
Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, pages 399–406,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Efficient sentence retrieval based on syntactic structure

Ichikawa Hiroshi, Hakoda Keita, Hashimoto Taiichi and Tokunaga Takenobu
Department of Computer Science, Tokyo Institute of Technology

{ichikawa,hokoda,taiichi,take }@cl.cs.titech.ac.jp

Abstract

This paper proposes an efficient method
of sentence retrieval based on syntactic
structure. Collins proposed Tree Kernel
to calculate structural similarity. However,
structual retrieval based on Tree Kernel
is not practicable because the size of the
index table by Tree Kernel becomes im-
practical. We propose more efficient al-
gorithms approximating Tree Kernel: Tree
Overlapping and Subpath Set. These algo-
rithms are more efficient than Tree Kernel
because indexing is possible with practical
computation resources. The results of the
experiments comparing these three algo-
rithms showed that structural retrieval with
Tree Overlapping and Subpath Set were
faster than that with Tree Kernel by 100
times and 1,000 times respectively.

1 Introduction

Retrieving similar sentences has attracted much
attention in recent years, and several methods
have been already proposed. They are useful for
many applications such as information retrieval
and machine translation. Most of the methods
are based on frequencies of surface information
such as words and parts of speech. These methods
might work well concerning similarity of topics or
contents of sentences. Although the surface infor-
mation of two sentences is similar, their syntactic
structures can be completely different (Figure 1).
If a translation system regards these sentences as
similar, the translation would fail. This is because
conventional retrieval techniques exploit only sim-
ilarity of surface information such as words and
parts-of-speech, but not more abstract information
such as syntactic structures.

He beats a dog with a

V DET NN P DET

NP

PP

NP

S

stick

N

VP

VP

NP

He knows the girl with a

V DET NN P DET

NP

PP

NP

S

ribbon

N

NP

VP

NP

Figure 1: Sentences similar in appearance but dif-
fer in syntactic structure

Collins et al. (Collins, 2001a; Collins, 2001b)
proposed Tree Kernel, a method to calculate a sim-
ilarity between syntactic structures. Tree Kernel
defines the similarity between two syntactic struc-
tures as the number of shared subtrees. Retrieving
similar sentences in a huge corpus requires cal-
culating the similarity between a given query and
each of sentences in the corpus. Building an index
table in advance could improve retrieval efficiency,
but indexing with Tree Kernel is impractical due to
the size of its index table.

In this paper, we propose two efficient algo-

399



rithms to calculate similarity of syntactic struc-
tures: Tree Overlapping and Subpath Set. These
algorithms are more efficient than Tree Kernel be-
cause it is possible to make an index table in rea-
sonable size. The experiments comparing these
three algorithms showed that Tree Overlapping is
100 times faster and Subpath Set is 1,000 times
faster than Tree Kernel when being used for struc-
tural retrieval.

After briefly reviewing Tree Kernel in section 2,
in what follows, we describe two algorithms in
section 3 and 4. Section 5 describes experiments
to compare these three algorithms and discussion
on the results. Finally, we conclude the paper and
look at the future direction of our research in sec-
tion 6.

2 Tree Kernel

2.1 Definition of similarity

Tree Kernel is proposed by Collinset al. (Collins,
2001a; Collins, 2001b) as a method to calculate
similarity between tree structures. Tree Kernel de-
fines similarity between two trees as the number
of shared subtrees. SubtreeS of treeT is defined
as any tree subsumed byT , and consisting of more
than one node, and all child nodes are included if
any.

Tree Kernel is not always suitable because the
desired properties of similarity are different de-
pending on applications. Takahashiet al. pro-
posed three types of similarity based on Tree Ker-
nel (Takahashi, 2002). We use one of the similar-
ity measures (equation (1)) proposed by Takahashi
et al.

KC(T1, T2) = max
n1∈N1, n2∈N2

C(n1, n2) (1)

whereC(n1, n2) is the number of shared subtrees
by two trees rooted at nodesn1 andn2.

2.2 Algorithm to calculate similarity

Collins et al. (Collins, 2001a; Collins, 2001b)
proposed an efficient method to calculate Tree
Kernel by usingC(n1, n2) as follows.

