
The Effects of Word Order and Segmentation on Translation
Retrieval Performance

Timothy Baldwin and Hozumi Tanaka

Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552 JAPAN

{tim,tanaka}@cl.cs.titech.ac.jp

Abstract

This research looks at the effects of word order
and segmentation on translation retrieval perfor-
mance for an experimental Japanese-English trans-
lation memory system. We implement a num-
ber of both bag-of-words and word order-sensitive
similarity metrics, and test each over character-
based and word-based indexing. The translation
retrieval performance of each system configuration
is evaluated empirically through the notion of word
edit distance between translation candidate outputs
and the model translation. Our results indicate
that character-based indexing is consistently supe-
rior to word-based indexing, suggesting that segmen-
tation is an unnecessary luxury in the given domain.
Word order-sensitive approaches are demonstrated
to generally outperform bag-of-words methods, with
source language segment-level edit distance proving
the most effective similarity metric.

1 Introduction

Translation memories (TM’s) are a well-established
technology within the human and machine transla-
tion fraternities, due to the high translation pre-
cision they afford. Essentially, TM’s are a list
of translation records (source language strings
paired with a unique target language translation),
which the TM system accesses in suggesting a list
of target language translation candidates which
may be helpful to the translator in translating a
given source language input.1

Naturally, TM systems have no way of accessing
the target language equivalent of the source lan-
guage input, and hence the list of target language
translation candidates is determined based on source
language similarity between the current input and
translation examples within the TM, with transla-
tion equivalent(s) of maximally similar source lan-
guage string(s) given as the translation candidate(s).
This is based on the assumption that structural and
semantic similarities between target language trans-
lations will be reflected in the original source lan-
guage equivalents.

One reason for the popularity of TM’s is the low
operational burden they pose to the user, in that
translation pairs are largely acquired automatically

1See Planas (1998) for a thorough review of commercial
TM systems.

from observation of the incremental translation pro-
cess, and translation candidates can be produced on
demand almost instantaneously. To support this low
overhead, TM systems must allow fast access into
the potentially large-scale TM, but at the same time
be able to predict translation similarity with high ac-
curacy. Here, there is clearly a trade-off between ac-
cess/retrieval speed and predictive accuracy of
the retrieval mechanism. Traditionally, research on
TM retrieval methods has focused on speed, with lit-
tle cross-evaluation of the accuracy of different meth-
ods. We prefer to focus on accuracy, and present
empirical data evidencing the relative predictive po-
tential of different similarity metrics over different
parameterisations.

In this paper, we focus on comparison of different
retrieval algorithms for non-segmenting languages,
based around a TM system from Japanese to En-
glish. Non-segmenting languages are those which do
not involve delimiters (e.g. spaces) between words,
and include Japanese, Chinese and Thai. We are
particularly interested in the part the orthogonal pa-
rameters of segmentation and word order play in the
speed/accuracy trade-off. That is, by doing away
with segmentation in relying solely on character-
level comparison (character-based indexing), do
we significantly degrade match performance, as com-
pared to word-level comparison (word-based in-
dexing)? Similarly, by ignoring word order and
treating each source language string as a “bag of
words”, do we genuinely lose out over word order-
sensitive approaches? The main objective of this
research is thus to determine whether the computa-
tional overhead associated with more stringent ap-
proaches (i.e. word-based indexing and word order-
sensitive approaches) is commensurate with the per-
formance gains they offer.

To preempt what follows, the major contributions
of this research are: (a) empirical evaluation of dif-
ferent comparison methods over actual Japanese-
English TM data, focusing on four orthogonal re-
trieval paradigms; (b) the finding that, over the tar-
get data, character-based indexing is consistently
superior to word-based indexing in identifying the
translation candidate most similar to the optimal
translation for a given input; and (c) empirical ver-
ification of the supremacy of word order-sensitive
exhaustive string comparison methods over boolean
match methods.

In the following sections we discuss the effects

 In Proceedings of the 18th International Conference on Computational Linguistics
 (COLING 2000), Saabruecken, Germany, pp 35-41.

of segmentation and word order (§ 2) and present
a number of both bag-of-words and word order-
sensitive similarity metrics (§ 3), before going on to
evaluate the different methods with character-based
and word-based indexing (§ 4). We then conclude
the paper in Section 5.

