Analysing Ill-formed Input with Parallel Chart-based Techniques

Thanaruk Theeramunkong Hozumi Tanaka

Department of Computer Science,
Tokyo Institute of Technology
2-12-1, O-okayama, Meguro-ku, Tokyo 152, Japan
Tel. (03)3726-1111 (Ext. 4175)
E-mail {ping,tanaka}@cs.titech.ac.jp

Abstract

The fact that a natural language system cannot tackle with a sentence which is not suitable with its
database; its current grammar and its current dictionary, inspired some researches on the ill-formed
input analysis problem. However, there is a trend that it is time-consuming task to analyse ill-
formed input in order to cover all possible error patterns and to find all possible interpretations. The
ill-formedness framework defined in this paper is based on a set of defined rules to diagnose simple
errors, such as unknown/misspelled words, omitted words, extra noise word. In this work, we consider
the issue of parallelism of chart-based parser paradigm and its extension for dealing grammatically
ill-formed sentence analysis. The techniques described here are semantic-free, grammar independent.
Our system have been implemented in a practical concurrent logic programming language KL1 (based
on GHC) on a parallel inference rhachine, PIM, which is a loosely-coupled system developed under
the Fifth Generation Computer Project (ICOT). At the final part of this paper, we also show the
preliminary result of our system testing with some grammatical inputs and some ill-formed inputs.
Our system gets a fine performance when multi processors (to 16 processors) are used to analyse
ill-formed inputs which have one and two errors detected.

1 Introduction [Hayes and Mouradian, 1981], though concep-
tual case frame instantiation [Schank et al,
1980] and though approaches involving multi-
ple cooperating parsing strategies [Carbonell and
Hayes, 1983). These researches work on dialogue
phenomena in communication with the limited-

domain systems, such as data-base systems, elec-

In recent year, researches on natural lan-
guage processing; particularly syntactical anal-
ysis, have been developed rapidly to be used in
satisfying real applications. As natural language
is frequently used ungrammatically, an applica-

ble system has to have a property of handling
with grammatically ill-formed input.

There have been many studies for processing
ill-formed input. With the criterion of the frame-

work that any errors are found, these approaches

are classified to two groups, the frame-based
group and the syntactically-oriented group. The
former attempts to deal with ungrammatical
input through extensions to pattern matching

543

tronic mail systems, etc.

As the syntactically-oriented approach, the
latter is the most popular among the early sys-
tematic researches on the robust paring sys-
tems. The representative types of this group
are the robust parsers based on Augmented
Transition Networks (ATN) which use the re-
laxation techniques [Kwasny and Sondheimer,
1981] or the meta-rule [Weischedel and Black,

1980], [Weischedel and Sondheimer, 1982} and
the EPISTLE system which addresses the prob-
lems of the checking grammar and style of texts,
such as letters, reports and manuals, written
in ordinary English [Heidorn, 1982], [Jensen et
al., 1983]. In addition, the robust chart-based
parsers are developed to solve the problem that
the "longest path” heuristic, which is used in
ATN-based approach, fails to indicate the mini-
mal error owing to the left-right bias of an ATN
parser [Mellish, 1989), [Kato, 1991], [Meknavin
et al., 1993].

Our system’s robust paradigm is based on the
chart-based parser in [Kato, 1991) that occupies
a simple algorithm instead of using complicated
searching control applied in [Mellish, 1989, to
get all plausible analyses of ill-formed sentences.
When the input sentence enters, the system will
attempt to find the well-formed interpretation
for the input in bottom up style but if it fails,
that is the input has ill-formedness, the system
starts the second process to find the possible in-
terpretation in top down style.

Naturally, the more coverage the parser can
give, the more time it consumes. This work is
a parallel approach developed among the possi-
ble resolutions to this time-consuming problem.
In the rest of this paper, we show the short de-
scription of the parallel bottom up process and
the parallel top down process in order. Finally,
we show the preliminary experiment on a paral-
lel inference machine, PIM, which is a loosely-
coupled system developed under the Fifth Gen-
eration Computer Project (ICOT).

