
Semi-Automatic Construction of a Tree-Annotated Corpus
Using an Iterative Learning Statistical Language Model

Kiyoaki Shirai, Hozumi Tanaka, Takenobu Tokunaga

Department of Computer Science,
Graduate School of Information Science and Engineering,

Tokyo Institute of Technology
{kshirai, tanaka, take}@cl.cs.titech.ac.jp

Abstract
In this paper, we propose a method to construct a tree-annotated corpus, when a certain statistical parsing system exists
and no tree-annotated corpus is available as training data. The basic idea of our method is to sequentially annotate plain
text inputs with syntactic trees using a parser with a statistical language model, and iteratively retrain the statistical
language model over the obtained annotated trees. The major characteristics of our method are as follows: (1)in the first
step of the iterative learning process, we manually construct a tree-annotated corpus to initialize the statistical language
model over, and (2) at each step of the parse tree annotation process, we use both syntactic statistics obtained from the
iterative learning process and lexical statistics pre-derived from existing language resources, to choose the most probable
parse tree.

1. Introduction

In recent years, many researchers have been de-
voted time to the study of statistical parsing (Char-
niak, 1997; Collins, 1996; Li, 1996). In general, sta-
tistical parsing is a technique by which a parsing sys-
tem ranks parse trees and chooses the most probable
one according to syntactic statistics such as structural
preferences, trained from a corpus. For supervised
learning of syntactic statistics, tree-annotated corpora
such as the Penn Treebank (Marcus et al., 1993) are
needed. Several Japanese tree-annotated corpora have
also been developed, including the EDR corpus (EDR,
1995) and Kyoto University corpus (Kurohashi and
Nagao, 1997). Thus a considerable amount of lit-
erature exists relating to the statistical parsing of
Japanese sentences (Fujio and Matsumoto, 1998; Inui
and Inui, 2000; Uchimoto et al., 1999).

However, existing tree-annotated corpora often
cannot be applied to training syntactic statistics, be-
cause grammar used in statistical parsing system dif-
fers from the one underlying the tree-annotated cor-
pora. Many researchers have statistical parsers with
individuated grammars, but a corpus in which parse
tree annotation is based on the same grammar, is not
always available. In addition to this, differences in
part-of-speech (POS hereafter) tag sets also pose a
problem. When the POS tag set of the tree-annotated
corpus differs from the one used in the lexicon of the
parsing system, syntactic statistics from the corpus
cannot be applied directly in the parser. For the
syntactic analysis of unsegmented languages such as
Japanese, agreement of word segmentation schemata is
also a prerequisite of being able to use existing corpora
as training data. Therefore, when a certain statistical
parsing system exists and no tree-annotated corpus is
available as training data, it is necessary to newly con-
struct a tree-annotated corpus based on the grammar
and lexicon of the parser.

In this paper, we propose a method to construct a
tree-annotated corpus. The basic idea of our method
is to sequentially annotate plain text inputs with syn-
tactic trees using a parser with a statistical language
model, and iteratively retrain the statistical language
model over the obtained annotated trees. The itera-
tive learning process of the statistical language model
is similar to the Inside-Outside algorithm (Lari and
Young, 1990), a learning algorithm used to train the
parameters of a PCFG. The major characteristics of
our method are as follows:

• In the first step of the iterative learning process,
we manually construct a tree-annotated corpus to
initialize the statistical language model over. The
size of this corpus is small so as to reduce human
effort.

• At each step of the parse tree annotation process,
we use both syntactic statistics obtained from
the iterative learning process and lexical statis-
tics pre-derived from existing language resources,
to choose the most probable parse tree.

In what follows, we first briefly introduce our sta-
tistical language model in Section 2. We next describe
details of the iterative parse tree annotation process in
Section 3. We also present our method for obtaining
lexical statistics. We then describe the result of an ex-
periment to evaluate the effectiveness of our method in
Section 4. Finally, we conclude this paper and discuss
future work in Section 5.

2. Statistical Language Model

In this section, we describe our statistical language
model (Shirai et al., 1998) in brief.

