
Multiple Purpose Annotation using SLAT
— Segment and Link-based Annotation Tool —

Masaki Noguchi†, Kenta Miyoshi†, Takenobu Tokunaga†

Ryu Iida‡, Mamoru Komachi‡, Kentaro Inui‡

† Department of Computer Science, Tokyo Institute of Technology
Tokyo Meguro Ôokayama, 152-8552, Japan
{mnoguchi,kmiyoshi,take}@cl.cs.titech.ac.jp

‡ Graduate School of Information Science, Nara Institute of Science and Technology
Nara Ikoma Takayama 8916-5, 630-0192, Japan

{ryu-i,mamoru-k,inui}@is.naist.jp
Abstract

In recent years, the use of large scale corpora in NLP applications, such as statistical parsing, has become prominent. As their use gained
credibility, naturally so did the types of information they provided. There exist today many groups that create corpora: ANC, SFB at
the University of Potsdam, just to name a few. In many cases these groups also provide specialized annotation tools for their corpora.
However, these tools are just that: specialized, i.e. designed to work with a very specific annotation definition, without flexibility in
mind. In the early stages of a project, often times the specification for annotating changes. This makes it difficult to use a tool with
such rigid boundaries. In this paper, we propose a browser-based annotation tool SLAT, which allows for easily adding and customizing
annotations. We also explain the steps involved in customizing SLAT to meet a user’s project needs.

1. Introduction
In recent years, the use of large scale corpora in NLP appli-
cations, such as statistical parsing, has become prominent.
As their use gained credibility, naturally so did the types of
information they provided.
There are many projects which construct corpora, such as
ANC1 and Sonderforschungsbereich (SFB) on information
structure at the University of Potsdam2 just to name a few.
The annotation of sentences by hand is not only extremely
time consuming, but also leads to various kinds of errors.
These errors combined with other user-entered biases have
a large effect on the performance (and subsequent evalu-
ation) of systems trained on these corpora. Thus, the in-
formation provided by corpora must be both accurate and
consistent. To this end, annotation tools for simplifying
and constraining human input have been developed in var-
ious projects, and have decreased the costs of constructing
corpora. These tools are developed to work with a very
well defined annotation specification. In the early stages of
a project often times the specification for annotating will
change, making it difficult to use a tool with such rigid
boundaries. The format for storing information also dif-
fers by tool, so their data is not immediately interoperable.
The conversion of one format to another is required each
time an experiment is conducted or a method evaluated.
In the next section, we briefly review some existing annota-
tion tools and then describe our motivations for developing
a new annotation tool. We introduce SLAT [sléit] (Segment
and Link-based Annotation Tool), aimed at satisfying these
motivations and briefly explain its features. Lastly, we sum-
marize this paper and describe future work.

1http://www.americannationalcorpus.org
2http://www.sfb632.uni-potsdam.de/

2. Requirements for Annotation Tools
Stefanie Dipper et al.(Dipper et al., 2004) compared exist-
ing tools that use XML as their data storage format. They
compared twelve individual research projects from several
disciplines, having corpora that mostly consisted of 5 types
of annotations: semantic, discourse and focus annotations,
as well as diachronic data and typology. To manage these
types of annotations, they described seven requirements
for annotation tools: diversity of data, multi-level anno-
tation, diversity of annotation, simplicity, customizability,
quality assurance and convertibility. First three relate to
data annotation while the latter four relate to the usabil-
ity of the annotation tool. They compared five annotation
tools to test the validity of these criteria: TASX Annotator3,
EXMARaLDA4(Thomas, 2001), MMAX5(Müller, 2006),
PALinkA6(Orăsan, 2003) and Systemic Coder7.

