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Abstract. Extensive work has been done in recent years on automat-
ically grouping words into categories. For example, {Wednesday, Mon-
day, Tuesday} could be grouped into a ‘days of week’ category. However,
not only grouping the words, but also ordering them is important, e.g.
Monday→Tuesday→Wednesday. The order relation is an important as-
pect that could be used to enrich existing ontologies, to determine the
sequence of actions for planning tasks, and to determine the order of
user’s preferences for a set of items, etc. However, automatically deter-
mining the order relation seems to have been ignored. Pairwise similarity
metric commonly used to cluster words may not be well suited for the
ordering task. Therefore, we propose a new metric designed for the or-
dering task. We utilize statistical proximity features of the terms in the
documents (in a large corpus) in order to determine the order relations
between terms. The effectiveness of the proposed method is verified in
experimental settings against orders provided by human subjects.

1 Introduction

Computational linguistics provides a large body of research on categorization
[1,2,3,4]. For example, many lexical ontologies such as WordNet [5] provide hier-
archical clustering of terms (concepts) based on lexical categorization. However,
in some applications categorical information alone is not sufficient, as illustrated
by the following examples:
– Which restaurant should the recommender system suggest based on cus-

tomer’s reviews that include one of the terms such as {horrible, edible, good,
delicious}?

– What is the correct order of actions for baking a pie {wash, cut, bake, serve}?

To answer the above questions the information about the ordering of the terms
is required. Words may be ordered by various semantic features. Some terms are
ordered by the time feature e.g. past, present, future, by the dimensional feature
e.g. line, circle, sphere, etc. [6]. We propose1 to retrieve information about the
order of the terms by utilizing the empirical observation that words that are part
of sequence tend to appear sequentially in text (e.g. one tends to appear before
three). We extract the information about the terms order, by utilizing statistical
properties of the total and partial orders of the terms in the corpus.
1 The source code, online application, the sequence dataset and additional materials

are available at http://hrstc.org/or
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2 Related Work

Many works in computational linguistics explore semantic relatedness between
words, clustering of words or concepts by shared meaning, and so forth. Some
methods [1] extract the similarity information from high-quality ontologies con-
structed manually by experts, such as WordNet [5]. Others exploit various com-
putational techniques to measure similarity in a large corpus, such as the Web
[2]. Weeds and Weir [3] provide an excellent survey on distributional similarity
techniques. However, we are not aware of studies that extract or represent the
relation of order among words, or members in a cluster.

The similarity and clustering approaches in their current state are not suitable
for the task of ordering (as confirmed by our evaluation in Section 4), since
similarity information does not necessarily provide the order information. These
approaches are complimentary to our work, in a sense, that we add directionality
to undirected lexical sets.

3 Proposed Approach

Given a set of terms we want to find an order of terms that is representative of
the corpus in which terms occur. In order to achieve this we analyze the order in
which the terms appear in the documents (Section 3.1). The proposed approach
is based on the empirical observations that words that are part of a sequence,
tend to appear after each other in documents. This approach tends to achieve a
high accuracy when there is sufficient data. However, the number of documents
that contain all of the terms could be small or equal to zero (especially when the
number of terms is high). This may make an estimation of the order unreliable.
To cope with this, we propose another method that estimates the order of the
terms from their partial orders (Section 3.2). That is, we estimate the relative
order first (e.g. the term ti usually occurs before the term tj). Then by using
the partial order we estimate the total order of terms in the sequence. In the
following subsections we define the problem in a more formal way, and describe
in detail proposed approaches and their advantages and limitations.

3.1 Total Order Sequence Retrieval

In this approach we try to find the most probable sequence of the terms, by
estimating the probability of the complete sequence occurring in the corpus. Let
us consider a corpus of documents D. A document d ∈ D could be represented
as a sequence of terms w ∈ T in the order that they occur in the document:

d = (w1, w2, . . . , wl), (1)