As with most statistical parsing frameworks, given
an input string A, we rank its parse trees according to
the joint distribution P (R,W ), where W is a word se-
quence candidate for A, and R is a parse tree candidate



for W whose terminal symbols constitute a POS tag se-
quence L. Figure 1 shows an example of a parse tree for
the Japanese sentence “kanojo ga mado o ake ta”(She
opened the window). We first decompose P (R,W ) into

kanojo ga mado o ake ta

N P P V AUX

(she) (NOM) (window) (ACC) (open) (PAST)

N

BP1 BP2
BP3

W

L

R

Figure 1: Example of a Parse Tree for the Sentence
“kanojo ga mado o ake ta”(She opened the window).

three submodels, the syntactic model P (R), the deriva-
tion model P (W |L) and the lexical dependency model
D(W |R):

P (R,W ) = P (R) · P (W |L) · D(W |R) (1)

The first submodel is the syntactic model P (R),
which is the generation probability of parse tree R
and reflects syntactic statistics such as structural pref-
erences. At present, we estimate P (R) using the
probabilistic GLR (PGLR) language model, which is
founded on the incorporation of probabilistic distri-
butions into the GLR parsing framework (Inui et al.,
1997; Sornlertlamvanich et al., 1997). The PGLR lan-
guage model can reflect mild context-sensitiveness and
is easily trainable given a tree-annotated corpus.

The second submodel is the derivation model
P (W |L), which reflects word occurrence statistics. It
is given by the product of the context-free derivation
probabilities of each word wi as (2).

P (W |L) =
∏

i

P (wi|li) (2)

The third submodel is the lexical dependency
model D(W |R), which reflects word collocation statis-
tics. It is given by the product of the lexical depen-
dency parameter D(wi|li[ci]) as given in (3).

D(W |R) =
∏

i

D(wi|li[ci]) (3)

In (3), each ci is the subset of W which has the
strongest influence on the derivation li → wi. We call
ci the lexical context of wi. The lexical dependency
parameter is given by (4).

D(wi|li[ci]) =
P (wi|li[ci])
P (wi|li) (4)

D(wi|li[ci]) measures the degree of dependency be-
tween the lexical derivation li → wi and its lexical
context ci. It is close to one if wi and ci are highly
independent. It becomes greater than one if wi and
ci are positively correlated, whereas it becomes less

than one and close to zero if wi and ci are negatively
correlated.

Let us show some examples of the lexical depen-
dency parameters. Given a verb v which subordi-
nates slot-markers s1, . . . , sn, the following lexical de-
pendency parameter is considered.

D(v|V [s1, . . . , sn]) =
P (v|V [s1, . . . , sn])

P (v|V )
(5)

In (5), V is the POS of v, and P (v|V [s1, . . . , sn]) is
the probability of a lexical derivation V → v, given
that V subordinates slot-markers s1, . . . , sn. Both the
dependency between the head verb and each of its slot-
markers and the dependency between each of the slot-
markers are reflected in (5).

When n is a slot-filler of slot s of a head word h, the
following lexical dependency parameter is considered.

D(n|N [h, s]) =
P (n|N [h, s])

P (n|N)
(6)

In (6), N is the POS of n, and P (n|N [h, s]) is the
probability of a lexical derivation N → n, given that
N functions as a filler of slot s of a head word h. Thus
(6) reflects the lexical dependency between a slot-filler
and head word linked by a given slot-marker.

One of the advantages of our statistical language
model given by (1) is the modularity of the different
statistical types. Syntactic statistics, word occurrence
statistics and word collocation statistics are reflected
in the distinct submodels P (R), P (W |L) and D(W |R),
respectively, while maintaining the probabilistic well-
foundedness of the overall model. The modularity
of each statistical types enables us to obtain differ-
ent statistics from different language resources. As
described in the next section, we train the syntactic
model P (R) from plain text by way of an iterative
learning process, while we train the derivation model
P (W |L) and the lexical dependency model D(W |R)
from existing language resources.

3. Constructing a Tree-Annotated
Corpus

One of the simplest ways to annotate sentences with
parse trees automatically is to use a statistical parser
to analyse each sentence, and choose the most prob-
able parse trees according to the statistical language
model. The problem is how to train the statistical lan-
guage model to reflect syntactic statistics, that is how
to train the syntactic model P (R) in our probabilistic
language model given by (1), given that there is no
tree-annotated corpus as training data. We use an it-
erative learning procedure to train each P (R), i.e. we
repeatedly derive syntactic trees for plain text inputs
using a statistical parser, and iteratively train P (R)
from the obtained annotated trees. Furthermore, in
order to improve the quality of tree-annotated cor-
pus, we would allow for minimal human intervention,
and make use of lexical statistics, the derivation model
P (W |L) and the lexical dependency model D(W |R)



in our probabilistic language model, all of which can
be trained from existing language resources. In the
following three subsections, we detail our method for
constructing a tree-annotated corpus.

