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ABSTRACT

Analysis and generation are the two main aspects in
the natural language processing. In this paper we sur-
vey some of the progress made towards natural lan-
guage analysis (parsing) and generation. Particularly,
we consider syntactic analysis and present two fre-
quently used parsing algorithms, namely Chart and
GLR parsing algorithms. Then we go on to tell the
importance of context sensitiveness in syntactic analy-
sis by surveying probabilistic parsing methods, which
are some of the recent developments made in this di-
rection. In the second part of this paper we first give a
brief survey on natural generation researches and dis-
cuss the future research direction.

Part I:
NATURAL LANGUAGE
ANALYSIS

1 INTRODUCTION

The idea of natural language processing emerged with
the advent of the electronic computer. The pars-
ing (syntactic analysis) and generating natural lan-
guages began with the formal linguistic theory devel-
oped by N. Chomsky who classified languages into four
classes: unrestricted languages, context-sensitive lan-
guages, context-free languages and regular languages.
These languages are produced by applying rewriting
rules, or otherwise called production rule, in the form
of @ — f§ in which a string @ is rewritten as another
string 8. Chomsky poiuted out that context-free gram-
mar (CFG) alone is not enough to specify a natural
language, and he insisted on the necessity of context
sensitiveness. However from the point of parsing and
generation, it is very difficult to device an efficient al-
gorithm for context-sensitive grammar. Recently, Gaz-
dar et al.. advocate the power of context-frce gram-
mar in covering broad range of natural languages [17}.
As many efficient algorithms have been developed for
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context-free grammars, most natural language process-
ing systems use context-free grammars. Figure 1 is a
sample of English context-free grammar.

In this paper we focus on the most important parsing
algorithms, namely Chart [30] and GLR parsing algo-
rithm [65), which have been frequently used in practical
natural language processing as well as speech recogni-
tion.

Knuth developed a LR parsing algorithm [33] which
could parse an input sentence deterministically and ef-
ficiently, but the input sentences were limited to the
ones generated by a proper subset of CFG. Tomita
et al., extended Knuth’s LR parsing algorithm to han-
dle general CFGs, which is called GLR parsing algo-
rithm [65].

To make parsing algorithms robust, they must be
able to handle ill-formed sentences with omitted words.
unknown/misspelled words. extra noise words, redun-
dancy, etc. We will explain the method to han-
dle these ill-formedness based on Chart parsing algo-
rithm [45, 29, 43].

In general, these parsing algorithms might produce
a tremendous amount of parsing results (parsing trees)
for a long input sentence. However only a few of them
are plausible results from the semantic point of view.
Recently, many researchers pay attention to statistical
methods to select probable parsing results. For this
purpose, probabilistic grammar [66, 68, 16] has been
used. In connection with GLR, we will discuss the
stochastic LR parsing to compute the probable pars-
ing results. For the simplicity, we avoid the epsilon
rule (null production such as X — ¢€) in the following
discussions.

(1) S — NPVP (8 n — I

(2) S — SPP 9) n = “man”
(3) NP — n (10) n —  “park”
(4) NP — detn (11) v —  “saw’
(5) NP — NPPP (12) det — “a”
(6) PP — pNP (13) det — *“the”
(7) VP —- vNP (14) p —  “in"

Fig. 1 A sample of English context-free grammar
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2 CHART PARSING ALGORITHM

Chart parsing algorithm [30] have been used broadly.
The algorithm uses a data structure called chart as
a book-keeping storage for all the information pro-
duced while parsing. The information in the chart
is referred to avoid doing redundant works. This is
essentially similar to the purpose of items in Earley’s
algorithm [14]. Hence, the time complexity of pars-
ing a sentence of length n is restricted in the order of
n? for general CFGs as in the case of using Earley’s
algorithm.

The information kept in the chart are divided into
a set of active edges and a set of complete(inactive)
edges. A complete edge represents a constituent that
has been successfully parsed and completed. An ac-
tive edge represents a constituent with some elements
called remainder left to be satisfied. In this paper, we
specify an “edges” in chart algorithm as in the exam-
ple below. The elements after the dot represent the
remainder. For example, [S — NP - VP, 0, 1] repre-
sents an active edge of constituent S starting at posi-
tion 0, ending at position 1, which has already found
its NP, and still needs a VP to be completed. [S —
NP VP ., 0, 4] is an example of a complete edge whose
all elements have been found.

Chart provides a very general framework to natural
language analysis. In fact, Earley’s algorithm can be
viewed as a specialization of Chart parsing algorithm
which proceeds in the top-down manner. For com-
parison, in this section we will discuss the bottom-up
version of Chart parsing.

Now we will give a left-to-right bottom-up Chart
parsing algorithm. In the following, a,(8,v are a se-
quence of terminal and/or nonterminal symbols, and
A,B.C are nonterminal symbols. S is a special symboal
representing the start symbol.