2 Parallel Chart Parsers

Chart parsing is achieved by keeping two data
records, a record of all parses undertaken (also
called active edge) as an Active Edge Table
(AET) and a record of all sub-strings (also called
inactive edge) found in the Well Formed Sub-
string Table (WFST) [Trehan and P.F., 1988].
The actions in chart parser are of two types, cre-
ating edge and eztending edge. The edge creation
is the action that an existing inactive edge builds

544

a new (active or inactive) edge based on the cy;.
rent grammar rules. The edge extension is the
action that an existing active edge extends by
using an inactive edge to build a new (active or
inactive) edge.

There are some existing attempts to construct
parallel chart parser for context free grammar in
both shared-memory environment and loosely-
coupled environment, e.g. [Grishman and Chj.
trao, 1988], [Henry, 1989], [Trehan and P.F.
1988). The shared-memory based method faces
with synchronization problem. For the loosely-
coupled environment method, the communica-
tion cost becomes the important factor. In [Gr-
ishman and Chitrao, 1988], The parser was de-
veloped for the NYU Ultra-computer, a shared-
memory MIMD parallel processor with a spe-
cial instruction, fetch-and-add, for processor syn-
chronization. A set of processors all execute the
main loop of the serial algorithm (get task from
agenda / create edge / extend edge). The agenda
is a task queue. This work is implemented in
ZLISP, a parallel lisp. Using low-level synchro-
nization operations, the system gets good per-
formances as its result. The system ran 5 to 7
faster than the serial version.

In [Henry, 1989), the construction of a parallel
chart parser on the Intel Hypercube, a loosely-
coupled system is proposed. The chart is dis-
tributed among the processors on vertex by ver-
tex basis to acquire the parallelism. However,
when compared with the shared-memory, the
system suffered with clearly dominate commu-
nication costs owing to the fast processors but
slow network communication and no advantage
is gained.

In addition, a parallel chart parser for the com-
mitted choice non-deterministic (CCND) logic
language is proposed in [Trehan and P.F., 1988].
This chart parsing framework is developed to
support an incremental bi-directional process,
called active chart parsing [Winograd, 1983 and
has been implemented in Parlog. However, there
is no evaluation on the practical computational
time shown in this work.

3 Error Types Defined

As the first step, primitive errors defined in the
system are of four types as following. An error
may be a combination of these types. The def-
inition is the same as ones defined in [Mellish,
1089).[Kato, 1991]. We illustrate these types of
errors through a correct example sentence, The
movie s a world event.

o Added word : during analysing an input sen-
tence, if there are one or more words exces-
sive in the input sentence, a perfect correct
interpretation is not found. e.g., The movie
s a a world event

o Omitted word : the contrary case of added-
word error, if there are one or more words
disappearing from the input sentence, a per-
fect correct interpretation is also not found.
e.g., The movie a world event

Unknown (Misspelled) word : generally,
when a mistyped word or a undefined word
is used in the sentence, it is rejected by the
parser. e.g., The movie is a wordl event

e Substituted word when a word in
the correct sentence is substituted by a
known/unknown word, the complete parse
of the input sentence will not be generated
and the error is detected. e.g., The movie

his a world event

4 Overview of Parsing Process

Our basic strategy is to run a parallel bottom-
up parser over the input and then, if this fails to
find a complete parse for the input, to execute
a parallel edge-completion process and a parallel
augmented top-down parser. Figure 1 indicates
the overview of our chart-based parsing.
Bottom up parsing (in the sense of left corner
parsing without top-down filtering) is guaranteed
to find all complete constituents of every parse
which is a part in the current input sequences.

Input sentence

545

grammatical input iill-formed input

analysis - analysis
M <
I
. .
4 L}
P-BU parser T T P-EC processH P-ATD parser
L] Ll

!