2 Segmentation and word order
Using segmentation to divide strings into compo-
nent words or morphemes has the obvious advan-
tage of clustering characters into semantic units,
which in the case of ideogram-based languages such
as Japanese (in the form of kanji characters) and
Chinese, generally disambiguates character mean-
ing. The kanji character ‘[’, for example, can be
used to mean any of “to discern/discriminate”, “to
speak/argue” and “a valve”, but word context easily
resolves such ambiguity. In this sense, our intuition
is that segmented strings should produce better re-
sults than non-segmented strings.

Looking to past research on similarity metrics for
TM systems, almost all systems involving Japanese
as the source language rely on segmentation (e.g.
(Nakamura, 1989; Sumita and Tsutsumi, 1991; Ki-
tamura and Yamamoto, 1996; Tanaka, 1997)), with
Sato (1992) and Sato and Kawase (1994) providing
rare instances of character-based systems.

By avoiding the need to segment text, we: (a) al-
leviate computational overhead; (b) avoid the need
to commit ourselves to a particular analysis type in
the case of ambiguity; (c) avoid the issue of how
to deal with unknown words; (d) avoid the need
for stemming/lemmatisation; and (e) to a large ex-
tent get around problems related to the normalisa-
tion of lexical alternation (see Baldwin and Tanaka
(1999) for a discussion of problems related to lexical
alternation in Japanese). Additionally, we can use
the commonly ambiguous nature of individual kanji
characters to our advantage, in modelling seman-
tic similarity between related words with character
overlap. With word-based indexing, this would only
be possible with the aid of a thesaurus.

Similarly for word order, we would expect that
translation records that preserve the word (seg-
ment) order observed in the input string would pro-
vide closer-matching translations than translation
records containing those same segments in a differ-
ent order. Naturally, enforcing preservation of word
order is going to place a significant burden on the
matching mechanism, in that a number of different
substring match schemata are inevitably going to
be produced between any two strings, each of which
must be considered on its own merits.

To the authors’ knowledge, there is no TM sys-
tem operating from Japanese that does not rely
on word/segment/character order to some degree.
Tanaka (1997) uses pivotal content words identified
by the user to search through the TM and locate
translation records which contain those same con-
tent words in the same order and preferably the same
segment distance apart. Nakamura (1989) similarly
gives preference to translation records in which the
content words contained in the original input occur
in the same linear order, although there is the scope

to back off to translation records which do not pre-
serve the original word order. Sumita and Tsutsumi
(1991) take the opposite tack in iteratively filter-
ing out NPs and adverbs to leave only functional
words and matrix-level predicates, and find transla-
tion records which contain those same key words in
the same ordering, preferably with the same segment
types between them in the same numbers. Niren-
burg et al. (1993) propose a word order-sensitive
metric based on “string composition discrepancy”,
and incrementally relax the restriction on the qual-
ity of match required to include word lemmata, word
synonyms and then word hypernyms, increasing the
match penalty as they go. Sato and Kawase (1994)
employ a more local model of character order in
modelling similarity according to N-grams fashioned
from the original string.

The greatest advantage in ignoring word/segment
order is computational, in that we significantly re-
duce the search space and require only a single over-
all comparison per string pair. Below, we analyse
whether this gain in speed outweighs any losses in
retrieval performance.

3 Similarity metrics

Due to our interest in the effects of both word order
and segmentation, we must have a selection of sim-
ilarity metrics compatible with the various permu-
tations of these two parameter types. We choose to
look at a number of bag-of-words and word order-
sensitive methods which are compatible with both
character-based and word-based indexing, and vary
the input to model the effects of the two indexing
paradigms. The particular bag-of-word approaches
we target are the vector space model (Manning and
Schütze, 1999, p300) and “token intersection”, a
simple ratio-based similarity metric. For word order-
sensitive approaches, we test edit distance (Wagner
and Fisher, 1974; Planas and Furuse, 1999), “se-
quential correspondence” and “weighted sequential
correspondence”.