• If the productions atn1 andn2 are different
C(n1, n2) = 0

• If the productions atn1 and n2 are the
same, andn1 andn2 are pre-terminals, then
C(n1, n2) = 1

• Else if the productions atn1 andn2 are the
same andn1 andn2 are not pre-terminals,

C(n1, n2) =
nc(n1)∏

i=1

(1 + C(ch(n1, i), ch(n2, i)))

(2)
wherenc(n) is the number of children of noden
and ch(n, i) is the i’th child node ofn. Equa-
tion (2) recursively calculatesC on its child node,
and calculatingCs in postorder avoids recalcula-
tion. Thus, the time complexity ofKC(T1, T2) is
O(mn), wherem andn are the numbers of nodes
in T1 andT2 respectively.

2.3 Algorithm to retrieve sentences

Neither Collins nor Takahashi discussed retrieval
algorithms using Tree Kernel. We use the follow-
ing simple algorithm. First we calculate the simi-
larity KC(T1, T2) between a query tree and every
tree in the corpus and rank them in descending or-
der ofKC .

Tree Kernel exploits all subtrees shared by trees.
Therefore, it requires considerable amount of time
in retrieval because similarity calculation must be
performed for every pair of trees. To improve re-
trieval time, an index table can be used in general.
However, indexing by all subtrees is difficult be-
cause a tree often includes millions of subtrees.
For example, one sentence in Titech Corpus (Noro
et al., 2005) with 22 words and 87 nodes includes
8,213,574,246 subtrees. The number of subtrees
in a tree withN nodes is bounded above by2N .

3 Tree Overlapping

3.1 Definition of similarity

When putting an arbitrary noden1 of treeT1 on
noden2 of treeT2, there might be the same pro-
duction rule overlapping inT1 andT2. We define
CTO(n1, n2) as the number of such overlapping
production rules whenn1 overlapsn2 (Figure 2).

We will define CTO(n1, n2) more precisely.
First we defineL(n1, n2) of noden1 of T1 and
noden2 of T2. L(n1, n2) represents a set of pairs
of nodes which overlap each other when putting
n1 on n2. For example in Figure 2,L(b1

1, b
2
1) =

{(b1
1, b

2
1), (d

1
1, d

2
1), (e

1
1, e

2
1), (g

1
1, g

2
1), (i

1
1, j

2
1)}.

L(n1, n2) is defined as follows. Hereni andmi

are nodes of treeTi, ch(n, i) is the i’th child of
noden.

1. (n1, n2) ∈ L(n1, n2)

400



 

(1) aT2

b

d e

g

j

g

i

a

b c

d

(2)

e

g

i

b

d e

g

j

a

b c

d e

g

i

a

b c

d e

g

i

(3)

g

i

CTO(b11,b21) = 2

a

g

i

b

d e

g

j

T1

a

CTO(g11,g21) = 1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

2
1

2
1

2
1

2
1

2
1

2
1

2
2

2
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

2
1

2
1

2
1

2
1

2
1

2
1

2
2

2
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

2
1

2
1

2
1

2
1

2
1

2
1

2
2

2
1

Figure 2: Example of similarity calculation

2. If (m1, m2) ∈ L(n1, n2),
(ch(m1, i), ch(m2, i)) ∈ L(n1, n2)

3. If (ch(m1, i), ch(m2, i)) ∈ L(n1, n2),
(m1,m2) ∈ L(n1, n2)

4. L(n1, n2) includes only pairs generated by
applying 2. and 3. recursively.

CTO(n1, n2) is defined by usingL(n1, n2) as
follows.

CTO(n1, n2)

=

∣∣∣∣∣∣∣∣∣

(m1,m2)

∣∣∣∣∣∣∣∣∣
m1 ∈ NT (T1)
∧ m2 ∈ NT (T2)
∧ (m1,m2) ∈ L(n1, n2)
∧ PR(m1) = PR(m2)


∣∣∣∣∣∣∣∣∣ ,
(3)

whereNT (T ) is a set of nonterminal nodes in tree
T , PR(n) is a production rule rooted at noden.

Tree Overlapping similaritySTO(T1, T2) is de-
fined as follows by usingCTO(n1, n2).

STO(T1, T2) = max
n1∈NT (T1) n2∈NT (T2)

CTO(n1, n2)

(4)
This formula corresponds to equation (1) of Tree
Kernel.

