
Annotation Process Management Revisited

Dain Kaplan, Ryu Iida, Takenobu Tokunaga

Department of Computer Science, Tokyo Institute of Technology
{dain,ryu-i,take}@cl.cs.titech.ac.jp

Abstract
Proper annotation process management is crucial to the construction of corpora, which are indispensable to the data-driven techniques that
have come to the forefront in NLP during the last two decades. This paper first raises a list of 10 needs that any general purpose annotation
system should address, such as user & role management, delegation & monitoring of work, diffing annotators’ work, versioning of
corpora, multilingual support, and so on. A framework to address these needs is then proposed. The explanation of the framework
is followed by an introduction of SLATE (Segment and Link-based Annotation Tool Enhanced), the second iteration of a web-based
annotation tool, which is being rewritten to implement the proposed framework.

1. Introduction
Corpus-based approaches have risen in popularity over the
last two decades in the field of natural language process-
ing (NLP); in many areas corpus-based approaches equal in
performance, or rival traditional rule-based methods. With
the increase in computational power and the advancement
and ease of use of machine-learning (ML) techniques, it is
no wonder that corpus-based approaches continue to gain
in popularity. In the late 1990s a sizable textbook (Man-
ning and Schuetze, 1999) was published attesting to their
merits, and even a decade before, research had appeared
pursuing such techniques (Charniak, 1993). Corpus-based
approaches also allow for more language and domain inde-
pendence within a model, important in today’s multilingual
world.
The advent of corpus-based approaches also meant that
the creation of corpora was required — corpus-based ap-
proaches are obviously impossible without them. The in-
dividual creation of custom tools for annotation tasks is
a tremendous investment of time and labor, which when
viewed in a wholistic manner shows how repetitive and
wasteful such an investment can be. These custom fitted
tools do of course address the demands of the project for
which they were born, but also because of this tend towards
inflexibility and disposability. Regardless of the problems
of interoperability that arise when different tools are used
with different data formats (something desirable when try-
ing to cross-test methods with different pre-existing data-
sets), a cycle forms of creating new tools for trivial tasks,
or perhaps even worse conforming and compromising an-
notation criteria to fit within the limits of an existing tool
made for a previous project, which impinges on the qual-
ity of the resource. Corpus-based methods will only grow
in scale and complexity, and so it is crucial the annotation
tool does not stand in the way.1

The bottom line is that corpus creation (and also manage-
ment) is time consuming enough without having to spend
more resources in battling the development of a custom
tool. In addition, previous studies have shown that the early
phases of a project are the most volatile (Marcus et al.,

1In addition, as data sets continue to grow in size and methods
mature, it will be necessary to compare them, meaning a standard-
ized format will also be necessary.

1993), resulting in rapid changes to the annotation schema.
This can also cause delays and cost additional resources if
the annotation tool is too rigid or otherwise unable to adapt
to the changes.
A survey (Dipper et al., 2004) proposed seven categories
desirable for any annotation tool: diversity of data, multi-
level annotation, diversity of annotation, simplicity, cus-
tomizability, quality assurance and convertibility. The goal
of these categories is to remove the obstacles outlined as
problems above. They are well thought out, but there is
one caveat to them: they are document-centric, or rather,
they simply do not address the bigger scope of managing
the annotation process. Furthermore, though they do raise
concerns about areas that need to be addressed, they do
not propose how these areas are to be tackled. In simple
corpora this may not be much of a concern, but in larger
projects – and as corpus-based techniques continue to grow
and advance so do the sizes of the corpora (Davies, 2009) –
it becomes a serious issue.
In order to create a tool suitable for use in the future, it is
important to pinpoint the needs of an annotation project.
In Section 3. we outline what we think these needs are,
and then in Section 4. propose a framework for addressing
them. We next introduce SLATE (Segment and Link-based
Annotation Tool Enhanced), the second iteration of a web-
based annotation tool under development that utilizes this
framework, geared towards being a possible solution. We
then conclude the paper and discuss future work.