3. Requirements during the Early Stages of
a Project

As presented in the previous section, an annotation tool
must satisfy these requirements to be successful in cor-
pus annotation. Previously developed annotation tools have
mostly focused on the usability of the system regarding
the annotation task itself, i.e. how easy/difficult it is to
add/remove annotations. Usability is clearly important. In
designing an annotation tool, however, it is also crucially
important to take the while demands of a corpus project,
which typically not only annotate text but also designing
the tag set and evaluate and maintain the resultant corpus,

3http://tasxforce.lili.uni-bielefeld.de/
4http://www.exmaralda.org/
5http://www.eml-research.de/english/research/nlp/download/
6http://clg.wlv.ac.uk/projects/PALinkA/
7http://www.wagsoft.com/Coder/



into account as design issues. More specifically, at least
the following three issues should be addressed so that the
tool can effectively support a project even during its initial
unstable stages:

1. Cost to install an annotation tool
Creating a corpus involves a large number of hands
engaging in the task of annotation. It is particularly the
case for those unfamiliar with computers that merely
installing an annotation tool can become a burden.

2. Variation of data schemes for each annotation task
Past annotation tools have been developed with a spe-
cific annotation scheme in mind, making it unsuitable
for other types of annotation. A multipurpose annota-
tion tool must use a flexible data scheme that can in-
corporate various types of annotation, and must have
an interface adaptable to various annotation tasks.

3. Quality of the corpus
As previously mentioned, the initial phases of a
project are often filled with adjustments to how a cor-
pus will be annotated. Since typical annotators work
individually while referring to a specification, this pe-
riod can result in poor consistency. These errors affect
the quality of a corpus which in turn affects the perfor-
mance and subsequent evaluation of a system.

We introduce SLAT (Segment and Link-based Annotation
Tool), in the next section. For tackling the first issue, we
adopt a client/server architecture. We present annotation
abstraction for resolving the second issue and discuss some
already-developed annotation tools and their own imple-
mentations. Finally, we summarize our findings and briefly
touch upon the third issue enumerated above.

4. SLAT
SLAT is a web-based annotation tool that employs a
client/server architecture. With the ubiquitousness of the
internet, this means that SLAT can be accessed almost any-
where; the only prerequisite for beginning annotation is
having access to the URL via a browser. This also serves
to reduce the cost and time of installation on an annotator’s
machine. The server-end of SLAT is composed of a com-
puter running a database and a PHP-enabled web-server.
The SLAT server stores all documents to be annotated, an-
notation information and customized user configurations.
In this section, we first propose an abstraction of anno-
tations using segments and links, which allows SLAT to
adapt to many different annotation tasks. We then address
the interface issues, detailing the components of the current
SLAT interface, and finally demonstrate how SLAT can be
easily customized.

4.1. Abstraction of Annotations
To explore a universal data scheme applicable to various
types of annotations, we discuss the abstraction of anno-
tations using a simple POS annotation example shown in
Figure 1. In this example, annotation is carried out by af-
fixing POS and named entity tags to specific regions of text,
called segments. Thus, “John” is annotated as N and N-PER

and “New York” as N and N-LOC etc. Relations between
segments are then identified, such as coreference or a cer-
tain semantic role. This is called linking. Using this ab-
straction, almost any annotation can be represented. SLAT
adopts stand-off annotation, i.e. all annotated data is stored
separately from the original data.

John lives in New York.
N VERB-PRE PREP N

N-PER N-LOC

He bought a book last Saturday.
ProN1 VERB-P ART N ADJ N

He wants to be a lawyer.
ProN2 VERB-PRE TO BE ART N

Figure 1: An example of POS annotation

4.1.1. Segments
When annotating a text, it is important to both indicate the
particulars of a region as well as its relation to other parts
of the text. A segment is indicated by marking the start-
ing and ending offsets of a region. For representing this
information, tags are inserted into the text. A fragment of
the text can be multiple segments such as “John” and “New
York” in Figure 1. Furthermore, segments can be nested
and overlap, such as ‘XXX YYY ZZZ’.

4.1.2. Links
As mentioned above, segments may have several types of
relations to one another, e.g. “John” and “he” (corefer-
ence), or “bought” and “a book” (semantic role). All re-
lations have at least two properties: transitivity and direc-
tionality. By combining these two properties, we can divide
relations into four general groups:

1. transitive and directed E.g. “car”→“door”→“glass”,
part-of relations belong to this group. Temporal rela-
tions between events also belong to this group.

