Dependency-directed Unification of
Functional Unification Grammar in Text Generation

INUI Kentaro, TOKUNAGA Takenobu and TANAKA Hozumi
Department of Computer Science
Tokyo Institute of Technology

2-12-1 Ookayama Meguro Tokyo 152 Japan
{inui,take,tanaka}@cs.titech.ac.jp

Abstract

In text generation, various kinds of choices need to be decided. In the conventional framework,
which can be called “one-path gencration framework,” these choices are decided in an order designed
carefully in advance. Howevcr, many researchers have pointed out that the choices, generally, depend
on one another and the one-path generation framework cannot handle these interdependencies suffi-
ciently. Our previous paper proposed introducing a revision process into text generation for solving
this problem. In our framework, the overall generation process consists of the initial generation pro-
cess, followed by the revision process. The revision process gives us opportunitics to change choices
that have already been made. In general, a change in a choice point may cause changes in other choice
points, and such dependencies can be managed by Truth Maintenance System (TMS). However, it is
well known that dependency network management in TMS requires some computational overhead in
general. We need an efficient implementation of network management to make our framework fea-
sible. In this paper, we propose an efficient implementation of dependency network management in
Prolog. In our implementation, arcs between dependent nodes are represented by bindings of logical
variables, and efficient state propagation is realized by destructive argument substitutions.

1 Introduction

In text generation, various kinds of choices need to be decided. At cachi choice point, more than one
alternatives satisfying various kinds of constraints may be available. In such a case, the system chooses
one out of the alternatives by referring to heuristic rules, which assign preferences to them. We call such
rules “preference rules” in this paper. In the conventional framework, which can be called “one-path
generation framework”, these choices are decided in an order designed carefully in advance. However the
choices, generally, depend on one another. These interdependencies make it difficult to design the rules.

In the field of text generation, this issue has been discussed and several solutions have been proposed (1,
5. 8]. In our previous paper, we proposed a gencration modcl that incorporates a revision component as
illustrated in Fig. 1 {9]. In this model, the overall gencration process consists of the initial generation
process followed by the revision process. The revision process is realized by the repeated revision cycles
each of which consists of evaluation of a draft, revision planning, and regencration.

Since we focus on surface gencration! at the present, we assume that the input to the system be a
rhetorically organized semantic representation {13]. In the initial gencration process and the regeneration
process, the surface generator refers to the preference rules to decide the choices. In our model, however,
these decisions are tentative and may be changed in the revision process. Thus the result of generation is
called a “draft.” A draft contains not only semantic information but also syntactic and lexical information.
What is significant here is that all the necessary choices have been decided at the end of the initial
generation process. In the revision process, if the evaluator finds a problem in the current draft, the

In general, text generation can be decomposed into two phases, deep gencration and surface generation. Deep generation
decides the contents and the organization of a text, while surface generation makes choices on syntactic structure and lexical
items [15].

-114 -

43

PR

PRI TOR]

revision planner refers to the revision rules to solve it. The revision rules suggest which choice should be
changed to solve the problem. We call such a choice “culprit choice.” In the regeneration process. the
surface generator changes a culprit choice and generates another draft.

Evaluator

1)
s evaluation

revision : initial generation
planning ¢ ., regeneration
. .
*

Revision

Planner
) P 4 .’.
' L. ' ‘e
[P)
1 . Pid 1
] v’]
¥ P ¥

revision preference lexico-grammatical

rules rules constraints

Fig. 1 Generation model with revision component

A major difficulty in handling the interdependencies among the choices is that at a certain choice
point the system could not decide an appropriate choice unless the system had the information about the
effects of the choice on the following decisions and the final text. In one-path generation, therefore, the
system needs to anticipate the future decisions to decide the current choice. While, in our model, the
evaluator can evaluate the decisions according to all the information necessary for the evaluation. This
is because in the evaluation process all the necessary choices have already been made. In the previous
paper, we considered structural complexity and ambiguity of each sentence as the evaluator’s criteria.

As mentioned above, the system revises a draft by changing a culprit choice and regenerating another
draft. In this sense, revision can be seen as backtracking. Our approach is, however, different from naive
chronological backtracking. While, in chronological backtracking, the system would go back to the latest
choice point, our backtracking is “dependency-directed.” That is:

o the system directly goes back to a culprit choice point by referring to the revision rules,

o and the system reuses the results of the previous computation if possible when regenerating another
draft.

To realize dependency-directed backtracking (DDB), the system needs to maintain the history of
decisions and their effects on the current draft. In the previous paper. we proposed a method to use
Justification-based Truth Maintenance System (JTMS) (2] to realize DDB in text gencration. In this
method. the svstem maintains the history of choices and the dependencies among them in a dependency
network. It is. however, well known that dependency network management 1n JtMD requites some
computational overhead. We need an efficient implementation of network management to make our
framework feasible. In this paper, we propose an efficient implementation of DDB for text generation
in Prolog. In our implementation, arcs between dependent nodes are represented by bindings of logical
variables, and efficient state propagation is rcalized by destructive argument substitutions.