2. Related Work
Over the years countless custom annotation tools have been
created to meet specific demands of various annotation
projects; more recent examples include (Stührenberg et al.,
2007; Russell et al., 2005). However, many more never see
the public light of day, because they were created behind
the scenes hastily and then disposed of. They were mostly
created because a tool did not exist that was capable of pro-
viding the feature set needed for development of the corpus
within a reasonable amount of time.2 A recent example in-
cludes Serengeti (Stührenberg et al., 2007), which has been

2Time to installation, learning curve to use the software, time
to understand if the tool can meet the project’s needs, etc. are all
factors in selecting an annotation tool.

3654

Tokunaga Takenobu
Proceedings of LREC 2010



developed for the specific task of anaphoric relations and
lexical-chains. Such solutions, however, are not generic; in
other words, though they may be quite ideal for one anno-
tation task, they may not readily adapt to other tasks, not to
mention the difficulties in data interoperability/interchange.
The problems with task-oriented annotation tools will grow
as corpus-based techniques do; a unified framework must
exist to allow the corpora to work with one another.
Some general-purpose annotation tools have also appeared
over the years (Asan and Orǎsan, 2003; Cunningham et
al., 2002; Dennis et al., 2003; Mueller and Strube, 2001;
Callisto, 2002). Some of these are more extensible than
others, some are discontinued, some include advanced fea-
tures for processing data for semi-automatic annotation.
PALinkA (Asan and Orǎsan, 2003) might be the easiest of
these to use, as it requires little setup, but has not seen an
update in more than four years and does not support many
of the key features we propose are mandatory for annota-
tion software moving forward. As corpus-based techniques
continue to flourish, allowing for layered annotations on the
same base dataset will be more crucial.
There is an existing framework for dealing with annotations
called ATLAS (Flexible and Extensible Architecture for
Linguistic Annotation) (Bird et al., 2000); but it is highly
generalized, and becomes quite complex for the rather sim-
ple task of textual annotation (that always involves span-
ning from one offset in a document to another). Further,
ATLAS is concerned only with annotations, not with the
broader picture of annotation process management. Thus
we have opted to base our approach on Segments and Links
(Takahashi and Inui, 2006; Noguchi et al., 2008), geared to-
wards text annotation; it is introduced with our extensions
in Section 4.3..

3. Annotation Needs
Creating corpora is becoming a serious endeavor; it is an or-
deal entirely separate from, and from some viewpoints sec-
ondary to, the technique that will utilize a given language
resource. Such a trend will only worsen as techniques, and
therefore the corpora they use, continue to grow in scale
and complexity.
Thus it is not only that the annotation system must be flex-
ible enough to accommodate a wide variety of annotation
tasks, but that it must also provide for a means to man-
age the tasks themselves. Otherwise, the creation of the
resources will hinder the development of the technique, the
reason behind why they were made.
Let us concretize the definitions of terms important for
defining annotation needs: annotation tasks, annotation
projects, and annotation systems. An annotation task has
a specific goal in mind, such as annotating all predicate-
argument dependencies in a set of raw resources, or identi-
fying all coreference-chains in a collection of news articles,
etc. An annotation task is more generally a type of annota-
tion work to be done, whereas an annotation project, is an
instance of that work. For example, if we wish to perform
two tasks on the same dataset, such as predicate-argument
dependencies and then coreference-chains, we should con-
sider these as two separate annotation projects, as well. An
annotation system is software that allows a user to create

annotation projects for annotation tasks.
Let us then specify what is needed from an annotation sys-
tem. (Dipper et al., 2004) proposed seven categories for
what is needed from an annotation tool, but they operate
mostly at the document-level. Our list of needs below fo-
cuses instead at a more macro, annotation project manage-
ment level. We therefore skip needs related only to the act
of annotation (such as appearance), though it is covered by
our framework introduced in Section 4..