3.1. Our Method
The following iterative procedure provides our

parse tree annotation method. An overview of our
method is given in Figure 2. Given T as the set of
sentences we would like to annotate, and Pi(R) as the
syntactic model at the i-th iteration:

1. We train the derivation model P (W |L) and lexi-
cal dependency model D(W |R) from existing lan-
guage resources, such as POS-tagged corpora and
tree-annotated corpora. Notice that these lexical
statistics are trained independently of the syntac-
tic model Pi(R), before the following iterative pro-
cedure begins. Details of training each P (W |L)
and D(W |R) are described in Section 3.2. and
3.3., respectively.

2. We manually annotate a set of sentences with syn-
tactic trees I, and initialize syntactic model P1(R)
based on them. The number of sentences in I
should be as small as possible to avoid too much
human effort.

3. Let i = 1, and repeats steps 4 and 5 until its a
point of saturation is reached.

4. Let J be an empty set. We analyse each sentence
in T and rank the associated parse trees in order
of the overall probability returned by the language
model Pi(R) ·P (W |L) ·D(W |R), then add the top
N parse trees to J . Although the parse tree anno-
tation for each sentence in T is the most probable
one, we use the top N parse trees to train the
syntactic model Pi(R) over.

5. Let i = i + 1, and newly train Pi(R) over I ∪ J .

6. Automatically annotated trees are postedited by
human annotators.

As the current level of natural language processing
technologies is not yet sufficient to construct a tree-
annotated corpus fully automatically, we consider the
human intervention in step 6 to be necessary to guar-
antee the quality of the annotated trees. Obviously,
the more accurate the automatically annotated trees
are, the less intervention on the part of human anno-
tators is needed.

3.2. Training the Derivation Model
As described in Section 2., the derivation model

P (W |L) is the product of each P (w|l), which is the
probability of each derivation l → w. When the POS
tag set used in the parsing system is equal to that of
an existing POS-tagged corpus, P (w|l) can be trained
from it by maximum likelihood estimation as in (7).

P (w|l) =
O(w, l)∑

w∈l O(w, l)
(7)

In (7), O(w, l) indicates the occurrence of word w with
POS tag l in the training corpus. Because such a POS-
tagged corpus won’t always be available, however, we
may be required to train each P (w|l) from the POS-
tagged corpus based on a different POS tag set to that
of the lexicon used in the parsing system.

Suppose that Ls is the POS tag set used in the
parsing system, and Lt is the POS tag set for the POS-
tagged corpus. Furthermore, let Lc be a novel POS tag
set, where each POS ls ∈ Ls is a subdivided POS of
some unique lc ∈ Lc, and each POS lt ∈ Lt is also
a subdivided POS of lc. For example, if Ls contains
{singular noun, plural noun} as noun POS tags and
Lt contains {common noun, proper noun, pronoun},
we would define Lc as {noun}. It is possible to design
Lc for any pair of Ls and Lt, if we define Lc as a
set of coarse POSs, such as noun, verb, adjective, etc.
Then, we estimate the derivation probability P (w|l) as
follows:

P (w|ls) =
O(w, lc)∑

w∈ls
O(w, lc)

(8)

In (8), ls is the subdivided POS of lc, and O(w, lc) is
the occurrence of the word w whose POS tag is lt (a
subdivision of lc), in the training corpus. For example,
we estimate P (w|singular noun) using O(w,noun),
that is the occurrence of the word w whose POS tag is
common noun, proper noun or pronoun.

3.3. Training the Lexical Dependency Model
As described in Section 2., the lexical dependency

model D(W |R) is the product of the lexical depen-
dency parameters D(w|l[c]), as given in (3). The de-
nominator in (4) is the same as the context-free deriva-
tion probability, and estimated by (8). The numerator
in (4), on the other hand, can be estimated using word
collocation data.

First, we consider the dependencies between slot-
markers and their lexical head using the lexical depen-
dency parameter (5). We estimate the numerator as
follows:

P (v|V [s1, . . . , sn]) =
O(v, V, s1, . . . , sn)∑

v∈V O(v, V, s1, . . . , sn)
(9)

In (9), O(v, V, s1, . . . , sn) is the occurrence of verb
v with POS V , governing slot-markers s1, . . . , sn.
O(v, V, s1, . . . , sn) can be obtained from a tree-
annotated corpus easily. Although an existing tree-
annotated corpus wouldn’t always be appropriate for
training the syntactic model due to differences in the
grammar used in a parsing system and that underlying
the corpus, we can apply it in acquiring cooccurrence
data of head verbs and their slot-markers, and incor-
porate this into the overall statistical language model.