Output:

Output:
correct parse tree

it-formed input parse tree

P = Parallel
BU = Botiom Up

m
(2]
n

Edge Completion

ATD = Augmented Top Down

Figure 1: Three constructions in parsing

In addition, it will only create an active edge
restricted to left-to-right order.
Edge-completion process produces some edges
which were not produced by bottom-up parsing,
to reduce task done in parallel augmented top-
down parser. The restriction of parsing in left-
to-right order as occurred in bottom up parsing
is relaxed and some other edges are generated.
Using the set of edges generated from the two
previous processes, parallel augmented top-down
parser attempts to find in parallel the errors that
enable a complete parse to be constructed. Top-
down parser produces the tree structure of the
ill-formed input where errors are detected.

5 Parallel Grammatical Input
Analysis

An interpretation of a grammatical input is rec-
ognized by a simple and efficient chart-based
bottom-up parsing algorithm called Word Incor-
poration (WI) proposed in [Simpkins, 1990]. The
WI algorithm is a specialization of the Chart
which is restricted to be solely bottom-up (left-
to-right or right-to-left). WIis superior to the ac-
tive chart algorithm{Winograd, 1983} in the way
that it need not check whether an edge has previ-
ously been proposed or not, and in the way that
it generates fewer edges because of generating in

only bottom up style while active chart algorithm
generates edges in both bottom-up and top-down
direction.

This section described the parallelisation of
WI. Similar to the parallel construction of Chart
parser in [Henry, 1989] , the chart is distributed
among the processors on vertex by vertez basis to
acquire the parallelism. The term, vertez basis,
refers to the position in the sentence. Figure 2
shows the way that the processors are distributed
to the chart, using example sentence : The movie
1s a world event.

PE, PE, PE, PE PEs PE PE
| | | |
o—@ *—@

The movie is a

world event

Figure 2: Processor distribution

Processor PE,, takes charge of creating and ex-
tending edges of which left position is n. Figure
3 shows the process that processor PE, creates
the active edge (2) using the inactive edge (1) of
which left position is n.

np = det*n (2)

,—

S
® ® ®

PEq

Figure 3: Edge Creation

Figure 4 represents the process that processor
PE; communicates with processor PE; to get the
inactive edge (4) and uses it to extend the active
edge (3) and the inactive edge (5) is generated. .

The input is recognized to be grammatical
when there is at least one edge covering between
0 and n (where n is the length of word sequences
in the input). Such an edge appears at processor
PEy.

546

np == Np pp *(5)

Figure 4: Edge Extension

6 Parallel grammatically Tjj.
formed Input Analysis

After the parallel bottom-up parser (P-By
parser) detects that the input is not grammat;i.
cal, parallel edge-completion process (P-EC pro-
cess) and parallel augmented top-down parser
(P-ATD parser) get start to find all interpreta-
tions of the ill-formed input. P-EC process pro-
duces some other edges which are not generated
in P-BU parser due to the restriction of left-to-
right order. The distribution of processors in P-
EC process is the same as used in P-BU parser.
That is the processors are distributed among ver-
tex by vertex basis (positions in the input sen-
tence).

There are three actions in P-EC process. The
first action is to build active edges from inactive
edges acquired from BU parser using grammar
rules. The generation occurs only when the in-
active edge is not the leftmost element in the
grammar rule. For instance, for a grammar rule
(A — B C D), the active edge (A — B [C] D)
will be generated when C is found during P-BU
parser. Here, as our notation, [Cat] means Cat
has already found. The second action is to ex-
tend active edges acquired from P-BU parser us-
ing inactive edges. The extension in the original
chart parsing is to extend active edge from left-
to-right in RHS but the extension in this process
occurs to active edge to extend one which is not
the leftmost in RHS. For instance, for an active
edge (A — [B] CD) will be extended to get
(A= [B)C[D]) when D is found during P-

Lr'\

ot SN j
D U N .
B ULy Rvs SUPREIY o S BIY SY IR

Wt i o ek RN O A ‘.

BU parser but (A — [B] [C] D) is not gener-
ated because it has already generated during BU
parser.

The last action is to extend the active edge
acquired from two actions above. The action will
occur to any element remaining in RHS with no
restriction of left-to-right order. For instance,
for an active edge, (A — B [C] D E), the action
will extend D or E or both of them.