(1) User and role management. Annotation projects are
too complex to have a single user type with no roles
assigned to them. The system must distinguish be-
tween annotators and administrators in order to pre-
vent annotators from unwittingly altering a key part of
the project they should not have access to in the first
place.

(2) Delegation and monitoring of work. The system
must allow for an administrator to assign/reassign
work to annotators, and to monitor their progress. It is
important to forestall an annotator falling behind due
to difficulties or other factors as it may also delay the
completion of the corpus if the work is not reassigned,
or the obstacle stopping the annotator not resolved.

(3) Adaptability to new annotation tasks. The system
must be flexible enough to easily accommodate a new
annotation task. If administrators cannot easily create
a new project, and define the annotation requirements
then the system will not be useful to them.

(4) Adaptability within the current annotation task.
During the lifespan of any given project, it often
meets with many changes, especially during the initial
phases of a project. It is crucial that the system allow
for the adjustment of annotation guidelines in such a
way as to (1) facilitate the correction of any already
annotated items by identifying those resources, and
(2) to have the flexibility to accommodate the changes
themselves.

(5) Diffing and merging. Creating a corpus often entails
the diffing and merging of data from multiple anno-
tators on a single resource to create a gold standard.
Annotator agreement is an important statistic in gen-
eral for corpora, but in order to have an end product, it
may be important to resolve any differences between
different annotators. The system must allow an admin-
istrator to diff all annotated resources with multiple
sets of annotations, and then to merge any differences
that are found. In the event that multiple sets of anno-
tations on the same resource are desired however, the
system should also not stand in the way.

(6) Versioning of corpora. A corpus is a product, an end
result. But just as any other product goes through life
cycles, so too may the corpus. In other words, after all
work has been completed (and the gold standard cre-
ated), there must be a way to package the result and
label it uniquely for use. After a release there are of-
ten fixes, amendments, etc. and these changes must be

3655



tracked so that an additional version can be released.
Without management of versioning, the “current state”
of the annotation project is all that is known; for large
projects, especially, it is important to identity mile-
stones or to “tag” a given state so that one may be able
to go back to it later. This way changes made after
the “tagging” will not unknowingly be included into a
release.







Figure 1: Higher layers access lower layers as a base for
more stringent annotation

(7) Extensibility in terms of layering. As corpora are
continuing to grow in size, it is no wonder that they
are also fundamentally becoming more complex. We
have seen recently the stacking, or layering, of cor-
pora upon one another. Attempts at diversifying a sin-
gle corpus with various types of annotations are on
the rise, such as the Discourse TreeBank on top of the
Penn TreeBank (Miltsakaki et al., 2004), or the NAIST
Text Corpus atop the Kyoto Text Corpus (Iida et al.,
2007). The system must allow for adding new layers
upon previous ones, seamlessly. Often the lower lay-
ers are directly referenced by the new ones. It must al-
low for this as well without jeopardizing the quality of
the lower levels. This idea is shown in Figure 1, where
if we consider each level being a separate project, the
one above directly references annotations in the pre-
ceding layer.

(8) Extensibility in terms of tools. Many annotation
tasks these days involve (semi-)automatic tagging, fol-
lowed by an annotator reviewing and correcting any
mistakes in the output. The system should ideally al-
low the annotator to call plugins to the system to tag
a given resource to facilitate this. This step could be
done prior to data import, but allowing the user to do
so afterwards has several benefits, such as enabling
them to quickly view the results of the automatic tag-
ging, and to rerun it with different parameters again
should it not have provided the expected output. The
plugins should be able to be created by anyone (not
only the creators of the system).

(9) Extensibility in terms of importing/exporting. The
system should also allow the user to either define rules
or call plugins to convert the data from one format to
another. This allows the system to be somewhat ag-
nostic to the data format. This is important as there are
a variety of formats, though the system should provide
its own that is capable of handling any supported anno-
tation scheme. Including generated comments may fa-
cilitate in human verification of the exported resource.

