the stage U;, which
are a partially parsed tree (created by the rule specified by the reduce action)
and the state determined by the Goto field of LR table.
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2. Shift: A pair of vertices corresponding to a look-ahead word w;;; and a state
is pushed in U;y; with a look-ahead terminal w;;s. The state pushed on the
top of the stack is determined by the shift action. Note that the newly created
state vertex in U;;; is not active until there is no active vertex 3remained
unprocessing in U;.

3. Error: The vertex with error action will be truncated.

4. Accept : Parsing process will end with success.

Only after every vertex in the stage U; has been processed, the parser proceeds to
the stage Uy, scanning the next word w;;o. What kind of actions (shift; reduce;
accept; error) are to be carried out is determined by the top vertices in U;, LR table,
and the preterminal of the scanning word w;4,.

In case of 1 and 2, two vertices are pushed in U; and U;4, respectively and edges
are formed from the new vertex to its parents. If there exists a top vertex with the
same state as that of a newly created top vertex in U; in case of 1, or U4, in case
of 2, then they will be merged into one. The vertex after merge will have several
parents. Merging vertices with the same state prevents the duplicated processing of
the input sentence in the later stage.

As mentioned before, a LR parsing table consists of two fields, an Action field
and a Goto field. The parsing actions are determined by state (the row of the table)
and a look-ahead preterminal (the column of the table). Here, $ represents the end
of an input sentence. Some entries in the LR table contain more than one operation
and are thus in conflict. In such cases, GLR parser must conduct more than one
operation simultaneously.

The ‘shN’ in some entries of the Action field in LR table indicates that the GLR
parser has to push a look-ahead preterminal on the LR stack and shift to ‘state N’.
The symbol ‘reN’ indicates that the parser has to pop twice the number of vertices
(corresponding to right hand side of the rule numbered ‘N’) from the top of the
stack and then go to the new state determined by Goto field. The symbol ‘acc’
completes parsing successfully. If an entry contains no.operation, the parser will
detect an error. The LR table in fig.4-1 has conflicts in state 11 and 12 for column
‘p’. Each of the two conflicts contains both a shift and a reduce action, which is
called a shift /reduce conflict. When GLR parser encounters a conflict, both actions
are carried out simultaneously, but the vertex created by the shift action remains
inactive until no active vertex remains to be performed.

Let us consider the grammar in fig.1-1 and an input sentence “I saw a man
in the park”. GLR parsing will proceed as follows. (O and O represents a state
and a partially parsed tree respectively. In the example, partially parsed trees are
designated by unique pointer. The black circles represent an active state. ' '

At the beginning, the GSS contains only one vertex with state 0 in the stage Ug

34Active vertex” means there are some action(s) on the top of the stack.
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(called state vertex) and no partially parsed trees . By looking at the action table,
the next action “shift 4 [sh 4]” is determined from the LR table given in fig. 4-1.
' U0

g g § (sh 4]

ll\lext »»;ord ="a’

On shifting the word “I”, a partially parsed tree ([n, “I"]) corresponding to the
shift action is created and is pushed onto the GSS (called pointer vertex) along with
the state vertex with state 4. The parser enters into the stage U;. The next action
“reduce 3 [re 3]” is determined from the action part of the LR table, because the

state at the top of the stack is 4 and the preterminal of the next word is “v”.

ruUor Ul
. i !
1 0,0 4 !
! O——1—@ . [re3] 0[n 'T"]

Next word = *saw’

During a reduce action, two vertices from the top of GSS are poped and tem-
porarily the state of the top of GSS becomes 0, which will determines the next state
by referring Goto field. A new partially parsed tree pointed by 1 is created in the
parse forest. Then the partially parsed tree is pushed onto the GSS along with the
state vertex determined by Goto field of 0 and NP.

ruor U1
] ) )
P01 2
! O——{—@ ! [sh7] 1 [NP (0)]

Next word = 'saw’

After executing shift 7, the GSS will become,

ruor Ul U2
] ] )
] ] 1 ]
Lo 2, 2 7
! O—O—O—+{1—® ! (sh3] 2 [v 'saw’ ]

Next word = 'a*

After executing shift 3, the GSS will become,
CU0 Y UL N ¢ - roous '
to i 2
! O—A—O———O0—+{—e

' '
2 7,3 3
L '[sh 10) 3 [det 'a’]

Next word = 'man’

After executing shift 10 the GSS will become,
rvUO UL+ U2 U3 @ U4
tol1 2:2 713 3.4 10!
! O——O—O0——O0—+-3—0—111— |