In the following sections. we first describe an overview of text generatxon in section 2. We adopt the
formalism oz'FunctxonaI Lnification Grammar IFUG! for representing Fognisiic "'\""-V'* I serricz
we propose an cfficient implementation of FUG unification with DDB In sectlon 4, we show a result of a
preliminary experiment to evaluate our implementation. Finally, we conclude the paper with some future
research directions in section 3.

- 115 -

2 Controlling FUG unification by DDB

We are now developing a Japanese grammar based on tlie framework of systemic-functional grammar (7).
SFG has desirable features for text generation and has been used by several text generation systems |3,
12, 14]. This is mainly because of the following respects [14].

¢ SFG organizes the linguistic information based on the “paradigmatic” perspective, which makes
the choices in generation explicit.

¢ SFG describes the linguistic constraints in terms of functionality of language. Consideration of
functionality is indispensable in goal-oriented text generation.

The first aspect is desirable not only for text generation but also for revision. Since SFG describes choices
and their effects on the lexico-grammatical structure explicitly, it is not difficult to find a correspondence
between a problem in a draft and candidates of its culprit choices. Therefore, design of the revision rules
would be easier than in the case using the other framework.

As a computational tool to realize SFG, we use Functional Unification Grammar (FUG) [11], which
has good properties for the implementation of DDB in the following respects.

e SFG can be represented in the FUG notation straightforwardly [10]. For example, each choice in
SFG corresponds to a disjunction in FUG and each conflation in SFG ? corresponds to a unification

in FUG.

¢ FUG is based on unification and the order of choices is flexible. This property is desirable for our
model since the order of choices may be changed during the revision process.

In this section, we first briefly describe text generation using FUG, and then explain the control of
unification by DDB.

2.1 . Text Generation using FUG

In the FUG formalism, the grammar is described in the form of functional descriptions (FDs), which we
call “grammar functional descriptions (GFDs)" in this paper. The input to the system is also represented
by FDs. To generate a text, the system unifies an input FD with a GFD. As unification proceeds, features
in the GFD are added to the input FD; thus we refer to the input FD by the term “working functional
description (WFD)” during unification. Fig. 2 shows an example of unification of 2 GFD and a WFD,
generating the sentence “John loves Mary.”

In our system, unification of a WFD and a GFD proceeds in a top-down and depth-first manner. In
the example in Fig. 2, the GFD has three alternatives at the top level, where only the first alternative
can unify with the WFD. The unification produces: ’

[cat:s
prot : [cat: np]
"| n:[lex: John]
.| cat:np
goal:] 1. [1ex : Mary] |
.| cat:vp
verb: | n:[lex: love] |
| pattern: [prot,verb,goal]]

Then the system tries to unify recursively each constituent that is listed in the value of feature pattern.
In this case, the value of prot is unified first with the GFD, the second aliernative being chosen this
time. After the completion of recursive unification of prot with the GFD, the system moves on to the

2Conflation is an important device to realize the multi-functionality of SFG. In SFG, a constituent can have more than
one function. For example, “John" in the sentence “John bought a car.” realizes not oaly the idcational function AGENT
but the textual function THEME. In the FUG framewotk, the multi-functionality can be realized by conflating (unifying)
constituents, 3 constituent labeled AGENT and another constituent labeled THEME in this example.

- 116 -

next feature verd. The final result is also shown in Fig. 2.3 If unification fails during the process, the

system goes back to the last disjunction to try another alternative. The system tries alternatives one by

one at each choice point. which means that the order of the alternatives represents a static preference

among these alternatives. Therefore, the information represented in GFDs can be considered both the

lexico-grammatical constraints and the preferences among the alternatives (the preference rules in Fig. 1).
In text generation, the top-down and depth-first fashon will work cfficiently.

([cat:s)
prot : [cat : np] [cat:s |
goal: [cat : np] [cat :np 1
verb : [cat : vp]) [lex: John
| pattern: [prot, verb, goal] PTO¥: [2] Cat:noun]
GFD = ¢ cat :np) pattern : [n]
n:[cat : noun) [cat :np]
| pattern: [n] (%sﬁl)t) = | goal: | n: [lex:Mary]
cat : vp : ’ " | cat:noun |
v :[cat : verb] pattern : [n]
| | pattern:(v-.] J [cat : vp]
verb: | v [lex:love]
Input FD cat: s | cat:verb
(WFD) = prot : [n: [lex : Johnl) | pattern:[v] |
goal: [n: [lex : Mary]] | pattern: [prot,verb,goal]

verb: [n: [lex: love]|
Fig. 2 An example of GFD and WFD

Since a text generation system does not have to give possible outputs all at once, and because our
framework allows chances to revise a draft during the revision process, depth-first search is suitable for
our purpose.

2.2 DDB in FUG unification

JTMS maintains the dependencies among assumptions using a dependency network in order to realize
DDB. We also need to store dependencies among choices and features to realize DDB for FUG unification.

The system constructs a dependency network incrementally during the initial generation process and
updates it during the regeneration process. For example, when the unification shown in Fig. 3 occurs, the
system constructs the network shown in Fig. 4. Assume the system first try to unify WFDO with GFDO.
Since alternative|1]is not unifiable with WFDQO, the system trics the next alternative @ The first three
features (a, b, and d) in @ are unifiable. WFD1 shows a snapshot of the instance when features 2. b and
d in alternative {2|and h in E have been unified.