Each of the similarity metrics empirically de-
scribes the similarity between two input strings tmi

and in,2 where we define tmi as a source language
string taken from the TM and in as the input string
which we are seeking to match within the TM.

One feature of all similarity metrics given here is
that they have fine-grained discriminatory potential
and are able to narrow down the final set of trans-
lation candidates to a handful of, and in most cases
one, output. This was a deliberate design decision,
and aimed at example-based machine translation ap-
plications, where human judgement cannot be relied
upon to single out the most appropriate translation
from multiple system outputs. In this, we set our-
selves apart from the research of Sumita and Tsut-
sumi (1991), for example, who judge the system to
have been successful if there are a total of 100 or less
outputs, and a useful translation is contained within
them. Note that it would be a relatively simple pro-

2Note that the ordering here is arbitrary, and that all the
similarity metrics described herein are commutative for the
given implementations.

cedure to fan out the number of outputs to n in our
case, by taking the top n ranking outputs.

For all similarity metrics, we weight different
Japanese segment types according to their expected
impact on translation, in the form of the sweight
function:

Segment type sweight

punctuation 0
other segments 1

We experimentally trialled intermediate sweight set-
tings for different character types (in the case of
character-based indexing) or segment types (in the
case of word-based indexing), none of which was
found to appreciably improve performance.3

3.1 Similarity metrics used in this research

Vector space model

Within our implementation of the vector space
model (VSM), the segment content of each string
is described as a vector, made up of a single dimen-
sion for each segment token occurring within tmi or
in. The value of each vector component is given as
the weighted frequency of that token according to
its sweight value, such that any number of a given
punctuation mark will produce a frequency of 0. The
string similarity of tmi and in is then defined as the
cosine of the angle between vectors ~tmi and ~in, re-
spectively, calculated as:

cos(~tmi, ~in) =
~tmi · ~in

| ~tmi||~in|
(1)

where dot product and vector length coincide with
the standard definitions.

The strings tmi of maximal similarity are those
which produce the maximum value for the vector
cosine.

Note that VSM considers only segment frequency
and is insensitive to word order.

Token intersection

The token intersection of tmi and in is defined as
the cumulative intersecting frequency of tokens ap-
pearing in each of the strings, normalised according
to the combined segment lengths of tmi and in. For-
mally, this equates to:

tint(tmi, in) =
2×

∑

t
min

(

freqtmi
(t),freqin(t)

)

len(tmi)+len(in) (2)

where each t is a token occurring in either tmi or
in, freqs(t) is defined as the sweight-based frequency
of token t occurring in string s, and len(s) is the

3If anything, weighting down hiragana characters, for ex-
ample, due to their common occurrence as inflectional suffices
or particles (as per Fujii and Croft (1993)) led to a significant
drop in performance. Similarly, weighting down stop word-
like functional parts-of-speech in Japanese had little effect,
unlike weighting down stop words in the case of English (see
below).

segment length of string s, that is the sweight-based
count of segments contained in s.

As for VSM, the string(s) tmi most similar to in
are those which generate the maximum value for
tint(tmi, in).

Note that word order does not take any part in
calculation.

Edit distance

The first of the word order-sensitive methods is edit
distance (Wagner and Fisher, 1974; Planas and Fu-
ruse, 1999). Essentially, the segment-based edit dis-
tance between strings tmi and in is the minimum
number of primitive edit operations on single seg-
ments required to transform tmi into in (and vice
versa), based upon the operations of segment equal-
ity (segments tmi,m and inn are identical), segment
deletion (delete segment a from a given position in
string s) and segment insertion (insert segment a
into a given position in string s). The cost asso-
ciated with each operation on segment a is defined
as:4

Operation Cost

segment equality 0
segment deletion sweight(a)
segment insertion sweight(a)

Unlike other similarity metrics, smaller values in-
dicate greater similarity for edit distance, and iden-
tical strings have edit distance 0.

The word order sensitivity of edit distance is per-
haps best exemplified by way of the following exam-
ple, where segment delimiters are given as ‘·’.

