Parsing Ill-Formed Input with ID/LP rules

Surapant Meknavin Thanaruk Theeramunkong Hozumi Tanaka

Department of Computer Science,
Tokyo Institute of Technology
2-12-1, O-okayama, Meguro-ku, Tokyo 152, Japan
e-mail surapan@cs.titech.ac.jp

Abstract

In this paper, we describe our new ill-formed input parsing strategy which uses ID/LP
grammar formalism directly. The strategy can process errorful input, hypothesize the
errors, and provide possible alternative interpretations for the input. The error recovery
process is triggered by failure of finding a parse of goal category in the normal parsing
process. The previous methods of parsing ill-formed input on CFGs and their problems
are first described. Then we go on to suggest our new mecthods and show how it can be
represented by a logic program. We also show that our method can be more efficient than

the alternative of parsing on CFGs for flexible word order languages.

1 introduction

In recent years, works in natural language processing, particularly within syntactical analysis,
have been developed rapidly to 2 satisfactory level that can be used in real applicaiions. Many
works use context-free grammars (hereafter CFG) to describe natural languages because of their
simplicity and tractability. By using a suitable parsing algorithm, the languages which can be
described by CFGs are proved to be recognizable in polyromial time. However, using 2 single
kind of CFG rules to describe various surface characteristics of a natural language, such as word
order variation in a free word order language, can lead to a huge grammar which does not give
useful information or intuition of the language.

Recent grammar formalisms have changed their ways of describing a language by using
several kinds of independent constraints instead of one single kind of rules as in a CTG (3, ¢, 5.
Using these formalisms can result in shorter and clearer language descriptions. Mozcover, some
of these formalisms can account for some kinds of context-sensiiiveness that are out of the
power of CFGs. ,

To use any formalism in real applications of natural language parsiag, however, ill-formed
input handling is an important issue. The way people use language in their daily life is so

different from what is told in grammar textbooks. For example, they often omi: some words,

- 158 -



change order of phrases, or cause some careless errors such as tense errors, misspellings or extra
words. For a particular natural language processing system, users may use some vocabularies o-
patterns that are beyond the coverage of the lexicon or grammar of the system. Encountering
such ill-formed input, a robust system should not just reject the input, but should process them
reasonably.

Recently, many methods that deal with ill-formed input have been presented in the literazure
(8. 6]. However, almost all of them are based on only CFGs. In this paper, we put our focus on
parsing ili-formed ihput with ID/LP rules. By using ID/LP rules, fiexible word order languages
can be stated more systematically and compactly than by using CFG rules. Many works
concerning ID/LP parsing on well-formed input (7, 9] have been done, but none of them Las
touched the problem of parsing ill-formed input. In the rest of this paper, we will first describe
the previous methods of parsing ill-formed inp.ut with ordinary CFGs and their problems. Then
we will describe our parsing method which uses ID/LP rules directly in parsing ill-formed input
and show how it can be represented as a logic program. The comparison of our method with

the previous works is also discussed.

2 Chart parsing of ill-formed input

In rccent years, the application of a chart parser to deal with ill-formed input have been ia-
terested by many researchers(8, 6]. The most attractive point of using 2 chart parser is that
the information of partial parses generated by the parser can be used for hypothesizing crrors
in many flexible ways. Mellish (8] shows how to combinc the advantages of bottom-up and
top-down chart parsers in parsing ill-formed input using CFGs. The processing of his method
can be divided into two phases: boitom-up phase and top-down phase. The bottom-up phase is
done first by using a left corner chart parser without top-down filtering to look for 2 complete
parse of the goal category. The parsing will successfully finish in this phase if the inpu: is weli-
formed. Otherwise, the parsing will continue to the top-down phase where top-down parsing is
performed to hypothesize the minimal errors that, if correcied, can complete possible parses.
Edges in the chart are assessed by a number of parameiers to decide which edges should play a
role in error recovery. This method has tlie advantage that parsing of well-forinad sentence is
not affected by the added extra mechanism for the recovery process and the recovery process
icse!f will never repeat the same work done before by the bottom-up parsing. Moreover, the vss2
of 2 declarative grammar formalism (e.g. CF-P3G) zllows constructing partial parses tha: do
not start at the beginning of the input. In this way, in contrast to ATN pavser (10], iz can vse
both lefi and right context in the detesmination of the best parse for an ill-formed sentenzs.
Kato (6] proposed ar improved version of Mallish's parsing methad. Tin mathod is similar
to [8] in that it also employs a combination of boitom-up and Lop-down parsing Shranegins.
Howcever, different from (8], Kato extends the process of edge completion to use the niormasizn
Fearin,

received from bottom-up phase more to prune search space belore siarting tap-dow

A special phase called the edge completion phase is added betwesn bottom-up phase and 103