where l is the number of terms in the document. Let us introduce an operator
‘≺’ – ‘precedes’. An expression (ti ≺ tj), where t ∈ T , means that in a given
document, term ti occurs before tj , and that there could be zero or more terms
between ti and tj . This operator could be applied to an arbitrary number of
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terms e.g. (ti ≺ ti+1 ≺ . . . ≺ ti+n). Let us also define an indicator I that
determines whether a sequence S could be ‘satisfied’ in a document d. That is,
for an arbitrary sequence S = (t1 ≺ t2 ≺ . . . ≺ tn), where t ∈ T and n is the
length of the sequence; we want to determine if for the given document d, there
exist terms w ∈ d that follow the same order as terms t ∈ S. If sequence S =
(t1 ≺ t2 ≺ . . . ≺ tn) could be satisfied in a given document d, then I(S, d) = 1,
if not then I(S, d) = 0. We can calculate the number of documents where the
sequence S could be satisfied as:

df(S) =
∑

d∈D

I(S, d), (2)

where ‘df ’ stands for the document frequency. We can now estimate the proba-
bility of sequence S occurring in the corpus D as:

P̂ (S) =
df(S)
|D| , (3)

where |D| is the number of the documents in the corpus. In practice, we can take
advantage of the corpus index [7] in order to approximate the value of df(S) di-
rectly. The problem of finding the most probable sequence can be formulated as:

arg max
S

P (S). (4)

In order to find the most probable sequence it is necessary to evaluate P̂ (S)
for all n! permutations of the sequence S (where n is a number of terms in a
sequence). This makes the total order approach intractable for longer sequences.
The estimator P̂ (S) is accurate in the cases when the number of documents that
contains all of the terms in S (in arbitrary order) is high. However, in the cases
where the number of documents containing all of the terms in S is small, the
estimator P̂ (S) may become unreliable as confirmed in Section 4. In the next
subsection we propose a method that addresses this limitation.

3.2 Partial Order Sequence Retrieval

Evaluating all of the permutations obtained by total order approach (Section 3.1)
may not be tractable for longer sequences. The full sequence information may
also be biased when only a few documents are available. However, many docu-
ments that lack the total order information, do contain the partial order informa-
tion. For these reasons, we estimate the total order of terms from partial orders.
Hence, the implementation of the task presents a tradeoff among availability of
information, precision, and efficiency.

We are trying to find the most probable sequence of terms S = (t1 ≺ t2 ≺
. . . ≺ tn) such that arg maxS P (S). It is not necessary to extract the order
from the documents that contain all of the terms in S (as in Section 3.1). We
can extract the partial ordering information, even though not all of the terms
appear in the document. For example, if tj tends to occur before tk in the
documents, and tk tends to occur before tl, we can infer that (tj ≺ tk ≺ tl) is
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the most probable order. That is, we can reconstruct the total order of the terms
by utilizing the partial order information.

We can apply the standard sorting algorithms in order to approximate the
total order from the partial orders. When the sorting algorithm requests to
compare arbitrary terms tj and tk we return tj ≺ tk (i.e. tj precedes tk) if
P̂ (tj ≺ tk) ≥ P̂ (tk ≺ tj), and tk ≺ tj otherwise (where the probability of
sequence occurring is calculated by Eq. (3)). Standard sorting algorithms, such
as quicksort, are based on average O(n log n) comparisons between pairs, and
in the worst case O(n2) comparisons (where n is the number of terms in the
sequence). Note that sometimes the obtained partial order information may not
be consistent. That is, we may have a conflicting information e.g tj ≺ tk, tk ≺ tl,
but tl ≺ tj . To cope with inconsistent cases, we terminate the algorithm after at
most n2 iterations and return a probable order.

When the sufficient number of the documents is available, the total order
approach (Section 3.1) would be more accurate than the partial order approach.
The partial order of the terms may change depending on the context in which
they appear. The context of the documents used for the total order is less likely
to change, since all of the sequence terms must appear in each of the documents.

4 Experimental Evaluation

In this section, we evaluate the performance of the proposed approaches
(Section 3.1 and Section 3.2) and a baseline term clustering approach
(Section 4.3).

4.1 Data Set

The dataset for the experiments is comprised of 73 sequences of words (Table 1)
that were collected in the following manner. Five computer science students were
the subjects of sequences collection. Two of them were native English speakers.
Each one of the subjects suggested some sequences and verified all the sequences
suggested by others. The sequences that were not unanimously agreed upon were
removed from the test set, or changed to satisfy all the subjects.