A dependency network contains two kinds of nodes, feature nodes and choice nodes, which are linked
with one another. A featurc node corresponds to a feature in a WFD and a choice node represents which
alternative was chosen at a choice point. In Fig. 4. feature nodes are denoted by £(_,) and choice nodes
are denoted by c(.,.).

Each time the system succeeds in unifying a disjunction in a GFD with a WFD, the system creates
a choice node to store information about the choice. A choice node consists of the path from the root of
a WFD to a constituent on which unification is performed, and the identifier of a chosen alternative of a
disjunction in a GFD. At the same time, the system creates feature nodes, cach of which corresponds to
a feature that is newly added to the WFD by the choice. A feature node consists of the path from the
root of a WFD :o itself and its value. Furthermore, the system creates arcs between the choice node and
the feature nodes. These arcs represent justification in terms of JTMS. The arcs are created as follows:

3To generate a sentence from this reanltant WFD, a furthier process ealled “linearlization” is necessary. which we do not
describe here.

- 117 -

1. Create an arc from a feature to a choice, if the feature was already present in both the GFD and
the WFD before unification.
If this feature is changed in tle revision process, the validity of the choice needs to be checked again.
Therefore this feature can be seen as a justification of the choice. In Fig. 3, WFDO and alternative
share features a and ¢ before unification, and therefore arcs are created between feature a and
choice E], and between feature ¢ and choice @ They are denoted by arc (1) and (2) in Fig. 4.

™o

Create an arc from a choice to each feature that is newly added to the WFD by choosing the
alternative.

If the choice is changed, the validity of tlicse features should be checked again. Therefore this choice
can be seen as a justification of these features. In Fig. 3, feature e in WFD1 is newly introduced
by unifying WFDO and choice [2} So the arc is created between feature e and choice (2] which is
denoted by arc (3). Arc (5) is also created in the same manner.

3. Create an arc from a choice to each of its daughter choice(s).
For instance, alternative includes a disjunction that has two alternatives E] and . If the
system chooses E after the validity of choice @ is suported by choice @ Thus it is necessary
to create an arc between these choices, which is denoted by arc (4).

WFDO= | 27]

b:fc:v] , .a:x] .
WFD1 = :E’:u] h:irc:v] 1
AT ammen] et |
[a:v] {B {@ F’/d]}
WED2 = b[:;]_) & []]
d: —] \ J
h:

Fig. 3 An example of unification

£(lal,v) £f(ib,cl,w)

) @
e(l 1,2
&) @
£(1d,e1,7) e(r 1, (3D
(&)
£([h],u)

Fig. 4 An example of dependency network

In each revision cycle, the system first identifies a culprit choice by referring to the revision rules. Then,
the system removes ail the features justified, directly or indirectly, by that cloice from the current WFD.
For example, if choice @ is changed, the system will remove features d: [2:7] and h:u from WFD1. The
important point to note is that the system preserves all the features and the choices that are independent
of the changed choice*. In the regencration process, the system tries another alternative at the culprit
choice point and resumes unification skipping the choices that have already been decided and still stay
valid. Thus, our method prevents the system from unnecessary recomputationin the regeneration process.
In this respect, our method is significantly different from chronological backtracking.

4This point is not shown clearly in the example.

- 118 -

oth s |-
i
v s Sty

Sl 3‘.’ ".::‘x ‘.', ‘r;E

3 Implementation

We use Prolog to implement the system, since Prolog intrinsically performs unification operation which
makes it easier to realize unification of FDs. In addition, logical variables can be used as a versatile
device in constructing dependency networks.

Our unification algorithm is based on Gazdar and Mellish's [6]. In their algorithm, an FD is repre-
sented by a Prolog list of feature-value pairs whose tail is an unbound variable. For example, WFDO in

Fig. 3 is represented as
[a:v,b:[c:wl. Ji.],

Here a colon (:) is defined as a Prolog operator which conjoins a feature and its value.
Given FDs in this data structure, a Prolog predicate to unify two FDs is defined as follows:

unify(FD,FD) :- !.

unify([Feature:Value|FDi],FD) :-
pathval(FD,Feature,Value ,FD2),
unity(FD1,FD2).

pathval(([Feature:Valuel}FD] ,Feature,Value2,FD) :-
!, unify(Valuel,Value2).

pathval([Feature1|FD1] ,Feature,Value, [Featurel|FD2]) :-
pathval(FD1,Feature,Value ,FD2).

Predicate pathval finds the value Value of a featurc Feature in the FD given in the first argument,
returning the remainder of the FD without the feature-value pair Feature:Value in the fourth argument.

Altough our unification is principlly the same as Gazdar and Mellish’s, the data structure is slightly
different. Since we need a dependency network to control backtracking, the data structure of FDs includes
pointers to the network. In the following subsections, we explain the data structure of FDs, followed by
descriptions of the algorithm for network construction, backtracking, and regeneration.

3.1 Data Structure

Fig. 5 illustrates the data structure of WFDO shown in Fig. 3. Here the enclosure of a pair of square
brackets denotes a Prolog cons cell. A vertical bar separates CAR and CDR of the cons cell. WFDO is
enclosed by the dashed box.