(1) _ ·N ·+ “winter rain”
(2a) F ·N ·+ “summer rain”
(2b) + ·N ·F “a rainy summer”

Here, the edit distance from (1) to (2a) is 1 + 1 = 2,
as one deletion operation is required to remove _
[fuyu] “winter” and one insertion operation required
to add F [natu] “summer”. The edit distance from
(1) to (2b), on the other hand, is 1 + 1 + 1 + 1 = 4
despite (2b) being identical in segment content to
(2a). In terms of edit distance, therefore, (2a) is
adjudged more similar to (1) than (2b).

Sequential correspondence

Sequential correspondence is a measure of the max-
imum substring similarity between tmi and in, nor-
malised according to the combined segment lengths
len(tmi) and len(in). Essentially, this method re-
quires that all substring matches submatch(tmi, in)
between tmi and in be calculated, and the maximum
seqcorr ratio returned, where seqcorr is defined as:

seqcorr(tmi,in)=
2×max |submatch(tmi,in)|

len(tmi)+len(in)
(3)

4Note that the costs for deletion and insertion must be
equal to maintain commutativity.

Here, the cardinality operator applied to
submatch(tmi, in) returns the combined seg-
ment length of matching substrings, weighted
according to sweight . That is:

|submatch(tmi,in)|=
∑

ssj

∑

k
sweight(ssj,k) (4)

for each segment ssj,k of each matching substring
ssj ∈ submatch(tmi, in).

Returning to our example from above, the simi-
larity for (1) and (2a) is 2×2

3+3 = 2
3 , whereas that for

(1) and (2b) is 2×1
3+3 = 1

3 .

Weighted sequential correspondence
Weighted sequential correspondence—the last of the
word order-sensitive methods—is an extension of se-
quential correspondence. It attempts to supplement
the deficiency of sequential correspondence that the
contiguity of substring matches is not taken into
consideration. Given input string a1a2a3a4 , for
example, sequential correspondence would suggest
equal similarity (of 8

11) with strings a1 ba2 ca3da4

and a1a2a3a4 efg, despite the second of these being
more likely to produce a translation at least partially
resembling that of the input string.

We get around this by associating an incremen-
tal weight with each matching segment assessing
the contiguity of left-neighbouring segments, in the
manner described by Sato (1992) for character-
based matching. Namely, the kth segment of a
matched substring is given the multiplicative weight
min(k,Max), where Max was set to 4 in evaluation
after Sato. |submatch(tmi, in)| from equation equa-
tion (3) thus becomes:

∑

ssj

∑

k min
(

k × sweight(ssj,k),Max
)

(5)

for each substring ssj ∈ submatch(tmi, in). We sim-
ilarly modify the definition of the len function for a
string s to:

len(s) =
∑

j min
(

j × sweight(sj),Max
)

(6)

for each segment sj of s.

3.2 Retrieval speed optimisation
While this paper is mainly concerned with accuracy,
we take a moment out here to discuss the potential
to accelerate the proposed methods, to get a feel for
their relative speeds in actual retrieval.

One immediate and effective way in which we can
limit the search space for all methods is to use the
current top-ranking score in establishing upper and
lower bounds on the length of strings which have
the potential to better that score. For token inter-
section, for example, from the fixed length len(in)
of input string in and current top score α, we can
calculate the following bounds based on the greatest
possible degree of match between in and tmi:

Upper bound: len(tmi) ≤ b (2−α) len(in)
α

c (7)

Lower bound: len(tmi) ≥ dα len(in)
2−α

e (8)

In a similar fashion, we can stipulate a corridor of al-
lowable segment lengths for tmi, for sequential corre-
spondence and weighted sequential correspondence.

For edit distance, we make the observation that for
a current minimum edit distance of α, the following
inequality over len(tmi) must be satisfied for tmi to
have a chance of bettering α:

len(in) − α ≤ len(tmi) ≤ len(in) + α (9)

We can also limit the number of string compar-
isons required to reach the optimal match with in,
by indexing each tmi by its component segments and
working through the component segments of in in as-
cending order of global frequency. At each iteration,
we consider each previously unmatched translation
record containing the current segment token, adjust-
ing the upper and lower bounds as we go, given that
translation records for a given iteration cannot have
contained segment tokens already processed. The
maximum possible segment correspondence between
the strings is therefore decreasing on each iteration.
We are also able to completely discount strings with
no segment component common with in in this way.