Top down parser can be viewed as a searching
process using the information (generated edges)
acquired from P-EC process. The searching pro-
cess forms a tree of states whose root is initial
state. The notation of each state is described in
the form of < hole:N err:M need CatList; from
Sy to By, ..., CatList; from S; to B >, where
CatList; is a list of categories; Sy, By, ..., Sk, Ex
are positions in the input(sentence); (CatList;
from S; to E;) means CatList; is needed between
S; and E;; N is the total number of categories in
CatListy ... CatList); M is the number of errors
occurring before reaching this state.

The initial searching state is < hole:l err:0
need [S] from 0 to n >, n is the final position in
the chart (the length of the input). The parser
uses active edges and inactive edges generated in
EC process to make progress of searching.

Top down parser occupies five rules to find er-
rors in the input sentence. These rules is similar
to ones defined in [Kato, 1991] as shown in table
1 and 2. The top-down rule allows to refine a
need into more precise one, using a rule in the
grammar, that is it goes one level down in parse
tree. The aciive fundamental rule allows a need
to be refined with an active edge to be a more
refined state. The garbage rule, unknown word
rule and empty category rule are used to find re-
spectively an added word, an unknown word and
a deleted word in the current state.

A state corresponds to a task of searching. The
searching process starts from initial state and af-
ter each application of a rule, a new state(task)
may be generated. The five rules are the ba-
sis routines in each processor. When some new
states(tasks) are produced in any processor, one
of them is done in the current processor, while

Top-down rule:

< hole: N err: M [C;...Cs;] from Sy to By,

..., Csy from S, to E, >
Cl — RHS

< hole: N + (length of RHS) — 1 err: M
[[..RHS...Cs;] from Sy to Ey, ... >

Active Fundamental rule:

< hole: N err: M [...Cs1,C1,Cs12..]
from s; to ey, ... >
< C; from S to F needs Cs; from S; to Ej,
...,Csy from S, to £, >

< hole: N + Z(length of Cs;) — 1 err: M
Cs;; from s; to S, Cs; from Sy to By, ...,Cs,
from S, to E,, Csy3 from Ftoep, ... >

Table 1: Augmented Top down rules(1)

others will be distributed to processors which are
idle. A processor manager is established to con-
trol the task distribution. Other processors, we
called them working processors, send requests to
the processor manager when they are idle and if
there are some tasks in the queue of the proces-
sor manager, tasks in the top of the queue will
be sent to those working processors. The task
distribution occurs recursive until the queue is
empty.

7 Experimental Result

As a preliminary experiment, the parallel ver-
sion of chart parsing is implemented on Paral-
lel Inference Machine (PIM), which is a loosely-
coupled system developed under the Fifth Gener-
ation Computer Project (ICOT) in Japan. The
language used on the machine is a practical con-
current logic programming language named KL1.

Garbage rule:

< hole: N err: M [C)...Csy] from s to ey,

. >
< Cj from S to F; needs nothing >

< hole: N —1err: M +(S; — s1) Cs; from E)

toe;, ... >

Unknown word rule:

< hole: N err: M [Cy...Cs;] from s; to eg,

.2
< C; from s; to s; + 1 needs nothing >

< hole: N —1err: M+4+1Cs; from sy +1 to ey,

. >

Empty category rule:

< hole: N err: M Cs; from s to s, Cs; from s;

toeg,... >

< hole: N — (length of Csy) err:
M + (length of Csy) Csy from sz to ez, ... >

Table 2: Augmented Top down rules(2)

The efficiency of the system is tested on 1-16
processors, using the set of 162 Thai grammar
rules which are built based on Thai grammatical
structure in [Panupong, 1984]. The length of the
input ranges from three words to sixteen words
for the grammatical input case and from nine
to seventeen words for the ill-formed input case.
Figure 5 shows the analytical time and speedup
rate of the tested grammatical inputs. We can
observe that there are consistent speed-ups in the
range of 2-3 over one processor’s time in gram-
matical case. The longer the input is, the larger
the speedup rate is. Note that the number of
processors used in each analysis corresponds to

548

the length of the input. We have also considereq
and implemented another version of the Parser
with more fine-grained parallelism, that g the
processors are not only distributed among Vertex
by vertex basis but there is no benefit obtaineq
owing to the large cost of communication.