Input wywy.. wy,
Output a chart

Algorithm!
Fork=0ton—-1do

(2) For each entry C — w4, in the lexicon, span
an inactive edge [C — w41, k, k + 1] between
positions k and k+ 1
Then for each inactive edge between positions j
and k+1(j < k+1) [B = v, j, k + 1], do the
following until no new item can be created:

(b) for each rule A — B, span an inactive edge [A —
B jk+1)

(c) for each rule A — B f3, span an active edge [A —
BB, jk+1]

(d) for each active edge starting at position i, ending
at position j and having B as the leftmost element
of the remainder with form [A — a- B , 1, j], create
an inactive edge [A — a B -, i,k + 1] between
positions z and & + 1.

'In this case eliminations of epsilon rule makes the fol-
lowing descriptions a slightly longer one.
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(e) for each active edge starting at position 7, ending
at position j and having B as the leftmost element
of the remainder with form [A — o B g, i,j],
create an active edge [A — a B -8, ¢, k+1] between
positions 7 and k + 1.

If we find an edge of the form [S — «a-,0,n], then
accept else reject.

Note that step (b) and (d) generate new inactive
edges which will be in turn applied with step (b)-(e).
The loop will be done until no more new item is gen-
erated.

In the above algorithm, (a) is called scanner oper-
ation, (b) and (d) is called completion operation and,
(c) and (e) is called predictor operation.

To understand the algorithm more clearly, let us
consider parsing the input sentence “I saw a man in
the park”™ using the grammar in figure 1. Bottom-up
Chart parsing will proceed as follows.

k=0,w; =TI
Apply (a) to w,
(1) [n—- “I" -, 0, 1]
Apply (b) to (1)
(2) [NP = n -, 0, 1]
Apply (c) to (2)
(3) [S— NP - VP, 0, 1]
(4) NP - NP - PP, 0, 1]
k=1,w; = “saw”
Apply (a) to w,
(5) [v — saw -, 1, 2]
Apply (c) to (5)
(6) [VP - v-NP, 1, 2]
k=2w; = “a"
Apply (a) to wy
(7) [det — a -, 2, 3]
Apply (c) to (7)
(8) [NP — det - n, 2, 3]
k=3, wy = “man”
Apply (a) to wy
(9) [n = “man” -, 3, 4]
Apply (b) to (9)
(10) [NP — n -, 3, 4]
Apply (c) to (10)
(11)[S — NP - VP, 3, 4]
(12) [NP — NP - PP, 3, 4]
Apply (d) to (8) & (9)
(13) [NP — detn -, 2, 4]
Apply (c) to (13)
(14) [S = NP - VP, 2, 4]
Apply (c) to (13)
(15) [NP — NP - PP, 2, 4]
Apply (d) to (6) & (13)
(16) [VP — v NP -, 1, 4]
Apply (d) to (3) & (13)
(17)[s — NP VP -, 0, 4]
Apply (c) to (15)
(18)[S — S - PP, 0, 4]

Continuing in the same way, the rest of the input would
be analyzed as a preposition phrase (PP) which is rep-
resented by the following edge.




(19) [PP — p NP -, 4, 7]
Then this edge would be used to create the following.
Apply (d) to (15)&(19)
(20) [NP —» NP PP -, 2, 7]
Apply (d) to (18)&(19)
(21)[s - SPP -, 0, 7]
Apply (d) to (6)&(20)
(22) [VP - v NP - , 1,7
Apply (d) to (3)&(22)
(23)[S — NP VP -, 0, 7]
As two edges of the form [S — a:, 0, 7] are gener-

ated, the input is accepted as a correct sentence with
syntactic ambiguities.

Fig. 2 The chart of parsing “I saw a man in the park”

Simply stating. bottom-up Chart parsing is started
by constructing inactive edges corresponding to the in-
dividual words and their categories. If there are more
than one category for a word, all edges corresponding
to all of its categories will be constructed. Then the
algorithm tries to construct larger constituents from
those inactive edges by matching them with CFG rules
or by merging them with active edges. For example,
the inactive edge (1) is matched with the rule NP — n
in the grammar to construct the active edge (3), and
the inactive edge (9) is merged with the active edge
(8) to construct the inactive edge (13). If at last some
edges of the category S are spanned from position 0
to position n, the input would be parsed as a correct
sentence.

A chart can be viewed as a graph where each vertex
represents a position in a sentence and each arc linking
vertices represents an edge. A visualized version of
chart is shown in figure 2.

The bottom-up and top-down strategies have dif-
ferent advantages. Since a bottom-up strategy starts
by looking at the input and then building up the
larger structures, the structures that cannot be pro-
jected down to the input words will never be built. On
the other hand, because a top-down strategy begins
by looking for a sentence and then searching for its

substructures, the structures that cannot be projected
up to the structure of a sentence would not be con-
structed. Mixing both strategies in a proper way can
achieve more efficient parsing [67].