This step could be done after export, but having the
ability to have the data processed automatically in-
creases productivity for menial tasks that should not
require human intervention (and which may also in-
troduce error).

(10) Support for multiple languages. Research today is
carried out in a variety of languages, and the system
should support them.

4. Framework Overview
The ten items listed above can be subdivided into those that
require a framework for support, and those that rely on an
implementation of a given framework. Without a proper
framework in place, (1) - (7) are impossible; (8) - (10) re-
side entirely with the implementation. We address needs (1)
& (2) (User & Project Management, and work delegation)
in Section 4.1., (3) & (4) (Adaptability to current and future
annotation tasks) in Sections 4.3. and 4.4., and need (7) in
Section 4.6.. Needs (5) & (6) require the necessary data
within a framework, but also rely heavily on the implemen-
tation to supply such features; they appear as the topic is
relevant, below. Figure 2 shows a simplified representation
in UML of some of the more major entities of the proposed
framework. It may be beneficial to refer to it while reading
through the explanation.

4.1. User & Project Management
A large part of proper project management involves proper
user management (needs (1) & (2)). It is important to en-
capsulate user responsibilities in a way that facilitates pro-
ductivity, rather than hinders it due to complexity. User
roles are nothing new to software systems, but choosing the
right granularity can be tough. We think it is best to keep
things as simple as possible while maintaining the needed
functionality; thus, we propose having minimally two types
of users: administrators and annotators. (Note that user
roles are not present in Figure 2.)
An administrator oversees projects, configures them,
adds/removes annotators, and assigns annotation tasks. The
administrator should also be able to check the progress of
the annotators to make sure no roadblocks are preventing
them from finishing their assigned work, or if they become
incapacitated for some reason, allow the administrator to
easily reassign outstanding work. As mentioned in Sec-
tion 3., the administrator should also be able to create ver-
sions of the project (need (6)), import, export, and in all
other ways administer the project. They should not, how-
ever, be able to annotate resources.
The annotator, therefore, is solely responsible for this task
of annotation. They can select a resource that has been as-
signed to them and annotate it; they are sandboxed from
other users to prevent biases from interfering with their
work (meaning they do not see others’ work).
This separation between administrator and annotator roles
is simple, but it is intuitive; it also provides the necessary
separation to properly manage a project and still get the
annotation work done. Later on an administrator can diff
the resources and merge them as necessary for creating a
gold standard. More details about project configuration are

3656



explained as the remaining entities and annotation method-
ology are elaborated on below.

Project Document Set

content

Document





User




readonly BOOL

version number

Tagset




label (name)

Segment




label (name)

directional BOOL

Link 

Tag







base_segment

attribute cond.

Constraints







 start segment

start seg. attr. cond.

end segment

end seg. attr. cond.

Constraints







name

required

values ARRAY

default value

Attributes












Figure 2: Simplified relationship diagram for entities

4.2. Entities
As Figure 2 shows, there are a number of entities intercon-
nected to one another. In this section we will focus on
the more macro-level entities, Project, Document, Docu-
ment Set, and then touch upon Tagsets, which are explained
more in the next section. The framework is based around
the concept of a document, which is the only entity that
can be directly annotated (shown in the upper right corner
of Figure 2). It can represent any kind of data you wish
(e.g. a news article, paragraph, book). Since dealing di-
rectly with large quantities of documents can be daunting,
they are grouped into a more macro-level document set. A
document can be a member of multiple document sets, so a
document set could be created to encapsulate both raw re-
sources from different sources, and groups of work to del-
egate to annotators. As the UML figure shows, annotators
are assigned document sets, not documents; again, this is to
make coordinating large volumes of documents easy, while
keeping them coherently managed to some degree.
The highest level entity in the framework is the project.
A project represents an annotation task, such as predicate-
argument dependency or coreference-chains, and contains a
reference to one or more document sets. An important point
here is that a project contains a reference to one or more
document sets; the sets themselves exist beyond, or outside
of, the project. This means that they can (and should) be
reused for multiple projects.
More formally, we define a user as an annotator or admin-
istrator with access to the system, belonging to one or more
projects (a user may be working on multiple tasks, con-
currently, or in sequence); an annotator will have access
to zero or more document sets within any given project,