Calculation Time (Correct Scntences)

450

T T T T T T 71—
400 b= ‘One?‘" .B_.' +
Multi Processor. - : :

Time (msec)

Length of sentence (words)

Speed up (Correct Sentences)

Speed up (times)

Length of sentence {words)

Figure 5: Analytical time and speedup rate
gained when the input is grammatical and has
a length ranging between 3 and 16 words

The experimental result of speedup rate in
analysing” ill-formed input is shown in figure
6 and 7. We tested the inputs with one or
two added-known-word-typed, added-unknown-

N

..
£

it B s st e N U,
gore: NS RENEIROY o - PR L AN S

=

|4

AR ORI 6~

word-typed, deleted-word-typed, substituted-
known-word-typed and substituted-unknown-
word-typed errors. Figure 6 shows speedup rate
during the analysis of a sentence of which length
is nine while figure 7 shows speedup rate of a
sentence consisting of seventeen words. We ob-
served that the system get a higher speedup rate
when the input is longer and has more errors.
In the case of an input with seventeen words, all
processors almost works without being idle and
the speedup rate to be almost linear. However,
in the case of an input with nine words, the an-
alytical time is not dominant. So we think it
is reasonably sufficient enough, in spite of this
speedup rate.

Experi | result with original sentence kength = 9

Speed up (times)

: Ondlddedblownwotd(s9uc~>l,5m¥ -+-
; H ; .One added unknown word (6.5 sec. 018 sec} X

TR A G he substiuied unknown word (5.4'3¢c.>1.7 sec.) A=]
H H ! : One deleted word (2.9 sec.>0.8 sec.y XK -

i i i I

Omsubwmnd iupwn wmdn 2sec: >‘+m¥(-6— -

‘ . .
IS S e :‘~~-~~-~'.-‘»-»--~--'-~---~»~<~---'lmmva"-'»-‘
; : H ‘ : ;
.

0 2 4 [8 10 14 16

Number of processocs

Figure 6: Speedup rate in analysing an ill-formed
input with one error

8 Conclusion

Some Techniques in constructing parallel chart-

based robust parser are proposed. The prelimi-.

nary experiments are done to test the efficiency
of the parser. The experimental result shows
that the efficiency of the system is almost lin-
ear speedup rate when the number of processors
used is from 1 to 16. Good load balance is ac-
quired in this small configuration. We are on
way to implement and test the idea on a large
number of processors.

549

Experimental result with original seatence length = 17

Speed up (times)

7" Two substituted known words (92 min,->6 min.) -
1 Twg added knbwn words (19 min=>75 sec.y -
" Two addéd unknown words (T8 mini>8Y sec.y "X
Two substituted unknown worils (6 min:>2S secY & -
: Twoddieted words (4 min->20 sec.§ -)(-

10

Number of processors

Figure 7: Speedup rate in analysing an ill-formed
input with two error

Finally, This work is a semantic-free, grammar
independent analysis with context free grammar
but we think it is important to understand the
limits of recovery strategies that are based en-
tirely on syntax and which are independent of
any particular grammar, although the ultimate
solution to the problem of processing ill-formed
input must take into account semantic and prag-
matic factors. The chart is the flexible and
explicit representation and facilitates not only
the extension in ill-formed paradigm but also
the extension for semantic analysis in parallel
paradigm as our further work.

Acknowledgement

We would like to thank ICOT for providing ac-
cess to Parallel Inference Machine(PIM) and giv-
ing us the opportunity to conduct this research.
We would like to thank K.Susaki who helps us
in setting the machine and also gives us many
useful comments. We also would like to thank
M .Koshimura who helps me in some useful tech-
niques during constructing the system. Finally,
we would like to thank T.Tokunaga and our lab's
members who give us many useful comments.