As an example, we calculateSTO(T1, T2) in
Figure 2 (1). Puttingb1

1 on b2
1 gives Figure 2 (2)

in which two production rulesb → d e ande → g
overlap respectively. Thus,CTO(b1

1, b
2
1) becomes

2. While overlappingg1
1 andg2

1 gives Figure 2 (3)
in which only one production ruleg → i overlaps.
Thus,CTO(g1

1, g
2
1) becomes1. Since there are no

other node pairs which gives largerCTO than2,
STO(T1, T2) becomes2.

Table 1: Example of the index table

p I[p]

a → b c {a1
1}

b → d e {b1
1, b

2
1}

e → g {e1
1, e

2
1}

g → i {g1
1, g

2
1}

a → g b {a2
1}

g → j {g2
1}

3.2 Algorithm

Let us take an example in Figure 3 to explain the
algorithm. Suppose thatT0 is a query tree and the
corpus has only two trees,T1 andT2.

The method to find the most similar tree to a
given query tree is basically the same as Tree Ker-
nel’s (section 2.2). However, unlike Tree Kernel,
Tree Overlapping-based retrieval can be acceler-
ated by indexing the corpus in advance. Thus,
given a tree corpus, we build an index tableI[p]
which maps a production rulep to its occurrences.
Occurrences of production rules are represented
by their left-hand side symbols, and are distin-
guished with respect to trees including the rule and

401



(1) T0 a(2)

b

d e

g

j

g

i

(3)a

b c

d e

Score: 2 pt. Score: 1 pt.

a

b c

d e

g

i

a

b c

d e

a

b c

d e

aT2

b

d e

g

j

g

i

a

b c

d e

g

i

T10
1

0
1

0
1

0
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

2
1

2
1

2
1

2
1

2
1

2
2

2
1

0
1

0
1

0
1

0
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
1

0
1

0
1

0
1

0
1

2
1

2
1

2
1

2
1

2
1

2
1

2
2

2
1

2
1

 

Figure 3: Example of Tree Overlapping-based retrieval

the position in the tree.I[p] is defined as follows.

I[p] =

m

∣∣∣∣∣∣∣
T ∈ F
∧ m ∈ NT (T )
∧ p = PR(m)

 (5)

where F is the corpus (here{T1, T2}) and the
meaning of other symbols is the same as the defi-
nition of CTO (equation (3)).

Table 1 shows an example of the index table
generated fromT1 andT2 in Figure 3 (1). In Ta-
ble 1, a superscript of a nonterminal symbol iden-
tifies a tree, and a subscript identifies a position in
the tree.

By using the index table, we calculateC[n,m]
with the following algorithm.

for all (n,m) do C[n,m] := 0 end
foreachn in NT (T0) do

foreachm in I[PR(n)] do
(n′,m′) := top(n,m)
C[n′,m′] := C[n′,m′] + 1

end
end

where top(n, m) returns the upper-most pair of
overlapped nodes when noden and m overlap.
The value oftop uniquely identifies a situation of
overlapping two trees. Functiontop(n, m) is cal-
culated by the following algorithm.

function top(n,m);
begin

(n′,m′) := (n,m)
while order(n′) = order(m′) do

n′ := parent(n′)
m′ := parent(m′)

end
return (n′,m′)

end

where parent(n) is the parent node ofn, and
order(n) is the order of noden among its siblings.
Table 2 shows example values oftop(n,m) gen-
erated by overlappingT0 andT1 in Figure 3. Note
that top maps every pair of corresponding nodes
in a certain overlapping situation to a pair of the
upper-most nodes of that situation. This enables
us to use the value oftop as an identifier of a situ-
ation of overlap.

Table 2: Examples oftop(n, m)

(n,m) top(n,m)

(a0
1, a

1
1) (a0

1, a
1
1)

(b0
1, b

1
1) (a0

1, a
1
1)

(c0
1, c

1
1) (a0

1, a
1
1)

Now C[top(n,m)] = CTO(n,m), therefore the
tree similarity between a query treeT0 and each
treeT in the corpusSTO(T0, T )can be calculated
by:

STO(T0, T ) = max
n∈NT (T0), m∈NT (T )

C[top(n,m)]

(6)

3.3 Comparison with Tree Kernel

The value ofSTO(T1, T2) roughly corresponds to
the number of production rules included in the
largest sub-tree shared byT1 andT2. Therefore,
this value represents the size of the subtree shared

402



by both trees, like Tree Kernel’sKC , though the
definition of the subtree size is different.

