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Abstract

This paper presents a probabilistic model
both for generation and understanding of
referring expressions. This model intro-
duces the concept of parts of objects, mod-
elling the necessity to deal with the char-
acteristics of separate parts of an object in
the referring process. This was ignored or
implicit in previous literature. Integrating
this concept into a probabilistic formula-
tion, the model captures human character-
istics of visual perception and some type
of pragmatic implicature in referring ex-
pressions. Developing this kind of model
is critical to deal with more complex do-
mains in the future. As a first step in our
research, we validate the model with the
TUNA corpus to show that it includes con-
ventional domain modeling as a subset.

1 Introduction

Generation of referring expressions has been stud-
ied for the last two decades. The basic orientation
of this research was pursuing an algorithm that
generates a minimal description which uniquely
identifies a target object from distractors. Thus
the research was oriented and limited by two con-
straints: minimality and uniqueness.

The constraint on minimality has, however,
been relaxed due to the computational complexity
of generation, the perceived naturalness of redun-
dant expressions, and the easiness of understand-
ing them (e.g., (Dale and Reiter, 1995; Spanger et
al., 2008)). On the other hand, the other constraint
of uniqueness has not been paid much attention
to. One major aim of our research is to relax this
constraint on uniqueness because of the reason ex-
plained below.

The fundamental goal of our research is to deal
with multipartite objects, which have constituents

with different attribute values. Typical domain set-
tings in previous literature use uniform objects like
the table A shown in Figure 1. However, real life
is not so simple. Multipartite objects such as ta-
bles B and C can be found easily. Therefore this
paper introduces the concept of parts of objects to
deal with more complex domains containing such
objects. Hereby the constraint on uniqueness be-
comes problematic because people easily generate
and understand logically ambiguous expressions
in such domains.

For example, people often use an expression
such as “the table with red corners” to identify
table B. Logically speaking, this expression is
equally applicable both to A and to B, that is, vio-
lating the constraint on uniqueness. And yet peo-
ple seem to have no problem identifying the in-
tended target correctly and have little reluctance to
use such an expression (Evidence is presented in
Section 3). We think that this reflects some type of
pragmatic implicature arising from human charac-
teristics of visual perception and that is important
both for understanding human-produced expres-
sions and for generating human-friendly expres-
sions in a real environment. This paper proposes a
model of referring expressions both for generation
and understanding. Our model uses probabilities
to solve ambiguity under the relaxed constraint on
uniqueness while considering human perception.

No adequate data is currently available in or-
der to provide a comprehensive evaluation of our
model. As a first step in our research, we validate
the model with the TUNA corpus to show that it
includes conventional domain modeling.

Figure 1: An example scene
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2 Related work

Horacek (2005) proposes to introduce probabili-
ties to overcome uncertainties due to discrepan-
cies in knowledge and cognition between subjects.
While our model shares the same awareness of is-
sues with Horacek’s work, our focus is on rather
different issues (i.e., handling multipartite objects
and relaxing the constraint on uniqueness). In
addition, Horacek’s work is concerned only with
generation while our model is available both for
generation and understanding. Roy (2002) also
proposes a probabilistic model for generation but
presupposes uniform objects.

Horacek (2006) deals with references for struc-
tured objects such as documents. Although it con-
siders parts of objects, the motivation and focus of
the work are on quite different aspects from ours.

3 Evidence against logical uniqueness

We conducted two psycholinguistic experiments
using the visual stimulus shown in Figure 1.

In the first experiment, thirteen Japanese sub-
jects were presented with an expression “kado no
akai tukue (the table with red corners)” and asked
to choose a table from the three in the figure.
Twelve out of the thirteen chose table B. Seven
out of the twelve subjects answered that the given
expression was not ambiguous.

In the second experiment, thirteen different
Japanese subjects were asked to make a descrip-
tion for table B without using positional relations.
Ten out of the thirteen made expressions seman-
tically equivalent to the expression used in the
first experiment. Only three subjects made log-
ically discriminative expressions such as “asi to
yotu kado dake akai tukue (the table whose four
corners and leg only are red).”

These results show that people easily gener-
ate/understand logically ambiguous expressions.

4 Proposed model

We define π = {p1, p2, . . . , pk} as the set of k
parts of objects (classes of sub-parts) that appears
in a domain. Here p1 is special and always means
the whole of an object. In a furniture domain, p1

means a piece of furniture regardless of the kind
of the object (chair, table, whatever). pi(i ̸= 1)
means a sub-part class such as leg. Note that π is
defined not for each object but for a domain. Thus,
objects may have no part corresponding to pi (e.g.,
some chairs have no leg.).