References

[Carbonell and Hayes, 1983)
Carbonell, J.G. and Hayes, Philip J. 1983. Re-
covery strategies for parsing extragrammatical
language. American Journal of Computational
Linguistics 9:123-146.

[Grishman and Chitrao, 1988] Grishman, Ralph
and Chitrao, Mahesh 1988. Evaluation of a
parallel chart parser. In Second Conference on
Applied Natural Language Processing, Austin,
Texas. Association for Computer Linguistics.
71-76.

[Hayes and Mouradian, 1981] Hayes, Philip J.
and Mouradian, George V. 1981. Flexible
parsing. American Journal of Computational
Linguistics 7(4):232-242.

[Heidorn, 1982) Heidorn, G.E. 1982. Experience
with an easily computed metric for ranking al-
ternative parses. In Proceeding of 20th Annual
Meeting of the ACL, Totont, Canada. 82-84.

[Henry, 1989] Henry, S. Thompson 1989. Chart
parsing for loosely coupled parallel systems.
In International Workshop on Parsing Tech-
nology. Carnegie Mellon. 320-328.

[Jensen et al., 1983] Jensen, K.; Heidorn, G.E;
Miller, L.A.; and Ravin, Y. 1983. Parse fit-
ting and prose fixing: Getting a hold on ill-
formedness. American Journal of Computa-
ttonal Linguistics 9(3-4):147-160.

[Kato, 1991] Kato, Tsuneaki 1991. Yet another
chart-based technique for parsing ill-formed
input. In Natural Language Processing. Infor-
mation Processing Society of Japan. 83-100.
in Japanese.

[Kwasny and Sondheimer, 1981] .
Kwasny, S.C and Sondheimer, N.K. 1981. Re-
laxation techniques for parsing grammatically
ill-formed input in natural language under-
standing systems. American Journal of Com-
putational Linguistics 7(2):99-108.

[Meknavin et al., 1993] Meknavin,
Surapant; Theeramunkong, Thanaryk, ang
Hozumi, Tanaka 1993. Parsing ill-formeq in-
put with id/ip rules. In The Fourth Intern,.
tional Workshop on Natural Language Unge,.

standing and Logic Programming(NL ULPy)

[Mellish, 1989] Mellish, Chris S. 1989. Some
chart-based techniques for parsing l-formeq
input. In Proceeding of 27th Annual Meeiing
of the ACL. 102-109.

(Panupong, 1984] Panupong, Vichin 1984. T3,
Structure of Thai: Grammatical System
Ramkamhaeng University. in Thai language.

[Schank et al., 1980] Schank, R.C; Leboeitz, M..
and Birnbaum, L. 1980. An integrated under:
stander. American Journal of Computationg]
Linguistics 6(1):13-30.

[Simpkins, 1990] Simpkins, Neil K. 1990. Chart
parsing in prolog. New Generation Computer-
ing, An international Journal 8(2):113-138.

[Trehan and P.F., 1988] Trehan, R and PF.,
Wilk 1988. A parallel chart parser for the
committed choice non-deterministic logic lan-
guages. In Logic Programming 1, Proceedings
of 5th International Conference ans Sympo-
stum. MIT Press, Cambridge, Mass. 212-232.

[Weischedel and Black, 1980] Weischedel, R.M.
and Black, J.E. 1980. Responding intelligently
to unparsable inputs. American Journal of
Computational Linguistics 6(2):97-109.

[Weischedel and Sondheimer, 1982] Weischedel,
Ralph M. and Sondheimer, Norman K. 1982.
An improved heuristics for ellipsis processing.
In Proceeding of 20th Annual Meeting of the
ACL, Totont, Canada. 85-88.

[Winograd, 1983] Winograd, T. 1983. Lan-
guage as a Cognitive Process, volume 1:Syn-
tax. Addison-Wesley. chapter 3, 116-128.

EPRPTSRRRL R T S NI UL