Next, we consider dependencies between slot-fillers
and their head verb linked by a given slot-marker, us-
ing the lexical dependency parameter (6). We estimate
the numerator of (6) as follows:

P (n|N [h, s]) =
O(n,N, h, s)∑

n∈N O(n,N, h, s)
(10)
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Figure 2: Overview of Constructing a Tree-Annotated Corpus

In (10), O(n,N, h, s) is the occurrence of the slot-filler
noun n of slot s governed by head word h, whose POS
is N . This collocation data can be obtained from a
POS-tagged corpus.

In the case that the POS tag set used in the parsing
system is different from that of the training corpora,
(9) and (10) can be estimated by way of (11) and (12),
respectively, similar to the estimation of P (w|ls) in (8).

P (v|Vs[s1, . . . , sn]) =
O(v, Vc, s1, . . . , sn)∑

v∈Vs
O(v, Vc, s1, . . . , sn)

(11)

P (n|Ns[h, s]) =
O(n,Nc, h, s)∑

n∈Ns
O(n,Nc, h, s)

(12)

4. Experiment

By way of evaluation, we conducted an experiment
to annotate plain text inputs in Japanese with syn-
tactic trees following the method described in Section
3.1.

4.1. Our Parsing System
First, let us briefly describe our statistical parsing

system. Our system is based on the MSLR parser,1

which integrates morphological and syntactic analy-
sis of unsegmented languages such as Japanese. The
grammar consists of 1,498 context-free rules contain-
ing 220 nonterminal symbols and 556 terminal symbols
(i.e. POS tags). According to this grammar, the parser
generates syntactic parse trees representing bunsetu
phrase (BP, hereafter) boundaries, and dependency
relations between them. A BP is a chunk of words
consisting of a content word (noun, verb, adjective,
etc.) accompanied by some function word(s) (postposi-
tion, auxiliary, etc.). For example, the BP “kanojo-ga”
(BP1) in Figure 1 consists of the noun “kanojo”(she)
followed by the postposition “ga”(NOM), which func-
tions as a nominative slot-marker. The BP “ake-
ta” (BP3), on the other hand, consists of the verb
“ake”(open) followed by the auxiliary “ta”(PAST). In

1http://tanaka-www.cs.titech.ac.jp/pub/mslr/

Japanese, when BPi precedes BPj and BPi and BPj

are in a dependency relation, BPi is always the mod-
ifier of BPj . For example, in Figure 1, both BP1 and
BP2 modify BP3. Furthermore, our parser interfaces
with the EDR Japanese dictionary (EDR, 1995) con-
sisting of 241,189 words. Using the grammar and dic-
tionary described above, the parser analyzes sentences,
generates parse trees, and ranks them in order of over-
all probability, i.e. the product of the three submodels
P (R) · P (W |L) · D(W |R).

4.2. Training the Statistical Language Model
and Generating Trees

Of the three submodels, the derivation model
P (W |L) and lexical dependency model D(W |R) are
trained from existing language resources independently
of the iterative annotation process. For training the
derivation model P (W |L), we extracted about 123 mil-
lion words and their associated POS tags from the
RWC POS-tagged corpus (Hasida et al., 1998). As
the POS tag set for the RWC corpus differs from that
for our parsing system, we designed Lc consisting of 16
coarse POSs and estimated P (w|ls) by (8).

In order to train lexical dependency parameter (5),
we extracted about 400,000 collocation instances of a
verb v and its subordinating slot-markers s1, · · · , sn

from the EDR Japanese corpus (EDR, 1995), where
a skeleton tree without labels on intermediate nodes
is provided for each sentence. Notice that the EDR
corpus is not appropriate to train the syntactic model
P (R) on, because the grammar underlying the trees
in the EDR corpus is quite different from that of our
parsing system. On the other hand, lexical dependency
parameter (6) was trained using 6.7 million instances
of (noun,verb,slot-marker) collocation collected from
both the EDR corpus and the RWC corpus. Similar
to the case of learning each P (w|l), we used the set of
coarse POSs Lc and estimated the numerator of de-
pendency parameters (5) and (6) by (11) and (12),
respectively.