3 GLR PARSING ALGORITHM

The LR(k) parser [33], is one of the most efficient
shift/reduce parser based on rightmost derivations. It
can parse deterministically and efficiently any input
sentences generated by a LR(k) grammar which is a
subset of CFG. Tomita extended the LR(k) parser to
handle a general CFG in a breadth-first manner [65].
The Tomita’s algorithm is known as one of the most
efficient generalized LR (GLR) parser. Empirically,
Tomita's algorithm is faster than Chart algorjthm. In
this section we will give a brief introduction of Tomita's
algorithm with an example and discuss some of the
problems.

GLR parsing algorithm uses a stack and a LR ta-
ble constructed from general CFG to guide the pars-
ing process. All the necessary predictor operations are
compiled into a LR table in advance. LR table con-
struction algorithm can be found in [2]. An example
of a LR table of figure 1 is shown in figure 3 which
consists of two fields, an Action field and a Goto field.

Action field | Goto field
State [det] n [ v ]| p | $ [NP|PP[VP]S
0 |sh3]| sh4 2 1
1 shG |acc 5
2 sh7] sh6 918
3 sh10
4 re3| red {re3
5 re2 |re2
6 sh3| sh4 11
7 sh3| shd4 12
8 rel |rel
9 red | red |red
10 red | red4 |red
11 re6 [ re6/ [ re6 9
sh6
12 re7/ | re? 9
sh6

Fig. 3 A LR table for the grammar in figure 1

The parsing actions are determined by state (the
row of the table) and a look-ahead preterminal® (the
column of the table). Here, § represents the end of an
input sentence. The “shN" in some entries of the Ac-
tion field indicates that the GLR parser has to push a
look-ahead preterminal on the stack and shift to “state
N". The symbol “reN” indicates that the parser has to
pop several vertices (corresponding to right hand side
of the rule numbered “N™) from the top of the stack
and then goes to the new state determined by Goto
field. The symbol “acc” completes parsing success-
fully. If an entry contains no operation, the parser will
detect an error. The LR table in figure 3 has conflict
actions in state 11 and 12 of column “p” with both

2Preterminal is a grammatical category of a terminal
symbol

Session lI: Language Technology and Science




44

a shift and a reduce action. When GLR parser en-
counters a conflict, every conflict action is carried out
simultaneously, but the vertex created by the shift ac-
tion remains inactive as long as active vertex ? exists.

GLR parsing algorithm works with a stack called
graph-structured stack (GSS) and a LR table by push-
ing or popping a pair of vertices each of which corre-
sponds to a partially parsed tree and a state.

A GSS is initialized by pushing a state 0 in stage
Uy, which becomes the root vertex of the GSS with the
first word w, as a look-ahead word (scanning word).
An input sentence is parsed stage by stage from left to
right thus changing the GSS.

Upon scanning the 7+ 1st word w;4, as a look-ahead
word, the parsing algorithm carries out the following
four actions in stage Uj.

Reduce : The parser pops twice the number of ver-
tices (corresponding to the right hand side (rhs)
of the production rule specified by the reduce ac-
tion) from the top of the stack and then pushes
a pair of vertices in the stage U;, namely a Goto
state and a partially parsed tree created by the
reduce action.

Shift . Both a look-ahead word w;,, and a state is
pushed in Ui;y. The state pushed on the top of
the stack is determined by the shift action. Note
that the newly created state vertex in Uj4, is not
active until there is no active vertex in Uj;.

Error : The vertex with error action will be truncated.
Accept : Parsing process will end with success.

In case of Shift and Reduce, a pair of vertices is
pushed onto the GSS and edges are formed from the
new vertex to its parents. If there exists a top vertex
with the same state, they will be merged into one. The
vertex after merge will have sevccal parents. Merging
vertices with the same state prevents from duplicated
processing in the later stage.

Only after every vertex in the stage U; has been pro-
cessed, the parser proceeds to the stage U4, scanning
the next word w;;2. What kind of actions (shift; re-
duce; accept; error) are to be carried out is determined
by the top vertices in U;,.,, LR table, and the preter-
minal of the scanning word w;4».

Let us consider the grammar in figure 1 and an input
sentence “I saw a man in the park.” GLR parsing will
proceed as follows. o and O represents a state and a
partially parsed tree respectively. The o represent an
active state.

At the beginning, the GSS contains only one vertex
with state 0 in the stage Uy. By looking at the action
table as shown in figure 3-1, the next action “shift 4
(sh 4)” is carried out.

uo

[ ] (sh 4)

L} L]
L) 1]
L] 1
i 0
1 1}
H !
Next word = 'a’

3« Active vertex” means there are some action(s) on the
top of the stack.
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On shifting the word “I”, a partially parsed tree ([n,
“I"]) corresponding to the shift action is created and
is pushed onto the GSS along with the state vertex.
The parser enters into the stage U;. The next action
“reduce 3 (re 3)” is determined by the action part of
the LR table, because the state at the top is 4 and the
preterminal of the next word is “v”,

ruo Ul |
i . !
P00 4
| 00— i (=) 0(n'T)

Next word = "saw’

During the reduce action, a pair of vertices from the
top of GSS are popped and temporarily the state of the
top of GSS becomes 0, which will determine the next
state by referring Goto field of NP. A new partially
parsed tree (1) is created, which is pushed onto the
GSS along with the state 2.

tuo!  ur

L ] L]

| 2

! O——0O—® ! b7 1 [NP (0)]

Next word = *saw'

After executing shift 7, the GSS will become,

ruor Ut o+ U2

) 1} ) ]

V011 2 12 7.