[re 4) 4 (n 'man’]

Next word ='in"

The next action reduce 4 is carried in a similar way as explained before and the

resultant GSS will become,

ruUo: Ul : U2+ U4
) L 1

0 11 2 .2 7.5 12
) 1 1

[re 7]

{sh 6] 5 [NP (34)]

Next word ="in"'
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At this point, a conflict with reduce 7 and shift 6 occurs and both should be
executed. In case the shift action is executed first, then a pointer vertex and a state
vertex corresponding to that shift action will be pushed onto the GSS of stage Us
and it will be inactive until there is no reduce action remains to be performed in
stage Us. Accordingly, in the GSS below, the vertex with state 8 is still active and
the action reduce 1 is executed. The resultant GSS is shown below.

+ Uo Ul ! u2 ! u4 ! uUs '

1 ] ) ) 1 1

HE I | 2 2 745 121 6 6 6 [p 'in"}

! : * co : H 7 [ VP (25))
AR :
¢ :[rcll !

Next word ='"in’ ' ' '

rUor Ul v w2 U4 uUs

) 1 1

10 ) 2 12 7 5 12, 6 6

' B[S (17)]

o0

-
w
-
2

Next word ='in'

The shift action, shift 6 associated with the active vertex is executed.

Actually a partially parsed tree and a state vertex corresponding to the shift
action will be pushed onto the GSS. But, before pushing, the merge action checks
whether there exists a same inactive state vertex which might have been pushed by
the same shift action.

In the GSS above, there already exists a same state vertex in Us and because
both are shifting same word 'in’ as the same preterminal 'p’ and the resultant GSS

becomes as below.

U0 Ul u2 U4 us

[ jJon

0 5 12 6 .
© [sh3]
1
[}

.

Next word ="in' ' '

Now since there is no reduce action remains to be performed in stage Uy, the
state vertex 6 in Us becomes active. After carrying the next action shift 3, GSS

becomes as below.

uo ¢ U1l ' U2 U4 us ué

' [
[ [
] 1
[} 1
1 1
'

]

[sh 10) 9 [det ‘the')

1
[
1
.
:
]
1
'
)
'
)
1
1

Next word ='the’ ' '

After executing shift 10 the GSS will become,
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(=]

[re 4]

-]
w
—
o
-
o

)
]
)
t
'
]
'
]
]
]

Next word ='park’ . ' 10 [n ’park’]

After executing reduce 4 the GSS will become,
In executing reduce 6, after popping the vertices, we have two top state vertices

and both will become active.

vo: ur i U2 u4 us

fre 6]

)
1
]
1
]
1
)

11 [NP (910)]

fre 5)

—
N

- ;.---
~

o

12 [PP (611)]

[re 2)

Next word ='$’

After executing reduce 5 and reduce 2 the GSS will become,
uo Ul U2 u7

E
1 2 4 2 7
. [re 7] 13 [NP (512) ]

'
)
'
1
v 0
'
|

acc 14 {S (812)])

Next word ='$’

The reader will be able to trace the following GLR parsing process.
Uo ! u u? '

15 8

1
1
'
]
+ 0
]
]

1
1
)
1 2
N
[}
L}
.

1S [VP (113)]

Nextword ='S°

uo u7

0 16 1

)
";v e 16 (S (119))
e rnetgcs

Next word ='$’ 4 packing

-
~
—

acc 17[(S (812)(115) ]

The above trace shows all the actions carried out by the GLR parser, such as
shift, reduce, merge, pack to create packed forest. Note that in case of having more

than one preterminal for a word, all vertices corresponding to all of its preterminals
will be shifted.
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The Tomita's GLR parsing algorithm mentioned above is called simplified LR
(SLR) parsing algorithm. There are other GLR parsing algorithms called canonical
LR (CLR) and LALR parsing algorithm. CLR parsing algorithm is slightly efficient
over SLR but, consumes more space for the LR table. LALR parsing algorithm uses
more compact LR table than the one of CLR. Although these two parsing algorithms
use a slightly different LR table, GLR parsing algorithm explained above remains
the same in principle. Interested reader should refer to [Aho, 86] for CLR and LALR
parsing algorithms.