- 1539 -




e~

y B
19
g
9.
.g_
i
td

down phase. The newly added phase is for constructing all active edges {hat are not generated

in the initial bottom-up phase due to the left to right characteristic of the left corner parser

These edges can help reducing scarch space of top-down phase and thus make finding errors
done more efficiently. Nevertheless, the method still has the following problems.

e Edge overgeneration

3

In top-down phase, Mellish’s parser can overgenerate many edges that are not relevant
to errors in input. Kato tries to suppress this by exploiting the edges generated bottom
up to reduce search space before starting to search top down. The edge complefion
process which does this, however, can also take a lot of time and overgenerates many
active edges, especially when the length of RHS of grammar rules is long and the number
of rules describing a LHS category is large. We will discuss this in more detail in the

following sections.

Parsing flexible word order language

As described earlier, a language which has flexible word order can need a large number
of CFG rules to describe its grammar. For such a language, the CFG-based methods
discussed above may be unsuitable and suffer with huge search space. Also, the methods
cannot handle sentences with some errors in word order, though the €rrors are common
in natural input. Even for languages which have fixed word order in general, like English,

the occurrences of non-standard word order are often found {2].

ID/LP rules and ill-formed sentences

Here, we propose a new strategy in parsing ill-formed input by using ID/LP rules directly.

There are a number of reasons why we make this proposal:

o

. Using ID/LP rules in parsing ill-formed input of flexible word order language may have an

advantage over using CFG rules in the same way as in parsing well-formed (grammatical)
input. This is because the number of edges or states generated would be much smaller

than when CFG grammars are used.

. As ID/LP rules formalism is proposed to capture the generalization oI word order in 2

language, it is reasonable to think of it as 2 suitable tool for handling word order errors.
The use of non-standard word order can be handled simply by allowing violations of some

LP rules.

By allowing violations of some ID rules, other kinds of errors can also b2 handled straight-
forwardly. For instance, ellipsis of constituents can be handled by allowing the absence ot

some daughters in ID rules and extra word errors can be handled by aliowing addition of

some constituents into ID rules.

_160_




3.1 Our strategy

Our basic strategy is essentially similar to the strategy of Kato : to run a botiom-up parser

over the input (BU phase) and then, if this fails to find a compiste parse, to gencrate ail

LATRY

or

o

edges that were blocked in the bottom-up phase due to the left-to-right characteristic of the
parser (EC phase), and finally to run a modified top-down parser over the resuliing chart to
hypothesize possible complete parses (TD phase). Our parser can handle four kinds of primitivs
errots: extra word error, omitted word error, unknown word error and word order error. For

simplicity, we will first focus on the first three kinds of errors. Handling word order errors will

be discussed later in section 3.2.

BU phase

To accommodate ID/LP grammar formalism, the data siructure of edges has to be modifizd.

We use the following notation to represent an edge in our parser:

< C from S; to E,
found C; from S; to Ey, ..., C, from S, to E, needs Cs >

where C is 2 LHS category, C; are a set of RHS categories found already, Cs is an unordered
needs set of RES categories remains to be found, S;, E; are positions in the chart. An edgs of
this form indicates that the parser is attempting to find a phrase of category C, already found
the subphrases of Cy, Cs,...,Cy, in the range starting from S to E,, but in order to succeed it
must still satisfy all categoriesin the needs set Cs. Note that E; is not necessarily equal io S;2y,
and the uniound categories possibly exist between them. Alse, Cs represents an unordered set
instead of an ordered sequence of categories. For instance, < S from 0 to 0 found {} needs
{NP,VP}> represents the edge of category S that spans from position 0 to 0 (found nothing
yet), and needs NP and VP (in any order) to complete the constituent. Similarly, < § from 0
to 2 found {VP} from 0 to 2 needs {NP}> represents the edge of category S that found one of
its subconstituent VP from position 0 to 2, and still nceds NP to complete ¢he constituent. To

P

construct edges like the latter whose an elemen: in the needs sc: is found in the input siring,

the order legality between the element and the oiher remaining elements in ihe needs sei muss

be chacked with respect to LP rules. In this cass, there must be no LP rule like NP < VP
otherwise such an edge cannot be generated. Tiiis check plays a role lika the lefi corner check
in standard chart parsing. Given these replacements of notation and oparaiicn on edges, cur
BU phase can be done analogous to ordinary boitem-up chart patsing.