\ O+ 0O—O0—0—® ;| (sh3) 2 (v ‘saw’}
Next word = °a’

After executing shift 3, the GSS will become,

¢+ Uo Ul U2 u3

] 1 2 2 7 3 3 !(sh 10)
: I ’

]
t
'
.
.
[

3 [det *a’})
Next word = "man’

After executing shift 10 the GSS will become,

ul u3 U4

3 3 4 10

(re 4)
4 (o 'man’ )
Next word ='in’

The next action reduce 4 is carried in a similar way
as explained before and the resultant GSS will become,

: Ul : Ul : u2 : u4 '

L} ’ 1 . 1

L] ’ L} v B L}

' 0 ., 1 2 .2 7.4+ 5 12 ! (re TMsh 6)

] : ) D c L} D : 3 D l Ll

: ’ - : S[NP (34)]
Next word ='in"

At this point, a conflict with reduce 7 and shift 6
occurs and both should be executed.

Shift 6 is executed at first and pushes a pair of ver-
tices in stage Us. Note that this vertex becomes inac-
tive until there is no reduce action in stage U;. In the
GSS below, the vertex with state 8 is still active and
the action reduce 1 is executed. The resultant GSS is
shown below.




(=]

k)
L}
~
oc
£)

6 {p 'in'}
Next word ='in’ 7(VP (29)]
RLEC TR | R us Us
L] + .
V01 202 7.5 12,6 6
)
L}

(sh 6)

:

Next word ='in’ 8[S (M)

The action shift 6 of the vertex in stage Uy .is exe-
cuted and merge operation is carried out, since there
already exists the same vertices in stage Us.

' U ur w2 us +US

(sh 3)

(=]

Next word ='in '

The parsing process continues in this way and shifts
the words ’the’ and 'park’, and start recognizing the
final word '$’. We skip those steps and show the final
steps of GSS as below.
U0 Ul w7

" : '
V0 2,15 8
! n (re 1)

: 15 (VP (113)]
14 1

(acc)

Next word ='$'

(=]

16 [S (115))

Next word ='$’

packing

c

0 u7

[} t 1
1] . 1]
L] 1] 1]
V0 L1701
1] 1]
1) 1

O—iD—@ | (acc) 17[(S (812)(115)]

In the above trace, packing of trees is carried out
for vertex 14 and 16 creating 17[S(8 12) (1 15)], since
they share the same states immediately to its right
and left. Packing suppresses the expansion of local
ambiguities. If a sentence has many local ambiguity,
the total ambiguity would grow exponentially. Thus
packing gives efficient data structure for representing
parse trees.

The Tomita's GLR parsing algorithm mentioned
above is called simplified LR (SLR) parsing algorithm.
There are other improved algorithms called canonical
LR (CLR)and LALR parsing algorithm. CLR parsing
algorithm is slightly efficient over SLR but, consumes
more space for the LR table. LALR parsing algorithm
uses more compact LR table than the one of CLR. In-
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terested reader should refer to Aho [2] for CLR and
LALR parsing algorithms.

The time complexity of Tomita's algorithm becomes
O(n?*1) where p is the length of the longest production
in the grammar, and n is the length of the input sen-
tence. If the given grammar is in the Chomsky normal
form, then the time complexity will become O(n®). Ac-
cording to Shann (58], the efficiency of Tomita’s GLR
over Chart parser comes from the packed forest repre-
sentation, and according to Kipps [31]. inefficiency of
the GLR parser is in its duplicated traversals of GSS
during reduce actions.

GLR parser is also used in speech recognition re-
searches [65, 32). In this case, phonemes correspond
to preterminals of LR table and a look-ahead preter-
minal/phoneme becomes an expected phoneme to be
examined next in the results obtained from acoustic
data and thus enable to limit the search space.

Morphological analysis of Japanese is very different
from that of English, because no space is placed be-
tween words. This is also the case in many Asian lan-
guages such as Korean, Chinese, Thai and so forth.
In the Indo-European family, some languages such as
German have the same phenomena in forming complex
noun phrases. Processing such languages requires the
identification of the boundaries of words in the first
place. This process is often called segmentation which
is one of the most important tasks of morphological
analysis for these languages. Recently, Tanaka et al.,
proposed a miethod to integrate the morphological and
syntactic analysis of these languages in the frame work
of GLR [63]. In this method, morphological constraints
are incorporated in the LR table along with syntactic
constraints in CFG.