A referring expression e is represented as a set
of n pairs of an attribute value expression ea

j and a
part expression ep

j modified by ea
j as

e = {(ep
1, e

a
1), (e

p
2, e

a
2), . . . , (e

p
n, ea

n)}. (1)

For example, an expression “the white table with
a red leg” is represented as

{(“table”, “white”), (“leg”, “red”)}.

Given a set of objects ω and a referring ex-
pression e, the probability with which the expres-
sion e refers to an object o ∈ ω is denoted as
Pr(O = o|E = e,Ω = ω). If we seek to provide
a more realistic model, we can model a probabilis-
tic distribution even for Ω. In this paper, however,
we assume that Ω is fixed to ω and it is shared by
interlocutors exactly. Thus, hereafter, Pr(o|e) is
equal to Pr(o|e, ω).

Following the definition (1), we estimate
Pr(o|e) as follows:

Pr(o|e) ≈ N
∏
i

Pr(o|ep
i , e

a
i ). (2)

Here, N is a normalization coefficient. According
to Bayes’ rule,

Pr(o|ep
i , e

a
i ) =

Pr(o)Pr(ep
i , e

a
i |o)

Pr(ep
i , e

a
i )

. (3)

Therefore,

Pr(o|e) ≈ N
∏
i

Pr(o)Pr(ep
i , e

a
i |o)

Pr(ep
i , e

a
i )

. (4)

We decompose Pr(ep
i , e

a
i |o) as∑

u

∑
v

Pr(ep
i |pu, o)Pr(ea

i |av, o)Pr(pu, av|o)

(5)
where pu is one of parts of objects that could be
expressed with ep

i , and av is one of attribute val-
ues1 that could be expressed with ea

i . Under the
simplifying assumption that ep

i and ea
i are not am-

biguous and are single possible expressions for
a part of objects and an attribute value indepen-
dently of objects 2,

Pr(o|e) ≈ N
∏
i

Pr(o)Pr(pi, ai|o)
Pr(pi, ai)

(6)

≈ N
∏
i

Pr(o|pi, ai) (7)

1Each attribute value belongs to an attribute α, a set of
attribute values. E.g., αcolor = {red, white, . . .}.

2That is, we ignore lexical selection matters in this paper,
although our model is potentially able to handle those matters
including training from corpora.
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Pr(o|p, a) concerns attribute selection in gen-
eration of referring expressions. Most attribute
selection algorithms presented in past work are
based on set operations over multiple attributes
with discrete (i.e., symbolized) values such as col-
ors (red, brown, white, etc) to find a uniquely dis-
tinguishing description. The simplest estimation
of Pr(o|p, a) following this conventional Boolean
domain modeling is

Pr(o|p, a) ≈
{

|ω′|−1 (p in o has a)
0 (p in o does not have a)

(8)

where ω′ is the subset of ω, each member of which
has attribute value a in its part of p.

As Horacek (2005) pointed out, however, this
standard approach is problematic in a real envi-
ronment because many physical attributes are non-
discrete and the symbolization of these continuous
attributes have uncertainties. For example, even
if two objects are blue, one can be more blueish
than the other. Some subjects may say it’s blue
but others may say it’s purple. Moreover, there
is the problem of logical ambiguity pointed out
in Section 1. That is, even if an attribute itself
is equally applicable to several objects in a logi-
cal sense, other available information (such as vi-
sual context) might influence the interpretation of
a given referring expression.

Such phenomena could be captured by estimat-
ing Pr(o|p, a) as

Pr(o|p, a) ≈ Pr(a|p, o)Pr(p|o)Pr(o)
Pr(p, a)

. (9)

Pr(a|p, o) represents the relevance of attribute
value a to part p in object o. Pr(p|o) represents
the salience of part p in object o. The underlying
idea to deal with the problem of logical ambiguity
is “If some part of an object is mentioned, it should
be more salient than other parts.” This is related
to Grice’s maxims in a different way from mat-
ters discussed in (Dale and Reiter, 1995). Pr(p|o)
could be computed in some manner by using the
saliency map (Itti et al., 1998). Pr(o) is the prior
probability that object o is chosen. If potential
functions (such as used in (Tokunaga et al., 2005))
are used for computing Pr(o), we can naturally
rank objects, which are equally relevant to a given
referring expression, according to distances from
interlocutors.