while the administrator can do all the actions outlined in
Section 4.1.. Since the point of task delegation is to split
the work among many individuals, the framework allows
for this by enabling the administrator to assign different
document sets to different users.
The majority of the UML diagram, however, focuses on
tagsets and their relations. This is the fundamental mecha-
nism behind generalized annotation in the framework, and
is explained in the next section.

type

start_offset

end_offset

Segment

type

source

destination

Link

 

Tag

name

value

Attributes









content

Document




User





Figure 3: Simplified relationship diagram for annotation
instances

4.3. Abstracting Annotation
So far we have outlined several of the main entities that
make up the framework. But the crux of being able to
support multiple annotation tasks (needs (3) & (4)) is the
notion of abstracting annotation. Abstracting annotation
means that we remove any definitions for what types of en-
tities can be annotated from the system, and instead create a
framework that allows administrators to define them them-
selves. Conceptually, all an annotation is, is either a label
placed on a span of text, or a label placed on a relationship
between such spans, as is shown in Figure 4. So we allow
the administrator to create as many definitions for types of
annotations as they like, and then during annotation, the an-
notator can create instances of these admin-defined types,
shown in Figures 2 and 3, respectively. It is important to
understand there is a difference between a definition of a
type, and an instance of that type. Also note that the frame-
work itself is agnostic to the definitions; to the system it
sees only different types of segments and links.
The annotations on text-spans we call segments, and the re-
lationships between them, links (Takahashi and Inui, 2006;
Noguchi et al., 2008). Links may be directional, such as in
the predicate-argument dependency example shown in Fig-
ure 4, or undirected, such as when annotating coreference-
chains (see Figure 6). As Figure 2 shows, segments and
links both extend from an abstract tag. For the remainder
of this paper, if segment or link is not specified, then the
explanation applies to both.
However, simple labels and their relations are limiting; we
might want to store additional information both about seg-
ments, and about any links that connect them. For this,

3657















Figure 4: An example showing two segments, and a link
between them

attributes are necessary. Say we wish to supplement a seg-
ment type definition for “Noun” with information about its
plurality; for this we could create an attribute with the pos-
sible values of “singular” and “plural”. We can then for-
malize the definition of a tag T to be a label label and a set
of attributes ai composed of a name name and a value type
val type, along with a possible default value def val , and a
flag req indicating whether or not the attribute is required:

T = (label , {a0, a1, . . . , an−1}),
where ai = (name, val type, def val , req).

The value type could be an enumeration, all possible char-
acter strings (i.e. free input), number ranges, etc. We can
then group these segment and link type definitions into a
tagset, and assign the tagset to a project. Projects may need
to contain multiple tagsets, depending on the task. In the
case that the project is extending another previous project
(need (7)), it will be important to disable creation of in-
stances from that tagset, and instead only allow the annota-
tor to view them (reflected in Figure 2).

4.4. Tagset Management
Especially during the early phases of a project, the anno-
tation specification is victim to changes in design (need
(4)). By creating versions/revisions of tagsets, we can en-
able the system to keep track of what resources are anno-
tated with which version of each type; allowing an admin-
istrator to verify that all documents are annotated with the
current spec. Examples include an administrator adding
an attribute to verbs, or adding a value to an existing at-
tribute, etc. In the framework all instances of annotations
are marked with the version/revision of the tagset that was
used when they were annotated. It may also be beneficial to
denote the difference between changes that complement a
current version (e.g. accommodating a new case found dur-
ing annotation that does not affect other annotations), i.e.
revisions, and changes that require reannotating resources
(versions).