An FD is represented by a structure:

fd(cycleid,listof _features).

Cycle.id is an identifier of revision cycle which is updated in every revision cycle. This is used to avoid
unnecessary reccomputation in backtracking (see subsection 3.3). As in Gazdar and »ellish's algorithm,
the tail of list_of_features is always an unbound variable. which is denoted by an underscore (“_") in Fig. 5.
A feature value is either an atomic value or an FD. An atomic value is represented the a structure:

atom(value, f(state, descendants)).

Velue denotes an atomic feature value and structure f denotes a feature node of a dependency network.
Noie that cach atomic value has a feature node as its own argument. Thus, in our data structure. the
FDs and the dependency network are integrated into a single structure. The first argument of a feature
node, state, represents the feature'’s state. It is an unbound variable as long as the feature is valid. When
the state propagation invalidates the fcature, its state is bound to a special cons:ant “oui”. The sccond
argument descendants is a list of the nodes justified by this feature,

Choice nodes are indexed by another data structure which we call “choice history." The data structure
of the choice history is defined as follows, where a choice node is represented by structure ¢

choice_history ::= history(choices, constituent_history).

choices ::= (choice.node|choices]|[].

constituent_history ::= [label : choice_history|constituent_historyl|).
choice_node ::= ¢(choice.id, state, antecedents, descendants).

~ 119 -

For example, in the case of the generation process shown in Fig. 2, ihe system constructs the following
choice history.
nistory(lc((3]},-,],
[prot:history([c(2],-,1,[1),
verb:history([c([3},.,2)]1,[1),
goal:history([ec((2],-,.0],[1D1).

With the choice history, the system can get efficient access to a choice node by specifying the path of
a constituent with which the choice is associated, and the identifier of this particular choice (choice.id).
Antecedents is a list of states of choice nodes (see subsection 3.3).

- b e e e e e = e e . = . —

:fd(O.) ,

I l) ‘/"—r’f(_,_)
: a:atom(v,d)|s]

: A
| Ibafaco,9)]2
I
I
I

(j (_,2)
[c:::n:om(w,m-?‘f

I
!
|
|
t

Fig. 5 Data structure of WFDO from Fig. 3

3.2 Network construction

As described in subsection 2.2, the dependency network is updated each time an alternative is chosen.
Fig. 6 shows a Prolog data structure corresponding to WFD1 from Fig. 3 and the dependency network
from Fig. 4. WFD1 is enclosed by the dashed box, while the dependency network is shown outside the
dashed box. Each atomic value in the WFD and its own feature node in the network are connected by a
variable binding, and the dependency arcs in the network are realized by variable bindings as well. Each
of the variable bindings (1) through (5) in Fig. 6 corresponds to the dependency arc that has the same
number in Fig. 4.

o — o —— o — = - -
z

v
[c:atom(w,

[d:£d(0, ¢) | 9]

/.———‘ﬂ_,_) ([3] /e, 1%, 3—1p]|)
¢
{e:atom(y, 4} |_1 1 /EY—J
|
(L)

—1- £

[h:atem(u, §) i1 1

— e e o mm o e . = e - -

Fig. 6 Data structure of WFD1 from Tig. 3

§
I
|
I
I
|
t
|
[
!
|
I
1
|
|
!
|
|
1

The outline of unification algorithm is shown in Fig. 7 in the form of 2 Prolog program. Excep: for
network handling, the most significant difference of our algoritim from Gazdar and Mellish's is that our
algorithm does not treat two FDs symmetrically. In other words, features in a GFD can be added to a
WFD, but not vice versa. GFDs are always kept intaci during uzifization.

- 120 -

v o

L SNy RS TS

L R PR

unify (1, ,.):-!.

unify([Teature:Value|GFD] ,WFD,CNode):~!,
featureVal(WFD,Feature,Value,CNoda),
unify(GFD,HFD,CNode) .

5: unify({alt(Alternatives)|GFD),WFD,CNode):-!,

6: unify_alt(Alternatives,WFD,CNoda),

7: unify(GFD,WFD,CNode).

8 .

9

o]

> W N e

unify([Featurel/Feature2|GFD],WFD,CNode): -
conflate(Featurel,Feature2,WFD,Clods),

1 unify (GFD,HFD,CNods) .
i11: featureVal(WFD,Feature,Valua,choice(_,_,_,Descendants)):-

12: - var(WFD),

13: aton(Value),!,

14: WFD=[Feature:atom(Value,FNode)|_],

15: tail_of([FNode|_] ,Descendants).

16: featureVal(WFD,Feature,Value,CNode):~-

17: var (WFD), !,

18: WFD=[Feature:£fd(_,FD)|_],

19: unify(Value,FD,CNode).

20: featureVal([Feature:atom(Valuel,f(_,Descendants))]|_],Feature,Value,CNode):-!,
21: Value=Valuel,

22: tail_of([CNode|_] ,Descendants).

23: featureVal([Feature:fd(_,FD)|_],Feature,Value,CNode):-!,

24: unify(Value,FD,CNode).

25: featureVal([_{WFD],Feature,Value,CNode):-

26: featureVal(WFD,Feature,Value,CNode).