We would like to consider some improvements over Tomita’s GLR parsing al-
gorithm. The time complexity of Tomita’s GLR parsing algorithm becomes in the
order of n?*! where p is the length of the longest production in the grammar, and n
is the length of the input sentence. If the given grammar is in the Chomsky normal
form, then the time complexity will become in the order of n®. According to [Shann,
91], the efficiency of Tomita’s GLR over chart parser comes from the packed forest
representation, and according to Kipps [Kipps, 89, inefficiency of the GLR parser
is in its duplicated traversals of GSS during reduce actions. Kipps invented a GLR
algorithm with the time complexity of n® by preventing this inefficiency, but his
algorithm is considered to be only a recognizer. Tanaka and Suresh find out a fam-
ily of GLR parsing algorithms called AGLR, which are based on Kipps recognizer
but can produce parsing results. The time complexity of their algorithm is in the
order of n® and be proven to be empirically faster than Tomita’s algorithm [Tanaka,
92]. Careful experiments reveal that Chart parsing is about 1.5 times slower than
Tomita’s parsing [Shann, 91], and Tomitas’ parsing is about 1.5 times slower than
AGLR [Tanaka, 92].

GLR parser is also used in speech recognition researches [Tomita, 86}, [Kita, 89].
In this case, phonemes correspond to preterminals of LR table and a look-ahead
preterminal/phoneme becomes an expected phoneme to be examined next in the
results obtained from acoustic data. In order to do so, LR table will be retrieved in
reverse way of parsing. The state of the top of GSS determines a row of LR table
in which there are several actions. From these actions we can get corresponding
preterminals/phonemes which are used to predict next phoneme, and thus enable
to limit the search space.

All of these algorithms mentioned above are based on bread-first parsing algo-
rithms and are easy to be implemented in parallel. But in this paper we would like
to consider about the time complexity of them only in sequential version as sum-
merized in figure 4-2, where n is the length of an input sentence, and p (> 2) is the
length of the longest rhs of production rules used in the CFG.

Earley’s Algorithm | Chart Algorithm | GLR Algorithm

Tomita | AGLR
Parsing n’ n’ n?t! n’
Tree generation n? n? n n

Figure 4-2 : Complexity Table
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The problem of GLR parsing algorithm is to consume a lot of memory space if
the size of the CFG becomes large. It consumes c/¢l where c is a constant and |G|
is the size of the grammar. However, empirically it will not be a big problem in the
future, because of the recent rapid developments in memory integration technology.

5 Scoring parsing result by probabilistic CFG

Generally speaking, CFG parsing algorithms explained above might produce many
parsing results, out of which one wants to extract most plausible parsing results
for semantic processing. Recently, probabilistic CFG (PCFG) has been paid much
attention to ranking parsing results using scores based on statistical information.

PCFG is a set of rewriting rules with probability such as < A — a, p >, where
p is a probability associated with the rule. In PCFG, the following constraint must
be hold: The summation of probabilities of all productions with A on its lhs is equal
to 1. .

Figure 5-1 shows an example of PCFG.

(1) S — NPVP,pl
(2) S — SPP p2
(3) NP — n,p3

(4) NP — detn, p4
(5) NP — NP PP, p5
(6) PP — p NP, p6
(7) VP — v NP, pT7

Figure 5-1: A sample of English PCFG

By the constraints of PCFG, pl +p2=1,p3 4+ p4 +p5=1,p6=1,p7 =1
in fig. 5-1.

Figure 5-2 : Probability of a parsing tree: pl x p3 x p7 X p4.

Resulting probability of the parsing tree in fig.5-2 becomes, pl X p3 x p7 X p4.
For each parsing results, we can calculate scores in a similar way and the tree with
the highest score will be the most probable one.
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In order to assign probability to each rule of PCFG, we have to use a set of
plausible parsing trees obtained from a text corpus. Then we count the occurrences
of each rule in the plausible parsing trees. After the normalization, we can attach a
probability to each rule of PCFG. However, it is very difficult to get a set of plausible
parsing results from a large volume of text corpus. Lari and Young [Lari, 90] give
us an estimation method of the probability from raw text corpus, which is called
Inside-Outside method. Note that the Inside-Outside method does not exclude the
use of text corpus with plausible parsing results from which Pereira et al., efficiently
generate PCFG [Pereira, 92].

On using GLR to calculate the resulting probability of a parsing tree given in
fig. 5-2, it forces us to delay the calculation of probability until a reduce action
is executed. However, Wright [Wright, 90] proposed a method of GLR parsing of
PCFG which uses a probabilistic LR parsing table in which each action is associated
with a probability. Using the action probabilities in the probabilistic LR parsing
table, the probability of a partially parsed tree is calculated whenever an action is
performed. Thus even in a shift action the probability is calculated. The resulting
probability becomes the same as the one mentioned before in the beginning of this
section. The key idea proposed by Wright is to give a method of distributing a
probability in a PCFG rule to shift and/or reduce actions in a LR table.