4.2 Error Metric

To evaluate the quality of the acquired sequences in comparison with the se-
quences proposed by the human subjects, we use Kendall tau as a base measure
[8]. The Kendall tau distance counts the number of pairwise disagreements be-
tween two lists. It counts the number of swaps necessary to place one list in the
same order as the other list (normalized by the length of the list). The larger
the distance is, the less similar the two lists are. The Kendal tau distance is
expressed as:

KT (S1, S2)=
|(ti, tj) : ti≺tj , idx(ti, S1)<idx(tj , S1)∧idx(ti, S2)>idx(tj , S2)|

n(n − 1)/2
,

(5)
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Table 1. Some of the sequences used in the evaluation. For the complete list please
see http://hrstc.org/or.

Sun,Mercury,Venus,Earth,Mars,Jupiter,Saturn,Uranus,Neptune,Pluto
byte,kilobyte,megabyte,gigabyte,terabyte
a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z
dawn,morning,afternoon,evening,night
breakfast,lunch,dinner,supper
stand,walk,run
spotless,clean,dirty,filthy
wash,cut,bake,serve
baby,infant,child,teenager,adult,elderly
solid,liquid,gas
planet,solar system,galaxy,universe

where |(ti, tj) : ti ≺ tj, idx(ti, S1) < idx(tj , S1) ∧ idx(ti, S2) > idx(tj , S2)| is the
cardinality of the set of tuples that have pairwise disagreement between two lists
S1 and S2; idx(t, S) refers to the index of the term t in the list S; and n(n−1)/2
is the length normalization factor.

In the current settings, a sequence is considered correct if the order of the
terms is completely reversed. This is due to an unclear ascending or descending
fashion of a sequence. Therefore, we modify Kendall tau (Eq. (5)) to treat the
inverse transpositions equally to the original order:

KT ′(S1, S2) = |2KT (S1, S2) − 1|. (6)

By using a Kendall tau metric, we do not only judge whether the acquired order
was right or wrong, but also approximate the quality of the order by a range of
[0, 1], where 1 stands for identical sequences or the inversely transposed sequence,
and 0 for the non-correlated sequences.

4.3 Baseline Method

Baseline methods for evaluation are difficult to determine since we are not aware
of any previous studies on automatic retrieval of orders. There have been related
work on automatic term clustering [1,2,3,4]. However, many of these methods
rely on the ontologies (e.g. WordNet [5]) or text corpora. Therefore, obtaining the
relation between arbitrary terms may not be possible for these methods, unless
given terms exist in an ontology or a corpus. Recently, a normalized google dis-
tance (NGD) method has been proposed to automatically extract term similarity
information from the large corpus of data [2]. As the proposed approaches, NGD
also utilizes statistical properties of the corpus such as document frequency and
joint probability. For these reasons, we choose NGD as a baseline for the com-
parison with the proposed approaches (Section 3.1 and Section 3.2). NGD uses
the pairwise similarity metric for the automatic terms clustering. The relation
between terms is calculated as:

NGD(ti, tj) =
max{log df(ti), log df(tj)} − log df(ti, tj)

log |D| − min{log df(ti), log df(tj)}
, (7)
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where df(t) is the number of documents that contain term t, and |D| is the
total number of documents in a corpus. Note that the NGD metric is symmetric
i.e. NGD(ti, tj) = NGD(tj , ti). Using NGD the sequence score is calculated by
aggregating the NGD score for the term’s relations in the order that they occur
in the sequence, i.e.:

NGD(S) =
n−1∏

i=1

NGD(ti, ti+1), (8)

where ti refers to the ith term in the sequence S. The top sequence is deter-
mined as:

argmax
S

NGD(S). (9)

4.4 Results

We evaluate the performance of the proposed total order approach (Section 3.1)
and the proposed partial order approach (Section 3.2) with the baseline NGD ap-
proach (Section 4.3). Methods are evaluated on the dataset described in
Section 4.1. Although, these methods are extendable to any of the search engines
that provide proximity search capability, in this paper we present experiments
conducted with the use of Yahoo API [9]. We evaluate methods by using several
metrics. The accuracy is measured by the number of correctly obtained orders.
The quality of the obtained sequences is measured by a modified version of a
Kendall tau (KT) distance metric (as described in Section 4.2). We also evaluate
the quality of the sequence when sufficient information is available (df > 50).
The performance of the methods in relation to the sequence length is measured
by the average length of the correct sequence. Running time is measured by the
computational complexity. Results of the evaluation are shown in Table 2. Pro-
posed approaches outperform the baseline NGD method on all of the metrics.
We discuss obtained results in more detail in the following paragraphs.