Through these two methods, we were able to
greatly reduce the number of string comparisons in
word-based indexing evaluation for VSM, token in-
tersection, sequential correspondence and weighted
sequential correspondence methods in particular,
and edit distance to a lesser degree. The degree of
reduction for character-based indexing was not as
marked, due to the massive increase in numbers of
translation records sharing some character content
with in.

There is also considerable scope to accelerate
the matching mechanisms used by the word order-
sensitive approaches. Currently, all approaches are
implemented in Perl 5, and the word order-sensitive
approaches use a naive, highly recursive method to
exhaustively generate all substring matches and de-
termine the similarity for each. One obvious way in
which we could enhance this implementation would
be to use an N-gram index as proposed by Nagao
and Mori (1994). Dynamic Programming (DP) tech-
niques would undoubtedly lead to greater efficiency,
as suggested by Cranias et al. (1995, 1997) and also
Planas and Furuse (this volume).

4 Evaluation

4.1 Evaluation specifications

Evaluation was partitioned off into character-based
and word-based indexing for the various similarity
methods. For word-based indexing, segmentation
was carried out with ChaSen v2.0b (Matsumoto et
al., 1999). No attempt was made to post-edit the
segmented output, in interests of maintaining con-
sistency in the data. Segmented and non-segmented
strings were tested using a single program, with
segment length set to a single character for non-
segmented strings.

As test data, we used 2336 unique translation
records deriving from technical field reports on con-
struction machinery translated from Japanese into
English. Translation records varied in size from

Edit Ave. Ave.
Similarity metric Accuracy

discrep. outputs time

Vector space model (0.5) 44.0 4.86 1.04 (0.97) 2.14
Character- Token intersection (0.4) 44.3 3.25 1.01 (0.99) 2.24

based Edit distance (len(in)) 50.2 1.82 1.39 (0.80) 4.75
indexing Sequential corr. (0.4) 46.6 2.92 1.02 (0.98) 3.20

Weighted seq. corr. (0.2) 45.6 2.89 1.04 (0.97) 4.10

Vector space model (0.5) 43.7 (-0.8%) 5.21 1.17 (0.91) 0.76
Word- Token intersection (0.4) 43.0 (-2.9%) 3.12 1.01 (0.99) 0.88
based Edit distance (len(in)) 47.3 (-5.9%) 2.03 1.90 (0.69) 1.00

indexing Sequential corr. (0.4) 43.1 (-7.4%) 3.06 1.01 (0.99) 1.10
Weighted seq. corr. (0.2) 40.7 (-10.7%) 3.30 1.14 (0.92) 1.24

Table 1: Results for the different similarity metrics under character-based and word-based indexing

single-word technical terms taken from a technical
glossary, to multiple-sentence strings, at an average
segment length of 13.4 and average character length
of 26.1. All Japanese strings of length 6 characters
or more (a total of 1802 strings) were extracted from
the test data, leaving a residue glossary of technical
terms (533 strings) as we would not expect to find
useful matches in the TM. The retrieval accuracy
over the 1802 longer strings was then verified by 10-
fold cross validation, including the glossary in the
test TM on each iteration.

Note that the test data was pre-partitioned into
single technical terms, single sentences or sen-
tence clusters, each constituting a single translation
record. Partitions were taken as given in evaluation,
whereas for real-world TM systems, the automation
of this process comprises an important component
of the overall system, preceding translation retrieval.
While acknowledging the importance of this step and
its interaction with retrieval performance, we choose
to sidestep it for the purposes of this paper, and
leave it for future research.

In an effort to make evaluation as objective and
empirical as possible, appropriateness of transla-
tion candidate(s) proposed by the different metrics
was evaluated according to the minimum edit dis-
tance between the translation candidate(s) and the
unique model translation. In this, we transferred the
edit distance method described above directly across
to the target language (English), with segments as
words and the following sweight schema:

Segment type sweight

punctuation 0
stop words 0.2
other words 1

Stop words are defined as those contained within the
SMART (Salton, 1971) stop word list.5 The system
output was judged to be correct if it contained a
translation optimally close to the model translation;
the average optimal edit distance from the model
translation was 4.73.