2. transitive and undirected Coordination and corefer-
ence, such as the relations between “John (N-PER)”,
“He (ProN1)” and “He (ProN2)”in Figure 1.

3. non-transitive and directed Semantic role labeling,
e.g. the relation between “bought (VERB-P)” and
“book (N)” belongs to this group.

4. non-transitive and undirected Relations in this
group represent a special case only, and consist of only
a pair.

4.2. Interface
SLAT’s interface has been designed to allow for intuitive,
visual annotation. It has two main panes in the center of
the screen, as shown in Figure 2. The left pane, an editor
pane, displays the text to be annotated while the right pane
displays a list of all current segments and links. Annotating
a segment is as easy as marking a region of text with the
mouse.
The upper pane shows information of selected and focused
segments. In Figure 2, “support systems” is selected and
“adopt” is focused. The notion of the selected and forcued
segments roughly corresponds to the source and destination
segments of a link. A new link is annotated by regarding



Edit pane List pane

Focused/selected segmentsConfiguration pane

Figure 2: Snapshot of SLAT

selected segment as the destination and focused segment as
the source of that link. And these segments have a differ-
ence in an operational respect. That is, the system allows
users to move around focused segments by using arrow
keys, while selected segments are determined by clicking
the segments with the mouse. This operational distinction
is useful for annotations where multiple links extend from
a single segment, such as with predicate-argument annota-
tion. The focusable segments are defined in the configura-
tion as described below.
In the editor pane a segment is displayed as colored and un-
derlined strings. Strings that are comprised of more than
one annotation will have multiple underlines. A segment
may be selected by clicking on an underlined region. When
a segment is selected, links attached to that segment are pre-
sented by highlighting the counterpart segments with colors
and underlines. In Figure 2, there are two links displayed:
one is a link between “adopt” and “support systems” and
the other is a link between “adopt” and “abstracted annota-
tion”.
The right list pane contains a table-view list of segments
and links. Clicking a column header allows for sorting by
properties such as offsets, segment/link names and so on.
By clicking on a segment within this list, the left editor pane
will scroll to display the selected item. Selecting a link item
will identify both the destination and source segment within
the editor pane.

4.2.1. Interface Design
Research shows that there are essentially two ways of rep-
resenting relations: one using edges and the other table-

based. In an interface that displays links using edges, iden-
tifying a link can become difficult if there is a large number
of annotated links. However, a table-based interface has the
obvious shortcoming of lacking good visual representation
of source/destination. SLAT’s interface was designed with
both these points in mind. Relations with focused segments
are highlighted by underlined and colored strings to avoid
congestion in the editor pane. Highlighting can be toggled
by a check-box in order to allow annotators concentrate on
specific tags during annotation.
Many treebank projects represent the phrase structure of
sentences using a tree representation. Phrase structures can
be represented in terms of segments and links though the
interface today is less than ideal for displaying its hierarchi-
cal structure. We designed our interface to be as adaptable
to various annotation tasks as possible; segments and links
are more versatile than tree representations, and in partic-
ular allow for overlapped segments which are troublesome
to deal with using trees. That being said, a tree representa-
tion might be more suitable when annotating phrase struc-
tures and we have plans to incorporate another type of view
pane for displaying trees, based on a user’s configuration
options.

4.3. Customization
SLAT allows users to customize tag-sets in two ways, (1)
by using the GUI directly, and (2) by uploading a file con-
taining tag-set definitions. Figure 3 shows a snapshot of the
configuration interface, through which the user can create
segment and link definitions.
A SLAT configuration can define different types of annota-



tions simultaneously e.g. coreference, predicate-argument
structure and syntactic structure and whatsoever. Users can
toggle the visibility of each tag by using the configuration
pane just above the edit pane.