One difference is that Tree Overlapping consid-
ers shared subtrees even though they are split by a
nonshared node as shown in Figure 4. In Figure 4,
T1 andT2 share two subtrees rooted atb andc, but
their parent nodes are not identical. While Tree
Kernel does not consider the superposition putting
nodea onh, Tree Overlapping considers puttinga
onh and assigns count2 to this superposition.

 

a

b c

f g

(3)

d e

h

b c

f gd e

a

b c

f gd e

h

b c

f gd e

STO(T1,T2) = 2

(1) T1 (2) T2

Figure 4: Example of counting two separated
shared subtrees as one

Another, more important, difference is that Tree
Overlapping retrieval can be accelerated by index-
ing the corpus in advance. The number of indexes
is bounded above by the number of production
rules, which is within a practical index size.

4 Subpath Set

4.1 Definition of similarity

Subpath Set similarity between two trees is de-
fined as the number of subpaths shared by the
trees. Given a tree, its subpaths is defined as a
set of every path from the root node to leaves and
their partial paths.

Figure 5 (2) shows all subpaths inT1 andT2 in
Figure 5(1). Here we denotes a path as a sequence
of node names such as (a, b, d). Therefore, Sub-
path Set similarity ofT1 andT2 becomes 15.

4.2 Algorithm

SupposeT0 is a query tree,TS is a set of trees in
the corpus andP (T ) is a set of subpaths ofT . We
can build an index tableI[p] for each production
rulep as follows.

I[p] = {T |T ∈ TS ∧ p ∈ P (T )} (7)

Using the index table, we can calculate the num-
ber of shared subpaths byT0 andT , S[T ], by the
following algorithm:

for all T S[T ] := 0;
foreachp in P (T0) do

foreachT in I[p] do
S[T ] := S[T ] + 1

end
end

4.3 Comparison with Tree Kernel

As well as Tree Overlapping, Subpath Set retrieval
can be accelerated by indexing the corpus. The
number of indexes is bounded above byL × D2

whereL is the maximum number of leaves of trees
(the number of words in a sentence) andD is the
maximum depth of syntactic trees. Moreover, con-
sidering a subpath as an index term, we can use
existing retrieval tools.

Subpath Set uses less structural information
than Tree Kernel and Tree Overlapping. It does
not distinguish the order and number of child
nodes. Therefore, the retrieval result tends to be
noisy. However, Subpath Set is faster than Tree
Overlapping, because the algorithm is simpler.

5 Experiments

This section describes the experiments which were
conducted to compare the performance of struc-
ture retrieval based on Tree Kernel, Tree Overlap-
ping and Subpath Set.

5.1 Data

We conducted two experiments using different an-
notated corpora. Titech corpus (Noro et al., 2005)
consists of about 20,000 sentences of Japanese
newspaper articles (Mainiti Shimbun). Each sen-
tence has been syntactically annotated by hand.
Due to the limitation of computational resources,
we used randomly selected 2,483 sentences as a
data collection.

Iwanami dictionary (Nishio et al., 1994) is a
Japanese dictionary. We extracted 57,982 sen-
tences from glosses in the dictionary. Each sen-
tences was analyzed with a morphological an-
alyzer, ChaSen (Asahara et al., 1996) and the
MSLR parser (Shirai et al., 2000) to obtain syntac-
tic structure candidates. The most probable struc-
ture with respect to PGLR model (Inui et al., 1996)
was selected from the output of the parser. Since
they were not investigated manually, some sen-
tences might have been assigned incorrect struc-
tures.

5.2 Method

We conducted two experiments Experiment I and
Experiment II with different corpora. The queries

403



(1) aT2

b

d e

g

j

g

i

a

b c

d e

g

i

T1

(c),

(a,c),

(e,g,i),

(b,e,g,i),

(a,b,e,g,i)

(2) Subpaths of T1

Subpaths of T2SSS(T1,T2) = 15

(a), (b), (d), (e), (g), (i),

(a,b), (b,d), (b,e), (e,g), (g,i),

(a,b,d), (a, b, e), (b,e,g),

(a,b,e,g)

(j),

(a,g), (g,j),

(a,g,i), (e,g,j),

(b,e,g,j),

(a,b,e,g,j)

Figure 5: Example of subpaths

were extracted from these corpora. The algorithms
described in the preceding sections were imple-
mented with Ruby 1.8.2. Table 3 outlines the ex-
periments.