To sec more vividly liow our mcthod works, lot us consider a simple ID/LP grammar &y of

a flexible wor-d order language that has only on: ID rule, one LP rule and four leicon rul

612

- 161 -




B =
cC — c
D — d

If the input string azcd is parsed by using our method directly on G, the following edges

. will be gencrated in BU phase:

(1) < A from 0 to 1 found {c} from 0 to 1 needs {}>
(2) < C from 2 to 3 found {c} from 2 to 3 needs {} >
(3) < D from 3 to 4 found {d} from 3 to 4 needs {} >
(4) < S from 0 to 1 found {A} from O to 1 needs {B,C,D} >
(5) < S from 3 to 4 found {D} from 3 to 4 needs {4, B,C} >

Note that the active edge of category S, < S from 2 to 3 found {C} from 2 to 3 needs
{A,B,D} >, is not generated because it is blocked by the LP rule A < C in G.

In contrast, consider what happens if the same string is parsed using ordinary bottom-up
chart parsing on the equivalent CFG G}. G} has 12 rules spelling out all possible strings formed
by A,B,C and D, whose A is prior to C. i

Gy
: S — AB,CD S — AB,DC
S — ACBD S5 — ACDB
S —- ADB/C S — A/DCB
S — B,ACD S — B,ADC
S — B,D,AC S — D,B,AC
S — D,AB,C S — D,ACBE

As illustrated below, for this example the advantage of parsing on ID/LP grammar directly
starts from BU phase, since the number of edges generataed in this phase by ordinary boitom-
up chart parser is much larger than the one generated by our method. This is simiar to the
advantage of using Shieber’s algorithm on ID/LP grammar to parse well-formed inpu: over
using Earley's algorithm on the corresponding CFG [1]. Here, the form of the generalized ecge
(8] is used:

< CfromStoFE

reeds Cs, from S, to £;. ..., Cs, from S, to £, >
where C is a category, Cs; are lists of categories, and S, 5,S;, E; arc positions in the chart.
The found portion is omitted in this form. Note that S and E indicate the range of 2 whoic

phrase of category C, not only of the found portion as i cur form.




LKA TLd T

g Aamame

(6) < AfromO0tol rneeds {} >

(7) < C from 2 to 3 needs {} >

(8) < D from 3 to 4 nceds {} >

(9) < SfromO0to = needs {B,C,D} from 1io *>
(10) < Sfrom 0to = needs {B,D,C} from 1 to = >
(11) < Sfrom 0 to * needs {C,B,D} from 1 to >
(12) < Sfrom 0to * needs {C,D,B} from 1 i0 = >
(13) < Sfrom Oto * needs {D,B,C} from 1 to = >
(14) < Sirom 0to * needs {D,C,B} frcm1to=>
(15) < S from = to 4 needs {4, B,C} from % t0 3>
(16) < Sirom * to 4 needs {4,C, B} from % to 3>
(17) < S from * to 4 needs {B, 4,C} from * to 3>

For general grammars, the advantage of using ID/LP rules depends on the number o LP
rules and the lengih of RHSs of ID rules. When the number of LP rules is small and the langths

of RHSs of ID rules are long, the large advantage can be obtained.

EC phase

Some subparses were not generated in BU phase duc to the left to right characteristic of (leit
corner) bottom up parsing. For instance, in the above example, no parse covering C is generated
because C cannot appear as the leftmost element of S. However, for ill-formed input parsing
this is not desirable since it will block many subparses useful for hypothesizing errors. In EC
phase, we attemp! to generate the edges corresponding to those blocked subparsss. I order 0
do this, the bottom up rule and the fundamental rele of chart parsing have io be modiied to
allow operating from arbitrary positions in the RHS of 2 grammar rule orin the undeterminatad

portion of an active edge, not just from the lefimost position. The modified boltom-up ruie

P23

1o

other than the leftmost ones of grammar rules (since the edges for the laftmost elements would

armnaind

by making the completion between inactive sdgas and arbitrary positions of undaiorm

paris in active edges. These two rules play an imposiant role in reducing search s:
phase [6].