27: unify_alt([Id:GFD|Alternatives] ,WFD,c(_,State,Antecedants,Descendants)):-

28: unify(GFD,WFD,CNode),

29: tail_of([Clode|_] ,Descendants),

30: CNede = c¢(Id,_, (State|Antecedants],_).
31: unify_alt([_|Alternatives],WFD,CNode):-

32: unify_alt(Alternatives,WFD,CNode).

33: conflate(Featurel,Feature2,WFD,c(_,_,_,Descendants)):-
34: featureVal2(WFD,Featurei,Valuel),

35: featureVal2(WFD,Feature2,Value2),

36: create_leaf_list(Valuel,LO-L1),

37: create_leaf_list(Value2,L1-[]),

33: tail_of([conflation(L0)]_],Descendants),
39: unify(Valuei,Value2).

Fig. 7 Outline of unification algorithm

Predicate unify/3 assumes the first argument is a GFD, the second is 2 WFD, aud the third is
a dependency network to construct. unify/3 is defined in terms of four clauses. The first one is the
termination clause for the case there is no more GFD fragment to apply. The second clause handles
unification of a feature-value pair. This is actually performed by predicate featureVai/4. The third
clause handles a disjunction in a GFD. A disjunction is represented by the following data struciure:

alt([ich t FDy,ids : FD,..])
The order of alternatives within a disjunction represents their preference. Predicaie unify_alt/3 tries
each ci:oice one by one. The iast clause of unify/3 handles conflation of features.
Given a feature and its value in a GFD, predicate featureVal/4 searches a WFD for the feature
and unifies these two values. Unlike Gazdar and Mellish’s algorithm, featureVal/4 keeps the GFD

121

arguments, and returns an updated choice node in its last argument.

featureVal/4 is defined by five clauses. The first two add into the WFD, the feaiures that are
contained in the GFD but not yet in the WFD. If the feature value is atomic, a dependency arc is created
in line 15 since this feature is added to the WFD due to the current choice. Arcs (3) and (3) in Fig. 6
is created by this operation. Predicate tail_of/2 unifies its first argument with the last element of
the second argument, which is supposed to be an unbound variable. If the WFD and the GFD share a
unifiable feature, either the third clause or the fourth one is used. If the feature value is atomic, this
feature can be a justification of the current choice. Therefore a dependency arc is created between the
feature and the current choice. This is realized in line 21. Arcs (1) and (2) in Fig. 6 illustrate this case.

unify.alt/3 deals with a disjunction. When the system finds an alternative that is unifiable with
the WFD, i.e. in the case of the first clause, the alternative comes to be justified by its mother choice.
The arc to represent this justification is created in line 28. Arc (4) in Fig. 6 is an example of such an
arc. Line 29 creates the antecedents list of the current choice, which is a list of backward pointers to the
antecedent choices.

Predicate conflate/4 deals with conflation. First, the systemn extracts values of features to conflate
in line 33 and 34. Predicate featureVal2/3 finds the value of the given feature in the WFD. Then
create leaf_list in lines 35 and 36 traverses the FD given in the first argument (i.e. the FD to
conflate) in order to collect cons cells whose CDR is an unbound variable. This information is necessary
to cancel the conflation in the revision process. Then the system creates a conflation node and puts
it at the end of descendants (Sce line 37). The conflation node has a pointer to the list created by
create_leaf list. Finally, the system performs Gazdar and Mellish's symmetric unification uwnify/2 in
line 38.

Suppose, for example, the system choose alternative [6]and conflate features b 2nd d in Fig. 6. In this
case, the leaf node under feature b is [c:atom(w,£(_,¢))|_] and that under d is [e:aton(y,£(.,e))|.].
Then the system creates a conflation node conflation with the pointers to these two nodes (arc (6) and
(7)) as illustrated in Fig. 8. Also, the choice node corresponding to choice [6] points to the conflation
node (arc (8)).

e it Bt mDarea L

LS BT A 5ol Ao & e emae s & Cenns ey et

rfa ((0-,})
I
Y

[a:atom(v,

[b:

T

AL 1 BERT .

3
x

(3)
conflation(s}——{ ;] {9 e3F—{]

J(U (€))

Fig. 8 Data structure of WFD2 in Fig. 3

LR A

e
B 5N

it

An important point to note about this algorithm is as follows. In order to choose an alternative at a
choice point, tle system refers to features in the WFD that support the choice (e.g. [a:aton(v,2)is]in

s .
O S TR LN
A s e

B Eaanidi e sak i el

£
4

v

the case of choice @ in Fig. 6). This access would be necessary even though the system did not construci
the network. In our algorithm, since the system creates dependency arcs (e.g. arc (1)) simultaneousiy
with the access to these featurcs, the overhead of network construction can be reduced. Similarly, the
system can efficiently create new feature nodes (e.g. [e:atom(y,e)|_] in Fig. 6) and their justification
arcs (e.g. arc (3)) simultaneously with unification of these feature.

3.3 Backtracking

In each revision cycle, the revision planner suggests a culprit choice that should be changed in order to
solve a problem detected by the evaluator. After that, in backtracking, the system removes all the features
dependent on the culprit choice from the WFD. In our method, since dependencies are represented as
variable bindings, the system has only to traverse these pointers to find the features to remove. This
process, therefore, should be efficient. In backtracking, the system performs the following procedures.