All of these algorithms mentioned above are based
on breadth-first strategy and are easy to be run in
parallel. The problem of GLR parsing algorithm is
that it consumes a lot of memory space in the worst
case. However, empirically it will not be a big prob-
lem, because of the recent rapid progress in memory
integration technology.

4 ANALYSIS OF ILL-FORMED
SENTENCES

As true natural language usage can be filled with many
types of errors. in order to achieve a practical interac-
tive natural language understanding system we have to
provide methods for the system to recover from those
errors reasonably. The system should attempt to un-
derstand what users intend to say like the way human
do when they communicate to each other. Many algo-
rithms for parsing ill-formed input are based on using
chart [45, 29, 43)].

Although parsing ill-formed sentences must take
into account semantic and pragmatic factors, Mellish
explores purely syntactic and grammar-independent
techniques enabling Chart parser to recover from sim-
ple kinds of ill-formedness in textual inputs. In his
method, the basic strategy is to run a bottom-up
parser (BU phase) over the input and then, if this fails
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to find a complete parse, to run a top-down parser (TD
phase) over the resulting chart to hypothesis possible
complete parses.

CINADN | AN

the 1gmdener 2co|locls 5 manure [ the autumn

o 4 5 8 ?

Fig. 4 Before Error Focusing

Let us explain Mellish’s method briefly using fig-
ure 4. By BU phase, inactive edges, NP from 0 to 2,
VP from 2 to 4 have been formed. But it fails to find
a complete edge S between 0 and 7 due to the lack
of inactive edge between 4 and 5. In order to find as
many inactive edge as possible from 5 to 7, the BU
phase skips the word between 4 and 5, forming an in-
active edge NP from 5 to 7. After that, the TD phase
is activated to focus possible errors as follows.

(Need S from 0 to 7) (hypothesis)

{Need NP+VP from 0 to 7)  (by top-down rule)

(Need VP from 2 to 7) {by fundamental rule with
NP found bottom-up)

(Need VP+PP from 2 to 7)  (by top-down rule)

{Need PP from 4 to 7) (by fundamental rule with

VP found bottom-up)

(by top-down rule) )

(by fundamental rule with

NP found bottom-up)

(Need P+NP from 4 to 7)
{Need P from 4 to 5)

This method can efficiently parse an ill-formed sen-
tence with one error. If multiple errors occur in the
sentence, the behavior is expected to worsen dramati-
cally. Kato [29] improved Mellish’'s method to process
the multiple errors efficiently. Meknavin [43] applied
this idea to ID/LP grammar rules to reduce the num-
ber of edges created in TD phase.

5 SCORING PARSING RESULTS
BY PROBABILITIES

Generally speaking, CFG parsing algorithms explained
above might produce many parsing results, out of
which we want to extract most plausible parsing re-
sults for semantic processing. Recently, probabilistic
CFG (PCFG) has been paid much attention to attach
scores to parsing results.

PCFG is a set of rewriting rules with probability
such as (4 — a,p), where p is a probability associated
with the rule. In PCFG, the following constraint must
be hold: The summation of probabilities of all produc-
tions with A on its lhs is equal to 1. Figure 5 shows
an example of PCFG. By the constraints of PCFG,
pPl+p2 =1, p3+p4+p5=1.p6 =1, p7 =11n
figure 5.

Part 1 Conference

(1) S — NPVP, »p1
(2) S — S PP, P2
(3) NP — n, p3
(4) NP — detn, p4
(3) NP — NPPP, »p5
(6) PP - P NP, pﬁ
(7) VP —= vNP, 7

eay
\ .
) S
.
0y
.
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.
. _u'
' . .
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aap”
]
’
0
’
-
~
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v
Z

g
<
N

man

Fig. 6 Probability of a parsing tree: pl x p3 x p7 x p4

Resulting probability of the parsing tree in figure 6
becomes, pl x p3 x p7 % p4. The parsing tree with the
highest score will be the most probable one.

In order to assign probability to each rule of PCFG,
we have to use a set of parsing trees and count the
occurrences of each rule in the parsing trees. After
the normalization, we can attach a probability to each
rule of PCFG. However, it is very difficult to get large
volume of correct parsing trees. Lari and Young [35]
give us a method for estimating probability from the
given raw text corpus, which is called Inside-Outside
method.

On using GLR to calculate the probability of a parse
tree, it forces us to delay the calculation of probability
until a reduce action is executed. Wright [68] proposed
a method of GLR parsing which uses a probabilistic
LR parsing table in which each action is associated
with a probability. Using the action probabilities in
the probabilistic LR parsing table, the probability of a
partially parsed tree is calculated whenever an action is
performed. Thus even in a shift action the probability
is calculated. The key idea proposed by Wright is to
give a method of distributing a probability in a PCFG
rule to shift and/or reduce actions in a LR table.

The problem with the above method is that the at-
tached probability to a CFG rule is always the same
regardless of the context. Consider the CFG rule as
NP — pronoun. This rule seems to be more frequently
used in the subject position than in the object position
in English. This rule should have higher probability in
the subject position than object position, but PCFG is
not sufficient to express this context sensitiveness [13].