Table 2. Comparison of methods for order retrieval. Proposed methods are indicated
by ‘∗’. Best performing method for a given metric is indicated by ‘◦’. For the sequence
quality, a higher value of Kendall tau distance corresponds to a better sequence quality
(score of 1 corresponds to the correct sequence). For details see Section 4.4.

NGD Total Order∗ Partial Order∗

Accuracy (binary loss function) 9.5% 35.6% ◦39.7%
Avg. Sequence Quality (KT) 0.39 0.42 ◦0.63
Avg. Sequence Quality (KT, df > 50) 0.39 ◦0.96 0.63
Avg. length of correct sequences 3.3 4.3 ◦5.5
Computational Complexity O(n!) O(n!) ◦O(n2)
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Term Clustering Approach (Baseline): In this paragraph we examine perfor-
mance of the baseline term clustering method NGD [2] (Section 4.3) on the task
of term ordering. Term clustering (lexical similarity) approaches allow us to
group terms together, although ordering of the terms is not intended, and may
not be well suited for obtaining term ordering as confirmed by evaluation results
(e.g. the accuracy of NGD is 9.5% in comparison to 35.6% and 39.7% of the
proposed methods as shown in Table 2). NGD is not well suited for the ordering
task, since it is symmetric (i.e. it does not contain directionality). That is, the
relation between Monday and Tuesday is the same as the relation between Tues-
day and Monday, i.e. NGD(Monday, Tuesday) = NGD(Tuesday, Monday).
Symmetricity of the NGD metric probably hinders its performance. In general,
metrics that are used for clustering may not be well suited for ordering tasks.
In addition, the computational complexity of applying pairwise similarity in or-
der to find term’s sequence is O(n!), which makes it not tractable for longer
sequences.

Total Order Approach (Proposed): The proposed total order approach works
well, when the sufficient number of documents is available (as discussed in
Section 3.1). When sufficient data is available, the quality of the order acquired
by this approach is impressively high, Kendall-Tau of 0.96 (max is 1) for the
retrieved sequences, when the data from more than 50 documents was available
i.e. df > 50. However, even in a huge corpus, not all the information is available,
and in more than 58% of the cases it was difficult to acquire all the needed infor-
mation. Out of the total of 73 sequences in the dataset, for the 38% of sequences
there were no documents that contained all of the terms of the sequence i.e.
df = 0; further 20% of the sequences had fewer than 50 documents i.e. df < 50 .
With df < 50 sequences , Kendall-Tau for the retrieved sequences was only 0.42.

Partial Order Approach (Proposed): The proposed partial order approach is able
to construct a total order by utilizing the partial order information available in
the documents. To illustrate usefulness of the partial order approach, consider
the query “wash ∗ cut ∗ bake ∗ serve” that represents rough order of actions
for baking a dish. This query retrieves no documents i.e. df = 0 . Its inverse
transposition as well as other transpositions, all result in df = 0. However, by
combining the available partial order information using the proposed approach
returned the expected wash, cut, bake, serve as the retrieved order of terms. The
partial order approach achieves the best performance on most of the metrics.
However, in cases when the sufficient information is available, it is outperformed
by the total order approach.

5 Conclusion

The term order is an important relation that could be used in many practi-
cal applications e.g. to find a sequence of actions for planing tasks, to arrange
terms by a certain feature (e.g. for recommender systems), etc. In this paper, we
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proposed to automatically determine the order of terms. We have shown that
existing similarity metrics may not be well suited for the ordering task; and,
in turn, proposed a metric that utilizes the statistical proximity information to
retrieve the order of the terms.

There are several tradeoffs that should be taken into account when extracting
the order of the terms. Examination of all possible permutations leads to O(n!)
time complexity (where n is the length of a sequence) that is intractable even
for relatively short sequences. We can reduce the time complexity to O(n2) and
maintain a fairly good accuracy, by utilizing the partial order to approximate
the total order of the terms in the sequence.

Another tradeoff to consider is the availability of information as opposed to
accuracy. When sufficient amount of information is available, the precision of
the total order approach is excellent. However, in our experiments sufficient
information was available in less than 50% of the cases. Using the partial order
information such as the ordering between pairs of terms increases the recall but
reduces the accuracy.

We hope there will be more works dealing with the term ordering. The source
code, online application, the sequence dataset and additional materials used in
this paper are made available at http://hrstc.org/or.
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