Then, we went through 5 iterations of annotating
plain text input with syntactic trees and training Pi(R)



Table 1: Result of Experiment 1

|I| = 0
i BPD BPB WDP WDS
1 8 % 27 % 30 % 52 %
2 8 % 27 % 31 % 52 %
3 8 % 27 % 31 % 51 %
4 8 % 28 % 31 % 51 %
5 8 % 28 % 31 % 51 %

|I| = 50
i BPD BPB WDP WDS
1 8 % 28 % 32 % 52 %
2 7 % 24 % 27 % 51 %
3 8 % 24 % 27 % 50 %
4 9 % 25 % 28 % 50 %
5 9 % 24 % 26 % 50 %

|I| = 100
i BPD BPB WDP WDS
1 9 % 25 % 31 % 52 %
2 8 % 23 % 26 % 50 %
3 8 % 24 % 27 % 50 %
4 9 % 26 % 29 % 50 %
5 9 % 25 % 27 % 50 %

from the obtained annotated trees, as described in Sec-
tion 3.1. As set T , we used 10,000 sentences extracted
from the EDR Japanese corpus. In this experiment,
we set N = 10, that is we used the top N parse trees
for each sentence to train the syntactic model Pi(R)
over. Furthermore, we variously set |I|, the number of
manually annotated trees used for training the initial
syntactic model P1(R), to 0, 50 and 100. When |I| = 0,
the initial syntactic model P1(R) was trained as fol-
lows: we analysed sentences in T , chose a parse tree
semi-randomly for each sentence and trained P1(R) ac-
cording to these parse trees. In choosing a parse tree,
we preferred trees containing the least number of words
from among the various word segmentation candidates,
and also trees containing the least number of BPs.

4.3. Results
We selected 100 sentences from T and evaluated the

syntactic trees provided for them at each iteration i.
The results are shown in Tables 1 and 2.

WDS, WDP, BPB and BPD in Table 1 indicate
sentence accuracies defined as follows:

WDS
# of sentences where word segmentation was
correct

total number of sentences

WDP
# of sentences where word segmentation and
POS tagging were correct

total number of sentences

BPB

Table 2: Result of Experiment 2

|I| = 0
i R-MOR P-MOR A-BP
1 91.37 % 93.60 % 77.78 %
2 92.15 % 93.77 % 76.65 %
3 92.32 % 93.79 % 77.84 %
4 92.49 % 93.96 % 76.89 %
5 92.49 % 93.96 % 76.30 %

|I| = 50
i R-MOR P-MOR A-BP
1 91.37 % 93.56 % 77.33 %
2 91.80 % 93.46 % 77.55 %
3 91.58 % 93.28 % 79.72 %
4 91.84 % 93.50 % 81.46 %
5 91.84 % 93.34 % 81.69 %

|I| = 100
i R-MOR P-MOR A-BP
1 91.28 % 93.55 % 80.41 %
2 91.58 % 93.16 % 80.29 %
3 91.67 % 93.33 % 79.02 %
4 91.93 % 93.51 % 81.25 %
5 91.80 % 93.30 % 80.79 %

# of sentences where BP boundaries were
correct, in addition to correct word segmen-
tation and POS tagging

total number of sentences

BPD
# of sentences where BP boundaries and
inter-BP dependencies were correct, in addi-
tion to correct word segmentation and POS
tagging

total number of sentences

R-MOR, P-MOR and A-BP in table 2 indicates the
accuracies defined as follows:

R-MOR Recall of morphological analysis.

# of words correctly segmented and POS
tagged

# of words in the solution set

P-MOR Precision of morphological analysis.

# of words correctly segmented and POS
tagged

# of words in the automatically annotated
trees

A-BP
# of BPs whose modifiee was correctly
identified

total number of BPs

Notice that the figures for A-BP pertain only to those
sentences where the BP boundaries were correctly
identified.



As shown in Table 2, the more syntactic trees are
manually annotated beforehand, the greater the A-BP
accuracy in automatic tree annotation is, even when
the number of manually annotated sentences is very
small. On the other hand, the gain in the sentence
accuracy realized by iterative learning of the syntactic
model is not that great. There is thus much room for
improvement in our iterative learning method.

5. Conclusion

In this paper, we proposed a method to construct a
tree-annotated corpus using an iterative learning sta-
tistical language model. We allowed for human inter-
vention in two ways, first is providing the syntactic tree
for a small amount of sentences in order to initialize
the syntactic model, and second is postediting the au-
tomatically generated syntactic trees. We also trained
the lexical statistics, such as word occurrence statistics
and word collocation statistics, from existing language
resources, and used them in the iterative annotation
procedure.

In the future, we hope to examine reasons why our
iterative learning procedure didn’t work as well as ex-
pected, and find ways to improve it. In addition to this,
we plan to develop tools which can display the syntac-
tic trees graphically and facilitate their easy modifi-
cation to reduce the burden on human annotators in
postediting the annotated trees.
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