However, we have a problem because they use only PCFG whose probability
attached remains the same during parsing process. Consider the CFG rule as NP —
pronoun. This rule seems to be more frequently used in the subject position than
in the object position in English. Thus this rule should have higher probability in
the subject position than object position. But in PCFG this context sensitiveness
is not able to express [Magerman 91|. More researches will be necessary.

6 Conclusion & Discussion

There are still many interesting issues in the field of natural language parsing not
mentioned above. In this section, we will discuss some of them briefly.

One of the most active issues is parallel parsing. Exploiting parallel charac-
teristic of independent tasks, a parallel parser using a collection of processors can
achieve substantial speed-up over a traditional serial parser. There are a variety
of methods developed from different points of view. Some of them explore existing
(serial) algorithms and try to adapt them to parallel parsing on certain hardwares or
programming languages {Chiang & Fu 84][Matsumoto 87,89][Tanaka and Numazaki
89]. On the other hands, other methods design new hardwares to accommodate
certain algorithms. There are also some researchers whose their main interest in
parallel processing is not to improve the performance of parsers but to simulate hu-
man language processing with connectionist networks [Fanty 85] [Jain and Waible
91]. More references to papers on parallel parsing can be found in [Nijholt 91].

Parsing free word order languages is another interesting issue. Several languages,
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e.g. Walpiri, Japanese, German and Thai, exhibit significant word order variation.
Using CFG to describe such languages is cuambersome because a numerous number
of rules would be needed to enumerate all possible configurations of a constituent.
Generalized Phrase Structure Grammars(GPSG) [Gazdar et al. 85] provides a solu-
tion to this problem by decomposing the grammar rules into Immediate Dominance
(ID) rules and Linear Precedence(LP) rules. Using ID/LP grammars, free word or-
der languages can be easily and concisely described. However, how to combine the
separate constraints together in parsing becomes a problem. One obvious way is to
compile an ID/LP grammar into a CFG which can then be parsed with any exist-
ing CFG parsing algorithm. However, this approach yields a huge object grammar
which can degrade the parsing performace. Shieber [Shieber 84] presents an ID/LP
direct parsing algorithm by modifying Earley’s algorithm to use ID/LP grammars
directly. Meknavin et al. [Meknavin et al. 92] improves Shieber’s algorithm by
compiling ID and LP rules into generalized discrimination networks and Hasse dia-
grams, and using bottom-up chart algorithm instead of Earley’s. Another top-down
approach of direct ID/LP parsing is presented in [Abramson and Dahl 92].

As true natural language usage can be filled with many types of errors, in order
to achieve a practical interactive natural language understanding system we have
to provide methods for the system to recover from those errors reasonably. The
system should attempt to understand what users intend to say like the way human
do when they communicate to each other. Many algorithms for parsing ill-formed
input are based on using chart (Mellish 89],[Kato 91],[Meknavin 93}. Some LR-based
algorithms are employed in speech recognition systems[Saito and Tomita 88]. Many
other approaches which interested readers should refer to can be found in [Allen(ed.)
83].

All parsing algorithms mentioned in this paper are concerned with only CFG. As
described earlier, however, there are some languages which cannot be described by
CFG, called context-sensitive languages. The attempt to handle such languages have
led to inventions of various grammar formalisms. Since coping with the class of fully
context-sensitive grammars is difficult and may not be required in practical natural
language processing because of their extraneous power, some are concerned with
only so called “mildly context-sensitive grammars”( tree adjoining grammars(TAGs)
[Joshi 85) et. al.). Lexical functional grammars(LFGs) [Kaplan and Bresnan 83], on
the other hand, have much more power than CFGs and TAGs. Designing parsing
algorithms for all of these grammars is another interesting field of researches|[Crain
and Fodor 85].

Finally, we would like to mention about the relation between logic programming
language and natural langauge parsing. Pereira et.al, discussed about the advantages
of using logic programming language such as Prolog for natural language processing.
Interested reader can refer to [Pereira, 80], [Matsumoto, 83|, [Pereira, 87] for top-
down and bottom-up parsing in logic programming. Handling of long dependency
is another difficult task in parsing, but most interested works have been based on
the logic programming. Interested reader should refer to [Pereira, 81], [Dahl, 84],
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[Crain, 85), [Tokunaga, 88] and [Alshawi, 92].
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