bu simply amiiting the ovds

Tie modified bottom-up rule can be realized in our method b g

check of the category of RHS categoriss whos» constitaent is found in input wiih the romal
irele can be realized by omiiiiing thaosds:

Y

categories. In a similar way, the modified fundam

check of titz elemen: of the neads set whose cox
prvween tle olement in quesiisn and &l Dund

elements. Instead, the order cireck is performed i
categories. In the case of the above example, the Biiswing active edge will be geperazed

po:tom-up rule as the cheeks berween C and tive =riogories AL D and T ape gt

- 163 -




et et 4 e 2 tam

e

g e om
[N - Ap

rteteen

[ e ey

(18) < S from 2 to 3 found {C} from 2 o 3 reeds {4.8,D} >

The edge is then matched with inactive edges in the chart like the one 0f D from 3 9 + by
the fundamental rule. In this case, because C can precede D according o0 the LP rule in G, .
the active edge < S from 2 to 4 found {C} from 2 to 3 {D} from 3 to ¢ needs {43} > is
generated.

However, applying the fundamental rule to all edges in the chart as in Kaio's methed is not
quite a good method, since the parser must spend time atiempting to maich a great pumber of
active edges and inactive edges pairs, as shown in Fig. 1. Moreover, many useless edges which
will never contribute in finding a complete parse for the goal category arz also generated. Qur
method thus applies only the bottom-up rule in EC phase, and for this example generates only
one active edge above. The fundamental rule is applied later upon requests in TD phase to
guarantee that the edges generated will contribute in parsing for the goal category and only

edges in the specified range are needed to be matched. This will be discussed shortly.

TD phase

In this phase, the data structure of a special type of edges used in searching, which we will cali
“searcher”, is almost the same as in [6] except that Cs; denotes an unordered multiset instead
of an ordered list of categories. i

< hole: N err: M Cs, from S to £, ..., Cs, ifrom S, to £, >
where the value IV of “hole” portion is the number of categories remained to be satisfied, 3/ of
“err” portion is the number of errors accumulated so far in a searcher, and S;, E; are positions
in the chart.

We perform: top-down search in this phase according to the search rulesin Fig. 2 and Tiz. 3.
The search starts off with the searcher < hole: 1 err: 0 [S] from 0 to L >, where § is the
start symbol (goal category), L is the length of input, and find 2 result when a searcher ¢l the
form < hole: 0 err: M [] > is derived. The first two rules, the active fundamen:al rule and
the top-down rule, are for tracing unsatisfied porticns, and the remaining three rules z:2 for

determining 3 kinds of primitive errors: extra word error, omitted word error and unknown

D..

word error. The predicates select/3 and velid_order/2 inr the body of severa! rules are usad 20
sclect a category from the lefimost part of the needs and to check that cthe selecied cziegory
can precede the rest categories. The active fundamental rule periorms the compie:ion patwaen
searchers and previously generated active edges to narrow the undecided portions, and is used
as the main rule in search process. The top-down rule refines an expaciation of a category
into more detailed constituents according to all ID rules whose LHS category is the expzcied

catezory. At any point, all rules are 2pplied to generate new searchess wirich will b2 kept wi

previously generated searchers. Then the searcher which has the lzast summalion of !‘.‘35.-3 and
error value will be selected to do searching in the rex: tinme. Ii the summations are equal, the

F ]
!

one with less value of hole will be selected. If there are still many candidaies left, one of ther

will be selected.

- 164 -



Edges spawned from A with bottom up rule:

Edges spawned from D with bottom up

(19)
(20)
(21)
(22)

(24)

)

wn

(2
26
27
(23)
(29)
(30)
(31)
(32)
(33)

—
~

—_
~

< § from
< § from
< § from
< S from
< S from
< S from

=

-

-

=

to
o
to
to
to

to

< Sfrom s to =

< S from
< S from
< S from
< S from
< S from
< S from
< S from

*

=

-

*x

x

to

to
to
to
to
to

to

-

®

-

< S{f-om = to =

Edges spawned from C with bottom up

Edﬂps gan
3= 0

(34)
(33)
(36)
(37)
(33)
(39)

cated by ‘uadamental rule:

(34)