1. Search the choice history for the choice node corresponding to the culprit choice.

&«

2. Bind the state of the culprit choice to “chenged’.

3. Traverse the dependency network via descendant links starting from the culprit choice node, and
perform the following procedures on each node.

(a) If the node is a feature node, bind the state of the node to “out.”

(b) If the node is a choice node, bind the state of the node to “out” and also bind each variable in
its antecedents list to “unknoun.”

(c) If the node is a conflation node, substitute the CDR of each node pointed by the conflation
node with an unbound variable. This substitution is performed destructively and cancels the
conflation. This is realized by the Prolog built-in predicate setarg®. :

4. Remove all the features that are marked “out” from WFD by destructive substitution.

Suppose, for example, choice [3 in Fig. 8 be identified as a culprit choice. The state of the node
c([3],...) is bound to “changed” and traverse starts from this node. The state of the antecedents, node
c([2],...) in this case, is changed to “unknown” and the state of the descendants, node C(E,.“) is
changed to “out.” State “out” means that the node is invalid. On the other hand, node N is “unknoun”
when all the nodes supporting N are valid but some of N's descendant choices are invalid (“unknown”
can be marked only on choice nodes). Let us see this difference according to the current example. Fig. 9
shows the snapshot after step 3 in the above procedure. Choice@ is now unknown because its descendant
choices|3|and|s]|are invalid. However, choice E] will be valid again if the system finds another unifiable
2lternative instead ofE] at the choice point in regeneration. Since such cases occur frequently. it would
be beiter not to invalidate choices like @ for eficiency. Thercfore, while state “nui” propagates via
descendant links, “unknoun” does not.

Step 3(c) is illustrated by the example shown in Fig. 8 and 9. When the system binds the CDRs of the
nodes pointed by the conflation node ([c:aton(w,£(_,2))]s] and [e:atea(y,f(.,.))|e]) to unbound
variables, the network from Fig. 8 comes to be that {rom Fig. 9. In Fig. 9. conflation between features o
and d has been canceled.

Finally, the system removes feature [h:atom(u,f{out,.))|.] by substituiing the CDR of node
{d:£d(0,e){a] with an unbound variable. In this process, the system searclies the WFD jor all ihe
invalid features. Since a WFD is a DAG in general. a naive algorithm would cause unnecessary duplice-
tion of traverse. The system avoids unnecessary traverse using cycle_(subsection 3.1). When the system
comes across an FD whose cycle.id has not been updated, the system updates it and traverses the FD.
The system skips the FDs whose cycle.id has been updated.

Ssstargis available in SICStus Prolog.

- 123 -

£_,.)

[d:£4(0,9)] 9]

®

a:atom(y, ¢) |_] £ (out,_)

conflation(e}—s{y|et—f¢|o3—{]
(7) (6)

Fig. 9 The snapshot after step 3 in backtracking

3.4 Regeneration

After the system goes back to a culprit choice point and cancels the decisions dependent on that choice
as described in the previous subsection, the system resumes unification from the culprit choice point
to generate another draft. Unlike the initial generation process, the system now refers to the choice
history and avoids unnecessary recomputation. At each choice point, the system performs the following
operation.

1. If the choice point has a choice whose state is valid, accept the choice without recomputation.
2. If the choice point has a choice whose state is “unknown”, try the choice again.

3. If the choice point has a choice whose state is “out” or has no associated choice node, try all the
alternatives one by one.

For example, when the system starts regeneration from the situation shown in Fig. 9;

o the system does not try alternative |1]again because the choice point including alternative | 1} has
an unknown choice node (alternative [2]), and thus the syster: knows the unification with | 1] fails;

¢ the system tries alternative E] again becausc its state is “unknoun”;

o the system skips the unification of the first three features in @ because the system knows these
features are already shared with the current WFD.

4 Experiment

In this section we show the result of a preliminary experiment to demonstrate the efficiency of our
implementation. In the experiment, we use a small experimental Jupanese grammar consisting cf 39

grammatical disjunctions and 38 lexical entries. Fig. 10 shows an input WFD represented in terms of

- 124 -

rhetorical structure [13]. In this figure, fcatures n and s mean “nucleus” and “satellite” respectively. The
drafts generated from this input are shown in Fig. 11. Draft (1) is the first drait, in which both the
propositions keep and located are realized by one sentence. This choice, however, results an unexpected
long noun modifier “toneri-no tatemono-no 4kai-no ichiban oku-ni aru (which is located in the most
inner part on the fourth floor of the next building).” The evaluator detects this problem and solves it
by changing the choice that realizes the two propositions as one sentence, gencrating draft (2) instead.
Note that the first sentence in draft (1) is split into two sentences in draft (2).