5ftp://ftp.cornell.cs.edu/pub/smart/english.stop

We set the additional criterion that the different
metrics should be able to determine whether the top-
ranking translation candidate is likely to be useful to
the translator, and that no output should be given if
the closest matching translation record was outside
a certain range of “translation usefulness”. In prac-
tice, this was set to the edit distance between the
model translation and the empty string (i.e. the edit
cost of creating the model translation from scratch).
This cutoff point was realised for the different sim-
ilarity metrics by thresholding over the similarity
scores. The different thresholds settled upon experi-
mentally for all similarity metrics are given in brack-
ets in the second column of Table 1, with the thresh-
old for edit distance dynamically set to the edit dis-
tance between the input and the empty string.

We set ourselves apart from conventional research
on TM retrieval performance in adopting this ob-
jective numerical evaluation method. Traditionally,
retrieval performance has been gauged by the sub-
jective usefulness of the closest matching element of
the system output (as judged by a human), and de-
scribed by way of a discrete set of translation quality
descriptors (e.g. (Nakamura, 1989; Sumita and Tsut-
sumi, 1991; Sato, 1992)). Perhaps the closest evalua-
tion attempts to what we propose are those of Planas
and Furuse (1999) in setting a mechanical cutoff for
“translation usability” as the ability to generate the
model translation from a given translation candidate
by editing less than half the component words, and
Nirenburg et al. (1993) in calculating the weighted
number of key strokes required to convert the system
output into an appropriate translation for the orig-
inal input. The method of Nirenburg et al. (1993)
is certainly more indicative of true target language
usefulness, but is dependent on the competence of
the translator editing the TM system output, and
not automated to the degree our method is.

4.2 Results

The results for the different similarity metrics with
character-based and word-based indexing are given
in Table 1, with the two bag-of-words approaches
partitioned off from the three word order-sensitive
approaches for each indexing paradigm. “Accuracy”
is an indication of the proportion of inputs for which

an optimal translation was produced; character-
based indexing accuracies in bold indicate a signifi-
cant6 advantage over the corresponding wprd-based
indexing accuracy, and figures in brackets for word-
based indexing indicate the relative performance
gain over the corresponding character-based index-
ing configuration. “Edit discrep.” refers to the mean
minimum edit distance discrepancy between trans-
lation candidate(s) and optimal translation(s) in the
case of the translation candidate set containing no
optimal translations. “Ave. outputs” describes the
average number of translation candidates output by
the system, with the figure in brackets being the
proportion of inputs for which a unique translation
candidate was produced. “Ave. time” describes the
average time taken to determine the translation can-
didate(s) for a single output, relative to the time
taken for word-based edit distance retrieval.

Perhaps the most striking result is that character-
based indexing produces a superior match accuracy
to word-based indexing for all similarity metrics, at
a significant margin for all three word order-based
methods. This is the complete opposite of what we
had expected, although it does fit in with the find-
ings of Fujii and Croft (1993) that character-based
indexing performs comparably with word-based in-
dexing in Japanese information retrieval.

Looking to word order, we see that edit distance
outperforms all other methods for both character-
and word-based indexing, peaking at just over 50%
for character-based indexing. The relative perfor-
mance of the remaining methods is variable, with
the two bag-of-words methods being superior to or
roughly equivalent to sequential correspondence and
weighted sequential correspondence for word-based
indexing, but the word order-based methods having
a clear advantage over the bag-of-words methods for
character-based indexing. It is thus difficult to draw
any hard and fast conclusion as to the relative merits
of word order-based versus bag-of-words methods,
other than to say that edist distance would appear
to have a clear advantage over other methods.

The figures for edit discrepancy in the case of non-
optimal translation candidate(s) are equally inter-
esting, and suggest that on the whole, the various
methods err more conservatively for character-based
than word-based indexing. The most robust method
is (source language) edit distance, at an edit dis-
crepancy of 1.82 and 2.03 for character-based and
word-based indexing, respectively.