4.5. Appearance/Settings
For a visual task like annotation, it is important that as much
information as possible is conveyed to the user as quickly
as possible. (Dipper et al., 2004) defined the need for cus-
tomization, and we address this in our framework here (as
it is not so much an annotation process level item, it is not
included in our list of needs in Section 3.). We define ap-
pearance settings for segments/links that can be defined at

the tagset, project, and annotator level. This allows the user
to decide how the information is conveyed should they have
an inclination to override the default. In addition, attributes
on specific instances of segments/links may carry impor-
tance and affect subsequent annotation (e.g. annotating the
verbs that relate to nouns with their plurality attribute set to
“plural”). For this reason appearance settings can also be
set for specific type definitions that have certain attribute
values.
The appearance of the resource and the annotations should
be left up to the user. Annotation is a tiring, repetitive pro-
cess; creating as stress-free an environment as possible for
the annotator is therefore key. Preferences should enable
the annotator to change the appearance of the tagsets and
of the editor in general. A white background can be tir-
ing on the eyes, for example, so the annotator should be
able to pick a color that suits him/her. Since segments and
links possessing certain attributes can change in color, the
user should be allowed to pick the colors that are the most
meaning/pleasing to them. Yet, an annotation scheme with-
out any colors is next to meaningless; therefore, we define
the order of overriding for appearance settings, shown in
Figure 5.







Figure 5: Order of appearance overrides for segments and
links; above overrides below

4.6. Annotation
With definitions for the various entities out of the way, we
move on to discussing the process of annotation. There
is one more feature of the framework that greatly reduces
careless annotator errors and at the same time improves pro-
ductivity: attribute constraints. In a sense, attribute con-
straints work similarly to appearance overrides explained
in Section 4.5.; they are defined along with tag type defi-
nitions, but they function at the instance level. Instead of
affecting appearance, they affect the creation of instances
of certain types. Segment and link constraints vary, so we
will begin with segments.
A segment instance of a given type can only be created if
it has no constraints, or if all of its constraints are satisfied;
constraints for segments operate on two levels. The first
level relates to how segments overlap, and the second to
the attribute values of the overlapping segments. There are
three practical cases for segments overlapping, (1) when the
new segment will be contained within an existing segment,
(2) the new segment will contain an existing segment, or (3)
when the new segment and an existing segment perfectly
overlap (they annotate the same text span). For each of
these three cases, the constraints can further specify what
attribute values the existing segment must possess to allow

3658



the new segment to be created. For example, we may wish
to create a named entity (NE) on top of a corpus annotated
with noun phrases (NP); we could specify that the NE can
only be created if it perfectly overlaps with an existing NP.
We could also say that a verb phrase must contain a verb
segment, or it cannot be created, or that determiners can
only be created inside of an NP, etc.
Similarly, link constraints refer to the link’s source and des-
tination segments. This allows a link to be attached only
to segments with specific attribute values, such as linking
an instance of a segment definition for “verb” with the
“transitive” attribute set to “true”, to the object it modi-
fies. If the verb instance did not contain the attribute value
for transitive, then the constraint would not allow a link
to be attached to the verb. Figure 4 shows an example
of when a link type requires specific segment types for
source/destination, but does not care about any attributes.
In this way corpus consistency is enforced by preventing
many careless annotator mistakes.
Constraints referring to definition types/attributes can also
be nested, meaning a different tagset can be used as a basis
for another. This allows us to enforce consistency between
different layers of a multi-layered corpus, explained a little
more in Section 5. below, and to an extent, to allow speci-
fying workflow.