[cat : segment

pred: elaboratell

[pred: elaborate}2

[pred: keepil

topic : documentfi

agt : [pred: libraryjit |
obj : | pred: documentli]
pred : locatedji

s: | self: [pred: libraryfl]
value : [pred: locationfil]
pred: elaboratelf3

pred : close_periodfi

topic : libraryjj1

self : [pred : libraryf1]
s value : [pred : summer_vacationjl]
pred : periodfl

self : | pred: summer_vacationfi]
from: | pred: july2ij1

i i | to: [pred : august31f1 N

Fig. 10 An cxample of input structure

Draft (1) sono syorvi-wa tonari-no tatemono-no 4 kai-no itiban oku-ni aru sirydsitu-ni
hokansareteimasu. tadasi, sirésitu-wa 7 gatu 21 niti-kara 8 galu 31 niti-made-no natuyasumi-no
aida-wa tukaemasen.

(That docun:ent is kept in the document roomn which is located in the most inner part on the fourth
floor of the next building. The document room will be closed during the summer vacation from

July 21 to August 31.)

Draft (2) sono syorui-wa sirydsitu-ni hokansareteimasu. siryésitu-we tonari-no tatemono-no 4 kai-no
itiban oku-ni erimasu. tadasi, 7 gatu 21 niti-kere § gatu 31 niti-mede-ne nctuyasumi-no gide-wa
tukaemasen.

(That document is kept in the document room. The document room is locaicd in the most inner
part on the fourth foor of the next building. The document room will be closed during tie summer
vacation from July 21 to August 31.)

Fig. 11 An example of drafts

We compared our implementation with chronological backtracking, and the bk-class framework pro-
posed by Elhadad {4]. If we apply bk-class to revision, bk-class plays a similar role to our revision rules.
A bk-class is a pair of a name of feature and choice points that may cause failure of unification of the
feature. When unification fails at a certain bk-class feature. the system goes directly back to the latest
bk-class choice peint. ignoring all the intermediate choices. The significant difference between the bk-class
framework and our DDB framework can be sununarizad in the following three respects.

> In our method, a revision rule can identify candidates of a certain culprit choice by specifying both
the path of a constituent with which that choice is associated, and the identificr of that choice. On
the other hand, a bk-class identifies candidates of a culprit choice only by specifically the identifier
of them. Sirce a revision rule describes candidates of 2 certain culprit choice inore specificly than a

- 125 -

bk-class does, the frequency of backtracking in revision process i cur method would be iower than
that in Elhadad’s.

o In the bk-class framework, the system cancels all the chronologically intermediate decisions wlen
backtracking. Therefore, the system may repeat the same computation as that done in the previous
generation process. Since we maintain a dependency network, we can reuse the results of the
computation that are independent of the change of the culprit choice.

o In this paper, we assume that a revision rule identify a culprit choice by specifing its identifier. But
it is also likely that one would like to describe a solution of a problem by specifying a particular
feature to remove from a WFD (a “culprit feature” as it were). In our method, since the system
maintains the dependencies between the choices and the features, the system can identify the choice
to change when given a culprit feature; therefore, a solution can also be described in terms of a
culprit feature. In this sense, our framework is more general than the bk-class framework.

Table 1 CPU time to generate drafis

[draft | 1] 2 [3 |---] 17 | Total |
- chronological
backtracking { 1.18 [0.25 | 0.90 | --- | 1.17 | 11.80
bk-class 1181115 | 136 | — | — 3.70
DDB 1231091 | — | — | — 2.14

(SONY NEWS 3860; [seq])

In this experiment, we do not take into account the cost of evaluating drafts and revision planning,
but focus on the cost of network management. Table 1 shows CPU time to generate draft (2) from Fig. 11
for each case. Our framework solves the problem mentioned above by only a single backtrack; the bk-class
framework requires two, while chronological backtracking requires seventeen. In general, since a bk-class
does not identify candidates of a culprit choice so specifically as a revision rule, backtracks tend to occur
more frequently. In this example, the bk-class algorithm generates draft (2') below as the second draft,
where the second sentence in draft (1) is split into two sentences. However, it does not solve the problem
in the first sentence. '

Draft (2') sono syorui-we tonari-no talemono-no 4 kai-no itiban oku-ni aru sirydsitu-ni
hokansareteimasu. tadasi, sirdsilu-we natuyssumi-no side-wa tukcemesen. natuyesumi-wae 7 gelu

21 niti-kara 8 gatu 31 niti-made desu.
(That document is kept in the document room which is located in the most inner part on the fourth
floor of the next building. The document room will be closed during the summer vacation. The

summer vacation is from July 21 to August 31.)

In addition, note that the CPU time to generate the second draft in our framework is less than the
CPU time to generate the third draft in the bk-class framework. This s because the system can avoid
unnecessary recomputation in the regeneration process.

Table 2 CPU time for network management

CPU time [sec] | % |
network construction 0.05 1 4.2
backtracking 0.04 j 3.4
total 0.09 j 7.6 |

Table 2 shows CPU time for network management. The CPU time for “network construction” denotes
the cost of network construction in the initial generation process. I: is caiculated by the difference
between the CPU time needed to gencrate the first draft in DDDB and that in the bk-class method. In
this experiment, the CPU time {or the network construction is only 4.2 percent of that of the iritial
generation. The CPU time for “backtracking” denotes the cost of state propagation in the dependency
network and undeing unification. This is calculated by the differance between:

s (for bk-class) the time for the completion of backtracking to the culpriz choize after generating the
second draft.

o and (for DDB) the time for the completion of state propagation and removing all the ‘eazuras
marked “ou!” after generating the first draft.