All methods were able to produce just over one
translation candidate on average, with all other than
edit distance returning a unique translation candi-
date over 90% of the time. The greater number of
outputs for the edit distance method can certainly
be viewed as one reason for its inflated performance,
although the lower level of ambiguity for character-
based indexing but higher accuracy, would tend to
suggest otherwise.

Lastly, word-based indexing was found to be faster
than character-based indexing across the board, for
the simple reason that the number of character seg-

6As determined by the paired t test (p < 0.05).

ments is always going to be greater than or equal
to the number of word segments. The average seg-
ment lengths quoted above (26.1 characters vs. 13.4
words) indicate that we generally have twice as many
characters as words in a given string. Additionally,
the acceleration technique described in § 3.2 of se-
quentially working through the segment component
of the input string in increasing order of global fre-
quency, has a greater effect for word-based index-
ing than character-based indexing, accentuating any
speed disparity.

4.3 Reflections on the results

An immediate explanation for character-based in-
dexing’s empirical edge over word-based indexing is
the semantic smoothing effects of individual kanji
characters, alluded to above (§ 2). To take an exam-
ple, the single-segment nouns ‘n [sōsa] and n0
[sadō] both mean “operation”, but would not match
under word-based indexing. Character-based index-
ing, on the other hand, would recognise the overlap
in character content, and in the process pick up on
the semantic correspondence between the two words.

To take the opposite tack, one reason why word-
based indexing may have been disadvantaged is the
we did not stem or lemmatise words in word-based
indexing. Having said this, the output from ChaSen
is such that stems of inflecting words are given as
a single segment, with inflectional morphemes each
presented as separate segments. In this sense, stem-
ming would only act to delete the inflectional mor-
phemes, and not add anything new.

Another way in which the output of ChaSen
could conceivably have affected retrieval perfor-
mance is that technical terms tended to be over-
segmented. Experimentally combining recognised
technical terms into a single segment (particularly
in the case of contiguous katakana segments in the
manner of Fujii and Croft (1993)), however, de-
graded rather than improved retrieval performance
for both character-based and word-based indexing.
As such, this side-effect of ChaSen would not appear
to have impinged on retrieval accuracy.

One other plausible reason for the unexpected re-
sults is that the test data could have been in some
way inherently better suited to character-based in-
dexing than word-based indexing, although the fact
that the results were cross-validated would tend to
rule out this possibility.

A surprising result was the lacklustre performance
of the weighted sequential correspondence method as
compared to simple sequential correspondence. We
have no explanation for the drop in accuracy, other
than to speculate that either the proposed formu-
lation is in some way flawed or contiguity of match
does not impinge on translation similarity to the de-
gree we had expected.

To return to the original question posed above of
retrieval speed vs. accuracy, the word order-sensitive
edit distance approach would seem to hold a gen-
uine edge over the other methods, to an order that
would suggest the extra computational overhead is
warranted, in both accuracy and translation discrep-
ancy. It must be said that the TM used in evalua-

tion was too small to get a genuine feel for the com-
putational overhead that would be experienced in
a real-world TM system context of potentially mil-
lions rather than thousands of translation records.
At the same time, however, coding up the edit dis-
tance procedure in a language faster than Perl using
character rather than string comparison procedures
and applying dynamic programming techniques or
similar, may well offset the large increase in number
of comparisons demanded of the system.

5 Concluding remarks

This research is concerned with the relative import
of word order and segmentation on translation re-
trieval performance for a TM system. We modelled
the effects of word order sensitivity vs. bag-of-words
word order insensitivity by implementing a total of
five similarity metrics: two bag-of-words approaches
(the vector space model and “token intersection”)
and three word order-sensitive approaches (edit dis-
tance, “sequential correspondence” and “weighted
sequential correspondence”). Each of these metrics
was then tested under character-based and word-
based indexing, to determine what effect segmenta-
tion would have on retrieval performance. Empiri-
cal evaluation based around the target language edit
distance of proposed translation candidates revealed
that character-based indexing consistently produced
greater accuracy than word-based indexing, and that
the word order-sensitive edit distance metric clearly
outperformed all other methods under both indexing
paradigms.