Briscoe took the advantage of GLR parsing algo-
rithm to handle mild context-sensitivity. The right
context corresponds to a look-ahead preterminal. The
left context corresponds to a state of the top of the



stack after popping several vertices by the reduce ac-
tion. Therefore depending on the state after popping,
different probability might be assigned to the same re-
duce action in the LR table. This reflects the mild
(left and right) context-sensitivity. The probability is
simply calculated by the frequency of the execution of
each action (of LR table) in parsing a corpus?. Figure
5-3 shows a part of LR table given by Briscoe [7].

$ det n pron vt
0 sh 3 sh 2
(0.50) (0.50)

1] rel
(0.83)

2{ red re 5

(0.50)

3 sh 4

(1.00)

4] rel0 re 10 re 10
(3.11; (3.17; (3.11:
(6.11) (5.22) (5.11)

(X.YY) X: the state after popping

YY: attached probability
Fig. 7 A part of Briscoe's LR table

6 CONCLUSION & DISCUSSIONS

There are still many interesting issues in the field of
natural language parsing not mentioned above. In this
section, we will discuss some of them briefly.

One of the most active issues is parallel parsing. Ex-
ploiting parallel characteristic of independent tasks,
a parallel parser using a collection of processors can
achieve substantial speed-up over a traditional serial
parser. There are a variety of methods developed from
different points of view. Some of them explore exist-
ing (serial) algorithms and try to adapt them to paral-
lel parsing on certain hardwares or programming lan-
guages [38, 37, 62]. On the other hands. other methods
design new hardwares to accommodate certain algo-
rithms. There are also some researchers whose main
interest in parallel processing is not to improve the per-
formance of parsers but to simulate human language
processing with connectionist networks (15, 25]. More
references to papers on parallel parsing can be found
in [48].

Parsing free word order languages is another inter-
" esting issue. Several languages, e.g. Walpiri, Japanese,
German and Thai, exhibit significant word order vari-
ation. Using CFG to describe such languages is cum-
bersome because a numerous number of rules would
be needed to enumerate all possible configurations of
a constituent. Generalized Phrase Structure Gram-
mars(GPSG) [17] provides a solution to this prob-
lem by decomposing the grammar rules into Immedi-
ate Dominance (ID) rules and Linear Precedence(LP)
rules. Using ID/LP grammars, free word order lan-
guages can be easily and concisely described. How-

*Note that the probability attached to each action is
independent of PCFG.
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ever, low to combine the separate constraints together
in parsing becomes a problem. One obvious way is to
compile an ID/LP grammar into a CFG which can
then be parsed with any existing CFG parsing algo-
rithm. However, this approach yiclds a huge object
grammar which can degrade the parsing performance.
Shieber [59] presents an ID/LP direct parsing algo-
rithm by modifying Earley’s algorithm to use ID/LP
grammars directly. Meknavin et al. [44] improves
Shieber’s algorithm by compiling ID and LP rules into
generalized discrimination networks and Hasse dia-
grams, and using bottom-up chart algorithm instead of
Earley's. Another top-down approach of direct ID/LP
parsing is presented in [1].

All parsing algorithms mentioned in this paper are
concerned with only CFG. As described earlier, how-
ever, there are some languages which cannot be de-
scribed by CFG, called context-sensitive languages.
The attempt to handle such languages have led to in-
ventions of various grammar formalisms. Since cop-
ing with the class of fully context-sensitive grammars
is difficult and may not be required in practical nat-
ural language processing because of their extrane-
ous power, some are concerned with only so called
“mildly context-sensitive grammars” (Tree adjoining
grammars (TAGs) [26]. Lexical functional grammars
(LFGs) [27], on the other hand, have much more power
than CFGs and TAGs. Designing parsing algorithms
for all of these grammars is another interesting field of
researches [9)].

Finally, we would like to mention about the rela-
tion between logic programming language and natu-
ral language parsing. Pereira et al., discussed about
the advantages of using logic programming language
such as Prolog for natural language processing. In-
terested reader can refer to [56, 39, 55] for top-down
and bottom-up parsing in logic programming. Han-
dling of long dependency is another difficult task in
parsing. but most interested works have been based
on the logic programming. Interested reader should
refer to [54, 10, 9, 64, 3).

Part II:
NATURAL LANGUAGE
GENERATION

7 INTRODUCTION

As mentioned in Part I, natural language analysis is
the process in which the system extracts the semantic
meaning of the input text. The system may also be
required to infer the intentions of the speaker from the
text. On the other hand, natural language generation
is the process of generating the text from the semantic
content, which is represented in some semantic repre-
sentation. The generation system may also begin with
the communicative goals that the system is to achieve
by means of text.

Let us sec an cxample of the text generated by
Moore’s explanation generation system [47]. The sys-
tem is the dialog interface of the expert system that
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can suggest how to enhance a given lisp program. The
system, for example, produces the sentence below to
motivate the user to do an action:

You should replace (SETQ X 1) to (SETF X 1).