The difference means the overhead of network management during backtracking in our system, which
costs only 3.4 percent of the initial generation. The result shows that our method is worth introducing.

5 Conclusion

In text generation, various kinds of choices need to be decided. Since these choices depend on one
another, the one-path generation framework makes it difficult to design a set of rules that can make
appropriate decisions. Introducing the revision process can be a solution to this problem. Qur previous
paper proposed a framework in which revision is realized as dependency-dirccted backtracking (DDB).

In this paper, we proposed a method to realize DDDB for text generation using Functional Unification
Grammar (FUG) in Prolog. FUG is suitable for DDB because FUG is based on unification with flexible
ordering of decisions.)

In our method, the system constructs a dependency network to maintain dependencies among choices
and features. As shown in subsection 3.2 and 3.3, the system rcalizes DDB in the following senses.

s The system directly backtracks to a culprit choice point by referring to the revision rules.

¢ The system reuses the previous result if possible in the regencration process by referring to the
dependency network.

Thus, the DDB mechanism enables the system to traverse the search space cfficiently. However, we also
need to consider the overhead of network management when we realize DDB in the framework of JTMS.
We proposed a method to realize an efficient DDB by integrating a WFD and a network into a single data
structure. In this data structure, dependencies are represented as bindings of logical variables, and the
update of the network is realized with destructive substitutions. According to a preliminary experiment,
the cost of network management is less than 8 percent of the total cost of the initial generation. This
result shows that our method is worth introducing.

In addition to its efficiency, our framework allows grammar writers to specify a culprit choice in terms
of features to remove as well as the identifier of the choice. This is possible because our method keeps
which choice introduced the feature in question. Our framework provides a more general means to conirol
the search process than that without maintaining dependencies such as the bk-class framework.

Our mcthod may be applicable to other applications with DDB. However, we are not claiming that
we have provided a general solution to the problems of implementing DDB. Our solution works efficiently
due to the fact that features and choices never have disjunctive justifications in FUG.

In this paper, we mentioned neither on evaluating drafts nor on revision planning. To realize the
overall generation system, we need further research on hoth the evaluation criteria and the revision rules.
These issues depend on an actual grammar. In this context. we are now developing a fairly large Japanese
grammar bascd on the systemic-functional theory. We believe the grammar wii! provide us with useiul
information to develop good evaluation criteria and revision rules.

Acknowledgements

We would like to thank the reviewers for their helpfiil comments on the carly wersion of this paper.

References

{1] D. E. Appelt. Planning English Sentences. Cambuidge University Press, 1935,

- 127 -

[2] J. de Klcer, K. Forbus, and D. McAllester. Truth maintenance systems. the eleventh Inieraational
Joint Conference on Artificial Intelligence, tutorial program, 1939.

[3] M. Elhadad. FUF: the universal unifier - user manual, version 5.0. Technical Report CUCS-038-91,
Columbia University, 1991. .

[4] M. Elhadad and J. Robin. Controlling content realization. In R. Dale, E. Hovy, D. Résner, and
O. Stock, editors, Aspects of Automated Natural Language Generaiion, pp. 89-105. Springer-Verlag,
1992. Lecture Notes in Artificial Intelligence Vol. 587.

[5) M. Emele, U. Heid, and R. Zajac. Interactions between linguistic constraints: Procedual vs. declar-
ative approach. Machine Translation, Vol. 6, No. 4, 1991.

[6] G. Gazder and C. Mellish. Natural Language Processing in Prolog. Addison Wesley, 1989.
[7] M. A. K. Halliday. An Introduction to Functione! Gremmar. Edward Arnold, 1985.

(8] E. H. Hovy. Generating Natural Language under Pragmatic Constraints. Lawrence Erlbaum Asso-
ciates, 1988.

[9] K. Inui, T. Tokunaga, and H. Tanaka. Text revision: A model and its implementation. In R. Dale,
E. Hovy, D. Résner, and O. Stock, editors, Aspects of Automated Natural Language Generation, pp.
215-230. Springer-Verlag, 1992. Lecture Notes in Artificial Intelligence Vol. 587.

(10] R. Kasper. Systemic Grammar and Functional Unification Grammar. In Systemic Perspective on
Discourse, chapter 9, pp. 176-199. Ablex, 1987.

[11) M. Kay. Functional Unification Grammar: A formalism for machine translation. In Proceedings of
the International Conference on Computational Linguistics, pp. 75-78, 1984.

[12] W. C. Mann. An overview of the Penman text generation syste'm. In Proceedings of the National
- Conference on Artificial Intelligence, pp. 261-265, 1983.

{13] W. C. Mann and S. A. Thompson. Rhetorical Structure Theory: A theory of text organization.
Technical report, USC-ISI, 1987.

{14] C. Matthiessen and J. Bateman. Tezt Generation and Systemic-functional Linguistics: Ezperiences
from English and Japanese. Printer Publishers, 1991.

(15] K. R. McKeown and W. R. Swartout. Language generation and explanation. In M. Zock and
G. Sabal, editors, Advences in Neturel Language Generation, chapter 1, pp. 1-51. Ablex Publishing
Corporation, 1988. -

- 128 -