The main area in which we feel this research could
be enhanced is to validate the findings of this pa-
per in expanding evaluation to other domains and
test sets, which we leave as an item for future re-
search. We also skirted around the issue of trans-
lation record partitioning, and wish to investigate
how different partitioning methods perform against
each other. One important area in which we hope
to expand our research is to look at the effects of
character type on character-based indexing. Kanji
would appear to be helping the case of character-
based indexing at present, and it would be highly
revealing to look at whether comparable results to
those presented here would be produced for full
kana-based (alphabetic) Japanese input, or other
alphabet-based non-segmenting languages such as
Thai.

Acknowledgements

Vital input into this research was received from
Francis Bond (NTT), Emmanuel Planas (NTT), and
three anonymous reviewers.

References

T. Baldwin and H. Tanaka. 1999. The applications of
unsupervised learning to Japanese grapheme-phoneme
alignment. In Proc. of the ACL Workshop on Un-
supervised Learning in Natural Language Processing,
pages 9–16.

L. Cranias, H. Papageorgiou, and S. Piperidis. 1995.

A Matching Technique in Example-Based Machine
Translation. cmp-lg/9508005.

L. Cranias, H. Papageorgiou, and S. Piperidis. 1997. Ex-
ample retrieval from a translation memory. Natural
Language Engineering, 3(4):255–77.

H. Fujii and W.B. Croft. 1993. A comparison of index-
ing techniques for Japanese text retrieval. In Proc.
of 16th International ACM-SIGIR Conference on Re-
search and Development in Information Retrieval (SI-
GIR’93), pages 237–46.

E. Kitamura and H. Yamamoto. 1996. Translation
retrieval system using alignment data from parallel
texts. In Proc. of the 53rd Annual Meeting of the
IPSJ, volume 2, pages 385–6. (In Japanese).

C. Manning and H. Schütze. 1999. Foundations of Sta-
tistical Natural Language Processing. MIT Press.

Y. Matsumoto, A. Kitauchi, T. Yamashita, and Y. Hi-
rano. 1999. Japanese Morphological Analysis Sys-
tem ChaSen Version 2.0 Manual. Technical Report
NAIST-IS-TR99009, NAIST.

M. Nagao and S. Mori. 1994. A new method of N-gram
statistics for large number of N and automatic ex-
traction of words and phrases from large text data
of Japanese. In Proc. of the 15th International Con-
ference on Computational Linguistics (COLING ’94),
pages 611–5.

N. Nakamura. 1989. Translation support by retrieving
bilingual texts. In Proc. of the 38th Annual Meeting
of the IPSJ, volume 1, pages 357–8. (In Japanese).

S. Nirenburg, C. Domashnev, and D.J. Grannes. 1993.
Two approaches to matching in example-based ma-
chine translation. In Proc. of the 5th International
Conference on Theoretical and Methodological Issues
in Machine Translation (TMI-93), pages 47–57.

E. Planas and O. Furuse. 1999. Formalizing translation
memories. In Proc. of Machine Translation Summit
VII, pages 331–9.

E. Planas. 1998. A Case Study on Memory Based Ma-
chine Translation Tools. PhD Fellow Working Paper,
United Nations University.

G. Salton. 1971. The SMART Retrieval System: Exper-
iments in Automatic Document Processing. Prentice-
Hall.

S. Sato and T. Kawase. 1994. A High-Speed Best Match
Retrieval Method for Japanese Text. Technical Report
IS-RR-94-9I, JAIST.

S. Sato. 1992. CTM: An example-based translation aid
system. In Proc. of the 14th International Conference
on Computational Linguistics (COLING ’92), pages
1259–63.

E. Sumita and Y. Tsutsumi. 1991. A practical method
of retrieving similar examples for translation aid.
Transactions of the IEICE, J74-D-II(10):1437–47. (In
Japanese).

H. Tanaka. 1997. An efficient way of gauging similar-
ity between long Japanese expressions. In Informa-
tion Processing Society of Japan SIG Notes, volume
97, no. 85, pages 69–74. (In Japanese).

A. Wagner and M. Fisher. 1974. The string-to-string
correction problem. Journal of the ACM, 21(1):168–
73.