But the user may ask "Why?” instead doing the sug-
gested action immediately. If so, the communicative
goal that the system should achieve now is to persuade
the user that the suggested action is a good means of
enhancing the current program. Then the system gen-
erates the next utterance:

I'm trying to enhance the maintainability
of the program by applying transformations
that enhance maintainability. SETQ-to-SETF
is a transformation that enhance maintain-
ability.

Text generation requires two functions: content
planning and linguistic planning (see figure 8). The
function of content planning is to decide what to say
to achieve the given communicative goals. In the case
of the second utterance above, the contents are that
applying appropriate transformations can be a good
methods to enhance maintainability and that the sug-
gested action is one of the appropriate transfornations.
Content planning also includes content organization:
the decision on ordering the fragments of the contents
to maintain the coherence of the text. Coherence is an
important factor that affects how easily the hearer can
follow the unfolding text. The function of linguistic
planning is to decide how to say the intended seman-
tic contents. It includes choices of sentence structures,
words, conjunctions, referring capressions, etc.

communicative goals

knowledge base

plan library

content linguistic
planning planning

discourse model

grammar&lexicon

participants model

text

Fig. 8 A model of natural language generation

In the following sections, we overview the current
status of research on text generation. Then we point
out the major problems in this field, followed by future
directions. In this paper, we can refer only to a handful
of topics. For further references, readers would refer
to, for example, the books{11, 19, 52].

7.1 The resources

Generation systems employ various kinds of resources
as shown in the figure.
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Plan library
An utterance can be seen as an action or complex ac-
tions to achieve speaker’s communicative goals. There-
fore we can apply the Al techniques of action planning
to content planning. A plan library is a set of plan
operators, each of which consists of the definitions of
its preconditions and effects. For example, the plan
operator for the action inform may be defined as fol-
lows [4).
Action:
inform(Speaker, Hearer, Proposition)
Preconditions:
location(Speaker) = location(Hearer)A
intend(Speaker, know(Hearer, Proposition))A
know(Speaker, Proposition)
Effects:
mutually _know(Speaker, Hearer,
inform(Speaker, Hearer, Proposition))

Discourse model

Although the content fragments of the text could be
gathered using the plan library, the coherent order of
the fragments should also be considered. Most sys-
tems employ some discourse model as the constraints
on the coherent order of utterances. One method to
maintain coherenceis to extract general patterns of un-
folding text from text corpus and construct some kind
of content grammar. McKeown [42], Paris [51, 50] and
McCoy [41] take this approach.

Another distinguishing approach is to describe the
structure of text using rhetorical relations; in particu-
lar, Rhetorical Structure Theory (RST) [36] is applied
in many systems [21, 22, 57]. In RST, each segment
of text is related with one another in terms of their
functional relation, i.e. the role of the segments, such
as motivation, elaboration, etc (see figure 9).

Ntion

satellite

1)
[y

elaboration \

~ [}

. el
nucleus satellite T
segments

Fig. 9 An example of RST

Because of its description from the functional per-
spective, the definition of each rhetorical relation can
be seen as a plan operator. That is, the effects of an
operator correspond to the role of a segment in RST,
and the subgoals correspond to constraints on the sub-
segments. Moore’s explanation generator mentioned in
the above example uses the customized RST schemata
as the plan operators [47).

Another example of the system that considers both
goal planning and coherence maintenance is Cawsey’s
EDGE system [8]. Her system uses both the content
plan library and the dialog plan library.




Besides discourse model, the system should also
manage focus shift appropriately to maintain coher-
ence [60, 61]. Hovy proposes a method to apply the
constraints on the patterns of focus shift to planning
the rhetorical structure [21]. The focus shift con-
straints are also used in Moore's system.

Participants model

To decide the contents to convey, the system also
needs to consider what the hearer is supposed to know,
or not to know. This consideration also affects various
choices on how to say including referring expression.

Appelt’s KAMP system deals with participants
knowledge model using the possible world formalism.
The system plans utterances by inferring the effects of
them on hearer's knowledge, which can change dynam-
ically [4].

To manage the knowledge/belief model, it is impor-
tant to consider how to obtain the current state of the
hearer. A typical approach is to categorize the types of
the hearers, say ezpert or novice [49]. For dialog sys-
tem, one may take the strategy in which the system
tends to be reactive to the user’s queries rather than
to infer the user's knowledge deliberately [47]. In this
strategy, the system replies according to shallow infer-
ence and expects the user to ask follow-up questions
if the system’s answer is not sufficient. In Cawsey's
system, the user model is changed according to the
information the system obtains in dialog.

Ontological knowledge base .

In generation systems, knowledge base is the term t
refer to knowledge of basic facts and concepts shared
by both the system and the usex.