Figure 3: Snapshot of configuration pane

4.3.1. Segments
Tag-name defines the name of the segment, key-bind is
an optional keyboard shortcut for creating a new segment
while annotating a text; color and background-color define
display colors, and focusable toggles whether or not a seg-
ment can be focused using arrow keys; clickable and visible
each define whether a segment is selectable by clicking and
if it is visible, respectfully. Sample definitions are shown in
the upper table of Figure 3.

4.3.2. Links
Tag-name defines the name of the link, key-bind is the same
as explained above, only for links; transitivity and directed
define whether a link has each attribute as defined earlier.
Based on these settings, SLAT can constrain the selection
and pairing of source/destination tags. For allowing several
source/destination combinations, they should all be defined
here. Sample definitions are shown in the lower tables of
Figure 3.

4.4. Other Features
When a segment is selected, the user’s selection can be
limited to only the focused/selected segment’s tag name.
This greatly decreases annotation errors related to acciden-
tally selecting wrong segments. After annotation, a user
may easily retrieve annotated text from SLAT via the web
browser. SLAT supports undo/redo as well as customiza-
tion and configuration of tag-sets. SLAT supports any lan-
guage that can be encoded using UTF-8.

5. Summary and Future Work
With the goal of covering a broad range of annotation tasks,
we have proposed a data scheme that is easier to under-
stand and to use. In addition, we have introduced a tool
SLAT, which implements many features, including several

requirements designated especially important during the
early stages of a project. SLAT’s use of abstracted anno-
tations, i.e. segments and links resolves many of the chal-
lenges presented in this paper, though there are still some
issues to be solved.
Supporting annotators in assuring the consistency and qual-
ity of a corpus is a remaining challenge. The following is
our reseach agenda for achieving this goal.

• Introduction of batch operations for keeping consis-
tency

• Annotation help based on the workflow context

• Retrieval of cases similar to the current annotation tar-
get

• Visual methods for reporting errors

• Mining annotation data by multiple annotators to find
annotation tips

6. Acknowledgment
This work is partially supported by the Grant-in-Aid for
Scientific Research in Priority Areas JAPANESE COR-
PUS8.

7. References
Stefanie Dipper, Michael Götze and Manfred Stede. (2004).

Simple Annotation Tools for Complex Annotation Tasks:
an Evaluation. In Proceedings of the LREC Workshop on
XML-based Richly Annotated Corpora. pp.54-62. Lis-
bon. Portugal.

Coreference Task Definition. (1995). The sixth in a se-
ries of Message Understanding Conferences (MUC-6).
http://cs.nyu.edu/cs/faculty/grishman/
COtask21.book 5.html

Olga Babko-Malaya. (2005). PROPBANK ANNOTATION
GUIDELINES. http://verbs.colorado.edu/˜mpalmer/
projects/ace/PBguidelines.pdf

Takahashi Tetsuro, Inui Kentaro. (2006). A multi-purpose
corpus annotation tool: Tagrin. Proceedings of the 12th
Annual Conference on Natural Language Processing.
pp.228-231. Yokohama. Japan.

Christoph Müller. (2006). Representing and Accessing
Multi-Level Annotations in MMAX2. In Proceedings of
the 5th Workshop on NLP and XML (NLPXML-2006):
Multi-dimensional Markup in Natural Language Pro-
cessing. pp.73-76. Trento. Italy.

Constantin Orăsan. (2003). PALinkA: A highly customis-
able tool for discourse annotation. In Proceedings of the
4th SIGdial Workshop on Discourse and Dialogue. Sap-
poro. Japan.

Schmidt Thomas. (2001). The transcription system EX-
MARaLDA: An application of the annotation graph for-
malism as the Basis of a Database of Multilingual Spo-
ken Discourse. In Proceedings of the IRCS Workshop On
Linguistic Databases, 11-13. Philadelphia. USA.

8http://www.tokuteicorpus.jp


	Text1: 2nd Linguistic Annotation Workshop, 26-27 May 2008, pp. 61-64