5 Algorithms

5.1 Understanding
Understanding a referring expression e is identify-
ing the target object ô from a set of objects ω. This
is formulated in a straightforward way as

ô = argmax
o∈ω

Pr(o|e). (10)

5.2 Generation
Generation of a referring expression is choosing
the best appropriate expression ê to discriminate a
given object ô from a set of distractors. A simple
formulation is

ê = argmax
e∈ρ

Pr(e)Pr(ô|e). (11)

ρ is a pre-generated set of candidate expressions
for ô. This paper does not explain how to generate
a set of candidates.

Pr(e) is the generation probability of an ex-
pression e independent of objects. This probabil-
ity can be learned from a corpus. In the evaluation
described in Section 6, we estimate Pr(e) as

Pr(e) ≈ Pr(|e|)
∏
i

Pr(αi). (12)

Here, Pr(|e|) is the distribution of expression
length in terms of numbers of attributes used.
Pr(α) is the selection probability of a specific at-
tribute α (SP (a) in (Spanger et al., 2008)).

6 Preliminary evaluation

As mentioned above, no adequate corpus is cur-
rently available in order to provide an initial vali-
dation of our model which we present in this pa-
per. In this section, we validate our model us-
ing the TUNA corpus (the “Participant’s Pack”
available for download as part of the Generation
Challenge 2009) to show that it includes tradi-
tional domain modeling. We use the training-
part of the corpus for training our model and the
development-part for evaluation.

We note that we here assume a homogeneous
distribution of the probability Pr(o|p, a), i.e., we
are applying formula (8) here in order to calculate
this probability. We first implemented our proba-
bilistic model for the area of understanding. This
means our algorithm took as input the user’s selec-
tion of attribute–value pairs in the description and
calculated the most likely target object. This was
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Table 1: Initial evaluation of proposed model for
generation in TUNA-domain

Furniture People
Total cases 80 68
Mean Dice-score 0.78 0.66

carried out for both the furniture and people do-
mains. Overall, outside of exceptional cases (e.g.,
human error), our algorithm was able to distin-
guish the target object for all human descriptions
(precision of 100%). This means it covers all the
cases the original approach dealt with.

We then implemented our model for the case of
generation. We measured the similarity of the out-
put of our algorithm with the human-produced sets
by using the Dice-coefficient (see (Belz and Gatt,
2007)). We evaluated this both for the Furniture
and People domain. The results are summarized
in Table 1.

Our focus was here to fundamentally show how
our model includes traditional modelling as a sub-
set, without much focus or effort on tuning in order
to achieve a maximum Dice-score. However, we
note that the Dice-score of our algorithm was com-
parable to the top 5-7 systems in the 2007 GRE-
Challenge (see (Belz and Gatt, 2007)) and thus
produced a relatively good result. This shows how
our algorithm – providing a model of the referring
process in a more complex domain – is applica-
ble as well to the very simple TUNA-domain as a
special case.

7 Discussion

In past work, parts of objects were ignored or im-
plicit. In case of the TUNA corpus, while the Fur-
niture domain ignores parts of objects, the People
domain contained parts of objects such as hair,
glasses, beard, etc. However, they were implic-
itly modeled by combining a pair of a part and its
attribute as an attribute such as hairColor. One
major advantage of our model is that, by explicitly
modelling parts of objects, it can handle the prob-
lem of logical ambiguity that is newly reported in
this paper. Although it might be possible to han-
dle the problem by extending previously proposed
algorithms in some ways, our formulation would
be clearer. Moreover, our model is directly avail-
able both for generation and understanding. Re-
ferring expressions using attributes (such as dis-
cussed in this paper) and those using discourse

contexts (such as “it”) are separately approached
in past work. Our model possibly handles both of
them in a unified manner with a small extension.

This paper ignored relations between objects.
We, however, think that it is not difficult to prepare
algorithms handling relations using our model.
Generation using our model is performed in a
generate-and-test manner. Therefore computa-
tional complexity is a matter of concern. However,
that could be controlled by limiting the numbers
of attributes and parts under consideration accord-
ing to relevance and salience, because our model is
under the relaxed constraint of uniqueness unlike
previous work.

As future work, we have to gather data to eval-
uate our model and to statistically train lexical se-
lection in a new domain containing multipartite
objects.
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