5. An Example
Let us end the explanation of the framework with an exam-
ple. Take a large project like the Penn Treebank (Marcus et
al., 1993), which is annotated with parts-of-speech and syn-
tactic structure. As a layer on top of this, PropBank (Kings-
bury and Palmer, 2002) annotates semantic relations. We
can create a project in the framework for each of these.
Since they annotate the same resources, we can create docu-
ments and document sets to represent the raw resources that
both projects can refer to. Next, we would create tagsets for
POS-tagging and syntactic structure (with segments for the
various parts of speech, and links to encode structure), and
include these tagsets in the project for the Treebank. We
would then create another tagset for PropBank for anno-
tating predicate-argument dependencies (with segments for
the frame’s various constituents, e.g. arg0, arg1, pred, etc.,
and links for showing their relations).
Since the PropBank project sits on top of the Treebank
project’s data, naturally it will refer to the annotations
within the Treebank. We therefore make the PropBank
have read-only access to the tagsets for POS and syntac-
tic structure. This allows an annotator to see the previously
annotated information (contained in a differed and merged
gold standard created by an administrator for the Treebank
project), but not to edit or unknowingly corrupt it. Further,
by adding constraints to the tagset for PropBank, we can in-
sure that the annotator can only select annotations already
present in the Treebank (e.g. the annotator cannot select a
segment that is not annotated within the syntactic structure
annotations).

6. SLATE
SLATE (Segment and Link-based Annotation Tool En-
hanced) implements the framework described above. It is

the next release of SLAT (Segment and Link-based Annota-
tion Tool) (Noguchi et al., 2008), which is being rewritten
from scratch as SLATE to improve performance and user
experience. It uses a standoff format , which allows for lay-
ered annotations by storing them not as additional markup
within a resource, but as meta data stored separately. Aside
from the needs provided inherently by the framework ((1)–
(4), (7)) We are aiming at supporting needs (5) & (6) (diff-
ing and versioning), and looking into (8) & (9) (extensibil-
ity) as well. The system currently supports any left-to-right
language (need (10)), and has a multilingual interface as
well. It is not fully implemented yet, but slated for an alpha
release soon.
A brief explanation of some of the points shown in the
screenshots follows. Figure 6 shows the document selec-
tion screen an annotator is presented with upon logging in.
If the annotator is part of multiple projects, all of them will
appear here. Information about the selected project, docu-
ment set, and document appear to the right. After select-
ing a document for annotation, the annotator is taken to the
screen shown in Figure 7. The left panel is the main anno-
tation panel; during cases in which annotating links to an
external resource (another document) are necessary, a split
panel (two side-by-side editors) will be available. The right
side provides a set of tool panels that show document in-
formation, the available tagsets for annotation, and a list of
segments/links that exist within the current document.

7. Conclusion
This paper presented a list of 10 needs for annotation
systems in order to support corpus-based NLP research
moving into the future. The needs fall into two groups:
framework-level (needs (1) - (7)), and implementation-
level ((8) - (10)). A framework was introduced to tackle
the framework-level needs, and a system SLATE built on
top of the framework, to handle the implementation-level
needs. At its core, the framework provides a mechanism
for abstracting annotation and the creation of layered re-
sources through its use of tagsets, containing segments and
links with attributes as well as constraints. The framework
further provides a foundation for managing annotation re-
sources and multiple annotation tasks. The framework al-
lows an administrator to define a task and then monitor its
progress, letting the annotator do what they were intended
to do: annotate. Appearance settings allow the annotator to
quickly know what types of segments/links they are work-
ing with, and the constraints reduce negligent annotation er-
rors (such as not allowing predicate-argument dependency
to join two arguments), though the appearance alone helps
with this. Future work can be divided into two categories:
framework-level, and implementation-level. For the for-
mer, it may be beneficial to more concretely specify how
corpus versioning should be carried out. For the latter, a
number of features are still left unimplemented. We plan to
release an alpha version soon.

Acknowledgments
This work is partially supported by the Grant-in-Aid for
Scientific Research Priority Area Program “Japanese Cor-

3659



Figure 6: SLATE: Document Select Screen with multiple projects and multiple languages

Figure 7: SLATE: Annotation Screen with English text showing coreference-chains and predicate-argument dependency

3660



pus” (2006 - 2010), sponsored by MEXT (Ministry of Ed-
ucation, Culture, Sports, Science and Technology – Japan).