< S from
< S from
< § from
< S from
< S ffom
< S from
< S frox
< § from

< S from

=

=

*

=

I

0
to

to

x

*

nceds {B} from = to 0 {C,D} from 1 t0 « >
peeds {B} from « to 0 {D,C}irom 1o «>
needs {D} from = 00 {B.,C}from1ltox>
needs {D} from = to 0 {C, B} from 1 o = >

needs {B,D} from = t0 0 {C}from 1to=>
needs {D, B} from = to 0 {C} from 1 >

rule:

needs {4} from = to 3 {B.C} from 4 :
needs {4} from = to 3 (C.B} from ¢ :

o %

cr

2>

o}
o= >

needs {B} from = to3 (4.C} from4 to=>

*

needs {4, B} from
needs {4, C} from

»

03 {C)}fromdto->
to 3 (B} from 4 0 « >

needs {B,A} from = to 3 {C} from 4 to « >

needs {A,B,C} from = to 3>
needs {A,C,B} from = to 3>
needs {B,4,C} from = to 3>

rule:

needs {4} from « to 2 {B,D} from 3 to = >
reeds {4} from + to 2 {D.B} from 3 to - >
needs {A.B} from = to 2 {D}from 3o =>
to = needs {B, A} from = to 2 {D} from 3 to «>
to 3 needs {4, B,D} from = to 2>
to 3 needs {A,D,B} from * to 2>
to 3 needs {B,A.D} from = to 2>
to 3 needs {B, D, 4} from = to 2>
to 3 needs {D.A,B} from = to2>

< S from = toJneeds {D, 5.4} tom = 02>

< S from = 'o = needs {4} from « 102 {5} i
< S from = to 4 nezds (4.3} fom « 02> (C+DY
< S from » to ¢ needs {J. A} from « to 2> (C+D)

< S from = to 4 necds {4} fom = to 2

< § ftom -

< S from Oto = needs {} from i 0?2

to 4+ aceds {5} from ~« to?
{
\

< Sirom 0to < needs (D} fror 102>

< S from = i 4 nseds (B} row - 00 {} fam iis
< S from Qtod needs {} fron: 1:02 (B} rotn 3103 > {A=C+D)

—

Figure 1: Edges generaizd i 20 plase of Hzio's minilin

>




active_tund_rule(Searcher,ActZdges,Inactidgss,NawictIdgas,le
Searcher = searcher(Hole,Zrr,[(Start,Znd Cs)|_NsadLisz]),
s:lect(C,Cs,RestCs), /* selac® one category C frea Cs =/
valid_order(C,RestCs), /= C can preceds all categories in Res
/* checx whether there exists a record of C iz thes rangs o Start to Ead x/
( not_exist_in_record(C,Start,End)
/* do the TFundamsntal rule if there is no such a record =/
fundanental rule(ActEdges,InactZdges,Start,Ind,NewdctIdgas),
keep_record(C,Start, End)
. MewActEdges = ActZdges
),
/* make completion betwesn the searcher and active edges =/

nk_cozpletion(Searcher ,NevActEdges,}NawSearchers).

top_do:-_-dle(Searcher,Ne:Searchers) -
Searcher = searcher(Hole,Zrr,[(S,E,Cs)|NsedList]),
select(C,Cs,RestCs), /* select one category C froa Cs =/
valid_order(C,RestCs), /* C can precede all categories in RastCs =/
findall( searcher(MewHole, NewExrr,Newleads)
, ( id_rule(C,Rhs),
NewNeeds = [(5,E1,Rhs),(Si,E,RestCs)[Needlist])

, MewSearchers ).

Figure 2: Deiluition of seazch rules {1)

A main difference between search rules of our method and the ones of [3] is at ine active
fundamental rule. In EC phase, we completely avoid appiving the fundamental ruie because
, in addition to what we need, it niny generate many useless edges. Consaquently, the works
have to be done in this phase instead when there are requasis by some searchers. Our aciiva

s

fundamental rule first checks the record wietiter the needes caitegory in the specifisd ranze i
oty z S

o’

ever requested before. If never, the fundamental rule will be invoked to make ths complesion
betweei an active edge of category needed by the s2archer aad an inactive edge in the range
covered by the start and the end positions of the scarchar. The rule is apoiiad uniil no new
edge can be generaied. The resultant edges are in tura mascired with the scarchier o furthes
generate new searchers. Ounce all of these have been done in 2 specified range, the requested
category and the range are kept on record. Next time when tha categosy Is requesied by some

scarchers within the range again, we do noi have to anp!y tits rule anymore since 2!! edges w2



/* rule for handling extra word error =/
garbage_rule(Searcher NewSearcher) :-
Searcher = searcher(Fole,Err, [(S,E,[])[Needlisc]),!,
NewZrr is Err+g-S,
,NewErr ,NeaedList)].

o

NeuSearcher = [searcher(®sl

garbage_rule(_,[1).