Grammar and lexicon

In linguistic planning, the system decides grammat-
ical and lexical choices. Systemic Grammar (SG) [18]
tends to be used as the description of linguistics re-
source because SG describes the grammatical and lex-
ical choice points and its alternatives explicitly. SG
is used in many systems [40, 53]. These systems im-
plements SG in different ways. The Nigel grammar
in Penman system is implemented as a set of proce-
dures (40}, while Patten’s system implements the gram-
mar as the production rules [53]. On the other hand,
Kasper studies how to implement SG in the formalism
of Functional Unification Grammar (FUG) [28]. and
Bateman shows how to translate SG to Typed Feature
Structure (TFS) [5].

7.2 PROCESS

As stated earlicr, text generation requires two func-
tions: content planning and linguistic planning. How-
ever, this does not necessarily means these two func-
tions are realized in separate modules and execnted
sequentially in this order.

The various kinds of decisions should be made dur-
ing generation process and they are dependent on one
another. Therefore, it is difficult to find an appropriate
order of decisions. Handling dependencies among deci-
sions has been one of the important research theme in
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natural language generation. The approaches to this
problem can be categorized into the following groups:

(1) fix the decision order in advance of generation pro-
cess,

(2) delay the decisions if necessary [46).
(3) change the decision order dynamically [20, 4],
(4) introduce the revision process [23, 24].

Many generation systems takes the first approach. Due
to the interdependencies among decisions, this does
not always produce a good text. The second approach
is a variant of the first. It delays a decision until all
the information necessary to made the decision is avail-
able. In the third approach, decision order is changed
dynamically during generation process. Each decision
module invoke other module by referring to the cur-
rent situation. One of the drawbacks of this approach
is that the control of the process tends to be compli-
cated. The forth approach introduces revision process
after the initial generation. In this approach, every
decision made in the initial generation is treated as a
tentative one, and they may be changed in the revision
process.

8 PROBLEMS

In this section, we discuss some of the important prob-
lems that natural language generation researches are
faced with.

Starting Point of Generation

We assumed that the generation system starts from
communicative goal of the speaker as shown in figure 8.
However, it is not the case for most of the current sys-
tems. Most of the systems start from some sort of
structured object, which has system dependent infor-
mation and representation. A few of them start from
numerical data, such as stock market data, weather
forecast data and so forth [6, 34). Many researchers
seem to have a consensus on that the start point of nat-
ural language generation should be speaker’s commu-
nicative goals [12], but there is no consensus on what
sort of information it should contain and how it should
be represented. This is one of the crucial problem in
the natural language generation research, that is, the
input to the system differs in each system. This prob-
lem makes difficulties in evaluating and comparing the
generation systeins.

Natural language understanding research does not
suffer from this problem. The start point is obviously
strings (a sequence of ASCII code !!) in their case.
However, they suffer from the problem in the end point
of the process, that is, the question “what is the out-
put of understanding?” This is the other aspect of the
input problem of natural language generation. The fo-
cus of natural language understanding research shifted
from morpho-syntactic analysis to semantic-discourse
analysis in 1980’s. Many important works in natu-
ral Janguage generation were done in the same period.
This is not a coincidence but a natural consequence.
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Evaluation of Qutput Text

In case of natural language analysis, one of the im-
portant issues is to resolve the various kinds of ambi-
guities, such as lexical, syntactic, semantic ones and
so on. Many theories and heuristics have been pro-
posed for disambiguation and their performance have
been evaluated. This is possible because the correct
answers for the inputs are fairly easy to give, thus the
categorical judgement of the correctness is easy task.
In case of natural language generation, however, in or-
der to evaluate the output text, we need a criteria to
evaluate texts in general. This is very difficult because
we can not judge which output is the best. There are
some researches in evaluation of texts in the field of ma-
chine translation, but they are still ongoing researches
and have not given remarkable results.

Large-scale Knowledge for Generation

As mentioned in section 7, natural language genera-
tion requires several kinds of resources. We need large-
scale resources in order to enlarge the coverage of sys-
tems. There have been several projects to build large-
scale knowledge resources for natural language process-
ing, such as EDR. They do not always contains all the
information necessary for natural language generation.
They tend to be analysis-oriented knowledge resources.
We need further research to find what kinds of infor-
mation is necessary to produce high-quality text and
to incorporate them into existing large-scale knowledge
resources. -

9 FUTURE RESEARCH
DIRECTION

Dialog

Research on dialog has been getting more and more
attention from the natural language processing com-
munity. However, much of the attention are paid to di-
alog analysis. In order to realize a better dialog system,
we need a good generation module as well as a good
analysis module. Dialog research is a rendezvous point
between natural language analysis and generation. We
need a tight relation between these researches.

Multi-media/Multi-modal Generation

Multi-media generation is one of the active research
themes in the field of natural language generation.
Many of them aim to integrate text with graphics and
sound. Key issues are:

¢ how to select the proper media depending on the
information type,

¢ how to synchronize the presentation of each infor-
mation.

Multi-media generation is an important technology for
human-machine interface, and also for dialog systems
and will be more active theme in near future.
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