References
Constantin Or Asan and Constantin Orǎsan. 2003. Palinka:

A highly customisable tool for discourse annotation. In
Proc. of the 4 th SIGdial Workshop on Discourse and
Dialogue, ACL ’03, pages 39–43.

Steven Bird, David Day, John S. Garofolo, John Hender-
son, Christophe Laprun, and Mark Liberman. 2000. At-
las: A flexible and extensible architecture for linguistic
annotation. CoRR, cs.CL/0007022.

Callisto. 2002. http://callisto.mitre.org.
Eugene Charniak. 1993. Statistical Language Learning.

The MIT Press.
H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.

2002. Gate: A framework and graphical development
environment for robust nlp tools and applications. In
Proc. of the 40th Annual Meeting of the ACL.

Mark Davies. 2009. Contemporary American English
(1990-2008+). International Journal of Corpus Linguis-
tics, 14(2):159–190.

Glynn Dennis, Brad Sherman, Douglas Hosack, Jun Yang,
Wei Gao, H. Clifford Lane, and Richard Lempicki.
2003. David: Database for annotation, visualization, and
integrated discovery. Genome Biology, 4(5):P3+.

Stefanie Dipper, Michael Götze, and Manfred Stede. 2004.
Simple annotation tools for complex annotation tasks:
An evaluation. In Proc. of the LREC Workshop on XML-
based Richly Annotated Corpora.

Ryu Iida, Mamoru Komachi, Kentaro Inui, and Yuji Mat-
sumoto. 2007. Annotating a japanese text corpus with
predicate-argument and coreference relations. In Proc.
of the Linguistic Annotation Workshop, pages 132–139,
Prague, Czech Republic, June. Association for Compu-
tational Linguistics.

Paul Kingsbury and Martha Palmer. 2002. From Treebank
to PropBank. In Proc. of the 3rd International Con-
ference on Language Resources and Evaluation (LREC
2002), pages 1989–1993.

Christopher D. Manning and Hinrich Schuetze. 1999.
Foundations of Statistical Natural Language Processing.
The MIT Press, 1 edition, June.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated corpus
of English: The Penn Treebank. Computational Linguis-
tics, 19(2):313–330.

Eleni Miltsakaki, Rashmi Prasad, Aravind Joshi, and Bon-
nie Webber. 2004. The penn discourse treebank. In
Proc. of LREC 2004.

Christoph Mueller and Michael Strube. 2001. MMAX: A
tool for the annotation of multi-modal corpora. In Proc.
of the 2nd IJCAI Workshop on Knowledge and Reason-
ing in Practical Dialogue Systems, pages 45–50.

Masaki Noguchi, Kenta Miyoshi, Takenobu Tokunaga, Ryu
Iida, Mamoru Komachi, and Kentaro Inui. 2008. Multi-
ple purpose annotation using SLAT – segment and link-
based annotation tool. Proc. of 2nd Linguistic Annota-
tion Workshop, pages 61–64.

B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Free-
man. 2005. Labelme: A database and web-based tool
for image annotation. Technical report, Tech. Rep. MIT-
CSAIL-TR-2005-056, Massachusetts Institute of Tech-
nology.

Maik Stührenberg, Daniela Goecke, Nils Diewald, Alexan-
der Mehler, and Irene Cramer. 2007. Web-based anno-
tation of anaphoric relations and lexical chains. In Proc.
of the Linguistic Annotation Workshop, pages 140–147,
Prague, Czech Republic, June. Association for Compu-
tational Linguistics.

Tetsuro Takahashi and Kentaro Inui. 2006. A multi-
purpose corpus annotation tool: Tagrin. Proc. of the
12th Annual Conference on Natural Language Process-
ing, pages 228–231.

3661