/* rule for handling onitted word errox ;/
expty_category_rule(Searchexr,NewSearcher) :-
Searcher = searcher(Hole,Err,[(S,S,Cs)INeedlist]), !,
length(Cs,LengthofCs),

{evHole is Err-LengthoiCs,

-

=
o
Py

Err is Err+Leangthof(Cs,
NeySearcher = [searcher(Nevicle,NewZrr, Needlist)].

expty_category_rule(_,[J).

/* rule for handling unimown word error =/

unknewn_vword_rule(Searcher,NewSearcher) :-

3 Seazcher = searcher(Zols,Err,[(5,E,Cs)|¥eedlist]),

s2lect(C!,Cs,ResiCs),

A valid_order(Ci,RestCs), |
isa_lexical_category(C1), /= C1 is a lexical category </
L /* no inactive edge of Ci at position S =/

Ci inactive_edgas_is_not_at S,!,

z
NewZIrr is Err+i,
S1 is S+1.

W2wSearcher =

AT XY TR WS S5 LA IR




—

. de TSR gt

need have been already provided.
. The process of top-down search in our method is shown below. Althoug!

o this example
illustrates only handling of unknown word errors, other two kinds of errors can also be done
) ein

similar ways. TD phase of Kato's method can be done similarly, except that the application of
the fundamental rule is not done.
start
(2) < hole: 1 err: 0 {S] from 0 to ¢4 >
apply active fundamental rule
from (4),(2) by fundamental rule
(b) < S from 0 to 3 found {A} from 0 to 1 {C} from 2 to 3
needs {B,D} >
from (b),(3) by fundamental rule
(c) < S from 0to4 found {A}from0tol {C} from 2to3J
{D} from 3 to 4 needs {B} >
make completion between (a) and (c)
(d) < hole: 1 err: 0 (B] from1to2 >
apply unknown word rule to (d)
(¢) < holezOerr: 1] >
Considering the total number of edges generated while parsing, it is 2pparent that our
method generates less edges than Kato's one. Because parsing time varies to the number of
edges, our method is more cfficient in this case. As described earlier, however, the advantage
of our method depends on the characteristic of languages. In general, the more fiexible the

language is, the more advantage our method will provide.

3.2 Handling word order errors

We have described how to cope with three kinds of errors in input by using ID/LP faormalism.
However, another important issue of handling worcd order errors remains to be discussed. In
order to do this, we must generalize the form of an edge as follow.

< err: Err C from S; to B, founad C; from S5, to &y, ..., C, from S, to £,

needs Cs >

of accunlated errors of an edge since we of word sirings containing some word crder
errors. with the new format of edges defined above. w2 intioduce another special rule called
the trcnsposition rule for handling word order errors in input. shown in Fig. 4. In our method,
word order ercors are detected by failure to make th2 compiztion between a pair of edges in the
process of the fundamental rule due to the LP consirainis vioiation. If che error is datected,
the transposition rule would be triggered to form 2 new edge with an extra error, in addition
to the crr values of both edges, added to the err pari of the resulting edge. Consequently, the
transposition rule will not be applied wildly but used oniy when it is triggered by failure of the
t‘
[e]3

operations in the fundamental rule. This is to preven: overgenaration of order-violated merged

_;68_



—ea ey R
~am- ey '“'"'W"""'m'-mwmmr O

/= ruls for handling word order error =/
transpesition_rule(ActEdge,Inactidge,NewSdzs) -
ActZdge = edge(Erri,Cat,Start,End,Found,Nead),
InactZdge = edge(Err2,C1,S1,21,Foundi, (]),
s°l°ct(CI,Need Restlz2ed), /= ramova Ct ooz YNead iilse
/% insert Cl into Found lis= =/
insert((S1,21,C1) ,Feund, NewTound),
Zrr3 is Exri+EIrr2+i, /% add a- extra erzor =/

NewEdge = edge(Err3,Cat,lswFound,Restlissd).
Figure 4: Definition of the transposition rule

edges. The resulting edges are then subsequently used by the fundamental rule to further
generate new edges.