Table 3: Summary of experiments

Experiment I II
Target corpus Titech Corpus Iwanami dict.
Corpus size 2,483 sent. 57,982 sent.
No. of queries 100 1,000
CPU Intel Xeon PowerPC G5

(2.4GHz) (2.3GHz)
Memory 2GB 2GB

5.3 Results and discussion

Since we select a query from the target corpus,
the query is always ranked in the first place in the
retrieval result. In what follows, we exclude the
query tree as an answer from the result.

We evaluated the algorithms based on the fol-
lowing two factors: average retrieval time (CPU
time) (Table 4) and the rank of the tree which was
top-ranked in other algorithm (Table 5). For ex-
ample, in Experiment I of Table 5, the column
“≥5th” of the row “TO/TK” means that there were
73 % of the cases in which the top-ranked tree by
Tree Kernel (TK) was ranked 5th or above by Tree
Overlapping (TO).

We consider Tree Kernel (TK) as the baseline
method because it is a well-known existing simi-
larity measure and exploits more information than
others. Table 4 shows that in both corpora, the
retrieval speed of Tree Overlapping (TO) is about

Table 4: Average retrieval time per query [sec]

Algorithm Experiment I Experiment II
TK 529.42 3796.1
TO 6.29 38.3
SS 0.47 5.1

100 times faster than that of Tree Kernel, and the
retrieval speed of Subpath Set (SS) is about 1,000
times faster than that of Tree Kernel. This re-
sults show we have successfully accelerated the
retrieval speed.

The retrieval time of Tree Overlapping, 6.29
and 38.3 sec./per query, seems be a bit long. How-
ever, we can shorten this time if we tune the im-
plementation by using a compiler-type language.
Note that the current implementation uses Ruby,
an interpreter-type language.

Comparing Tree Overlapping and Subpath Set
with respect to Tree Kernel (see rows “TK/TO”
and “TK/SS”), the top-ranked trees by Tree Kernel
are ranked in higher places by Tree Overlapping
than by Subpath Set. This means Tree Overlap-
ping is better than Subpath Set in approximating
Tree Kernel.

Although the corpus of Experiment II is 20
times larger than that of Experiment I, the figures
of Experiment II is better than that of Experiment I
in Table 5. This could be explained as follows.
In Experiment II, we used sentences from glosses
in the dictionary, which tend to be formulaic and
short. Therefore we could find similar sentences
easier than in Experiment I.

To summarize the results, when being used in

404



Table 5: The rank of the top-ranked tree by other
algorithm [%]

Experiment I
A/B 　 1st　 ≥ 5th ≥ 10th

TO/TK 34.0 73.0 82.0
SS/TK 16.0 35.0 45.0
TK/TO 29.0 41.0 51.0
SS/TO 27.0 49.0 58.0
TK/SS 17.0 29.0 37.0
TO/SS 29.0 58.0 69.0

Experiment II
A/B 　 1st　 ≥ 5th ≥ 10th

TO/TK 74.6 88.0 92.0
SS/TK 65.3 78.8 84.1
TK/TO 71.1 81.0 84.6
SS/TO 73.4 86.0 89.8
TK/SS 65.5 75.9 79.7
TO/SS 76.1 87.7 92.0

similarity calculation of tree structure retrieval,
Tree Overlapping approximates Tree Kernel bet-
ter than Subpath Set, while Subpath Set is faster
than Tree Overlapping.

6 Conclusion

We proposed two fast algorithms to retrieve sen-
tences which have a similar syntactic structure:
Tree Overlapping (TO) and Subpath Set (SS). And
we compared them with Tree Kernel (TK) to ob-
tain the following results.

• Tree Overlapping-based retrieval outputs
similar results to Tree Kernel-based retrieval
and is 100 times faster than Tree Kernel-
based retrieval.

• Subpath Set-based retrieval is not so good
at approximating Tree Kernel-based retrieval,
but is 1,000 times faster than Tree Kernel-
based retrieval.