For example, consider how our method handies 2 word order error in the string chad. Ignor-
ing irrelevant edges, the parsing process looks as shown below. For simplicity, the 2:r poriions
of edges :hat include rno error are omitied. Since A rmust precede C as staied in the LP rule
of G, the edge (h) cannot merge with the inactive edge of A. So, the transposicion rule is
employec to relax the constraint and form the edge (i). The edge is then used to coniinua

searching for a complete parse.

EC phasa:
(f) <5 from 0 to 1 found{C}{rom O to 1 needs {4, B, D} >

i
TD phase:
the start searchier
(3) < hole: 1 err: 0 (5] irom 0 to ¢
active fundamental rule
om (f) and the inactive edge of B, by fundamenial rule
l) < Sfrom 0 to 2 found {C} frem O to i {B} from 1 to 2 nands { 4. D>
rom (i) and the inactive edge of 4, by transposition rule
(i) <ecrri 15 from 0to3found (C}iromCiol (B} irom1io?
{4} from 2 :0 3 needs {D} >
irom {i) and the iractive edge of D, by fuudamenial ruie
r: 1S from 0 to 4 fouud {C} irem T ol {B) rom 1?2
{4} from 2 to 3 {D} from 3 1o % nands {1 >

(




4 Conclusion

We proposed a new approach of using ID/LP rules directly for ill-formed input parsing. We
2lso showed that the approach we have taken can ba betier than previous CFG-based methods
in parsing flexble word order languages. We believe that the approach can also work with
reasonable performance for the languages which have more sirict word order, though more
experiments and analysis have to be done to verify this claim. The technique of apolying the
fundamental rule upon requests of top-down search may be used in the CFG-based methods
as well to improve the parser’s performance. A parser based on tiie method presenied in this
paper has been implemented and tested on a Tha! grammar wizh 83 ID rules and 23 LP rules.
Preliminary experiments show that our parser is more efficient than a CFG-based parser by 2
iactor of 10 to 50. Nevertheless, we realize that more optimized parsers are needed for praciical
applications. We plan to test the parser with more variations of grammars and sentences
to understand its behavior in general, and to exploit the knowledge to improve the parser’s
performance. The parallel implementation of the parser is another interesting topic that we

would like to do in the near future.

References

(1] G. Edward Barton. On the Complexity of ID/LP Parsing. Computetionc! Linguistics, pp.
205-218, October-December 1985.

[2] Jaime G. Carbonell and Philip J. Hayes. Recovery Strategies for Parsing Extragrammatical
Language. Americen Journal of Computationa!l Linguistics, Vol. 9, No. 3-4, pp. 123-146,

1983.

{3] Noam A. Chomsky. Lectures on Government end Einding. Foris Publications, 1981.

{] Gerald Gazdar, Ewan Klein, Geofirey K. Pullum, and Ivan Sag. Generelized Phrese Siruc-

ture Gremmer. Blackwell Publishing, 1933.

i3] Aravind K. Joshi. Tree Adjoining Grammars: How muci contexi-sensitivity is required
to provide reasonable structural descriptions? In David R. Dowty et al., editor, Metura!
Longuage Persing: Psychologics!, compuletione!, cnd iieoreticel parszectives, pp. 206-230.
Cambridge University Press, 1933,

{0} Tsuneaki Kato. Yet Another Chart-Based Techuuique jor Parsing Iil-Formead Ingut. Natural
Languaze Processing 83-10, Information Processing Sociaty of Japan, 1991,

o+es o =] J B

{7] Surapant Meknavin. A Chart-based Method of ID/LP Parsing wiith Generalized Discrimi-

nation Network. In Procesdings of the fifteenth [nternciione! Conference on Compuietionc!

Linguistics, Vol. 1, pp. 401-407, 1992,

- 170 -




e T P OWE Y I N ST TR TP T

(8] Chris S. Mellish. Some Chart-Based Techniques for Parsing Ili-Formad Iaput. Ia 274
ACL, pp.'102-109, 1939.

[9] Stuar:M. Shicber. Diract Parsing of ID/LP Grammass. Linguistics end Philoscphy, Vall 7,
oo, 135154, 1984,

[10] Ralph M. Weischedsl 2nd Norman K. Sondheimar. Meta—ruiss as 2 Basis for Prossssing
Tl-Formed Input. American Journe! of Compuictional Linguistics, Vol. 9, No. 3-4, 22
161-177, 1983.

- 171 -