Structural retrieval is useful for annotationg cor-
pora with syntactic information (Yoshida et al.,
2004). We are developing a corpus annotation tool
named “eBonsai” which supports human to anno-
tate corpora with syntactic information and to re-
trieve syntactic structures. Integrating annotation
and retrieval enables annotators to annotate a new
instance with looking back at the already anno-
tated instances which share the similar syntactic

structure with the current one. For such purpose,
Tree Overlapping and Subpath Set algorithms con-
tribute to speed up the retrieval process, thus make
the annotation process more efficient.

However, “similarity” of sentences is affected
by semantic aspects as well as structural aspects.
The output of the algorithms do not always con-
form with human’s intuition. For example, the
two sentences in Figure 6 have very similar struc-
tures including particles, but they are hardly con-
sidered similar from human’s viewpoint. With this
respect, it is hardly to say which algorithm is su-
perior to others.

As a future work, we need to develop a method
to integrate both content-based and structure-
based similarity measures. To this end, we have
to evaluate the algorithms in real application envi-
ronments (e.g. information retrieval and machine
translation) because desired properties of similar-
ity are different depending on applications.

References

Asahara, M. and Matsumoto, Y., Extended Models and
Tools for High-performance Part-of-Speech Tagger.
Proceedings of COLING 2000, 2000.

Collins, M. and Duffy, N. Parsing with a Single Neu-
ron: Convolution Kernels for Natural Language
Problems. Technical report UCSC-CRL-01-01, Uni-
versity of California at Santa Cruz, 2001.

Collins, M. and Duffy, N. Convolution Kernels for Nat-
ural Language. In Proceedings of NIPS 2001, 2001.

Inui, K., Shirai, K., Tokunaga T. and Tanaka H., The In-
tegration of Statistics-based Techniques in the Anal-
ysis of Japanese Sentences. Special Interest Group
of Natural Language Processing, Information Pro-
cessing Society of Japan, Vol. 96, No. 114, 1996.

Nagao, M. A framework of a mechanical translation
between Japanese and English by analogy principle.
In Alick Elithorn and Ranan Banerji, editors, Artif-
ical and Human Intelligence, pages 173-180. Ams-
terdam, 1984.

Noro, T., Koike, C., Hashimoto, T., Tokunaga, T. and
Tanaka, H. Evaluation of a Japanese CFG Derived
from a Syntactically Annotated Corpus with respect
to Dependency Measures, The 5th Workshop on
Asian Language Resources, pp.9-16, 2005.

Nishio, M., Iwabuchi, E. and Mizutani, S. (ed.)
Iwanami Kokugo Jiten, Iwanamishoten, 5th Edition,
1994.

Shirai, K., Ueki, M. Hashimoto, T., Tokunaga, T. and
Tanaka, H., MSLR Parser Tool Kit - Tools for Natu-
ral Language Analysis. Journal of Natural Language

405



学級 に、 若い 教材会社 の 青年

P ADJ NN P N

PP

PP

S

が

P

VP

NP

きました

V

…

NP

(to) (young) (a teaching material company) (of) (man) (SBJ ) (came)… (classroom)

頭 に、 着弾した 砲弾 の 破片

P ADJ NN P N

PP

PP

S

が

P

VP

NP

直撃した

V

…

NP

(to) (exploded) (bombshell) (of) (piece) (SBJ ) (hit)… (head)

"A young man of a teaching material company came to the classroom"

"A piece of the exploded bombshell hit his head"

Query

Top- ranked

Figure 6: Example of a retrieved similar sentence

Processing, Vol. 7, No. 5, pp. 93-112, 2000. (in
Japanese)

Somers, H., McLean, I., Jones, D. Experiments in mul-
tilingual example-based generation. CSNLP 1994:
3rd conference on the Cognitive Science of Natural
Language Processing, Dublin, 1994.

Takahashi, T., Inui K., and Matsumoto, Y.. Methods
of Estimating Syntactic Similarity. Special Interest
Group of Natural Language Processing, Information
Processing Society of Japan, NL-150-7, 2002. (in
Japanese)

Yoshida, K., Hashimoto, T., Tokunaga, T. and Tanaka,
H.. Retrieving annotated corpora for corpus annota-
tion. Proceedings of 4th International Conference on
Language Resources and Evaluation: LREC 2004.
pp.1775 – 1778. 2004.

406


