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Abstract

This paper presents a prototype dia-
logue systemK3, in which a user can
instruct agents through speech input to
manipulate various objects in a 3-D vir-
tual world. In this paper, we focus
on two distinctive features of th&s
system: plan-based anaphora resolution
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Since all the actions carried out by an agent of
the K3 system are visible, we can evaluate the
performance of the system by observing its an-
imation. Visualizing the agents’ actions yields
many interesting issues from a cognitive science
point of view; more complex processes are in-
volved than those found in most conventional nat-
ural language understanding systems.

After sketching out the overview of thiés sys-

and handling vagueness in spatial ex-
pressions. After an overview of the sys-
tem architecture, each of these features
is described. We also look at the future
research agenda of this system.

tem in section 2, Two distinctive features Kf

are discussed in section 3, and 4. Finally, sec-
tion 5 concludes the paper and looks at future re-
search agenda.

2 System Overview

1 Introduction

A screen shot oKg is shown in Fig. 1. There are
SHRDLU (Winograd, 1972) can be considered agwo agents and several objects in a virtual world.
the most important natural language understandFhe current system accepts simple Japanese utter-
ing system. Although SHRDLU was not “embod- ances with anaphoric and elliptical expressions,
ied”, having had only a small stick to manipu- such as “Walk to the desk.” and “Further”. The
late objects, it certainly had several features that 8ize of the lexicon is about 100 words.

conversational agent is supposed to have. It had a
great potential, and it was very promising for fu-
ture research on natural language understanding.

Recently better technologies have become
available in speech recognition and natural lan-
guage processing. Major breakthroughs in the
area of computer graphics have enabled us to gen-
erate complex, yet realistic 3-D animated agents
or embodied life-like agents in a virtual envi-
ronment. Researchers are now in a good posi-
tion to go beyond SHRDLU by combining these
technologies (Tanaka et al., 2004). This paper
presents a conversational animated agent system,
K3.

Figure 1: A screenshot df2



The architecture of theé(s is illustrated in 3 Plan-based Anaphora Resolution
Fig. 2. system. The speech recognition module )
receives the user’s speech input and generate53a1 Surface-clue-based_ Resolution vs.
sequence of words. The syntactic/semantic anal- Plan-based Resolution
ysis module analyzes the word sequence to exconsider the following two dialogue examples.
tract a case frame. This module accepts ill-formed
speech input including postposition omission, in-(1-1) “Agent X, push the red ball.”
version, and self-correction. At this stage, not(1-2) “Move to the front of the blue ball.”
all case slots are necessarily filled, because of el1-3) “pyshit.”
lipses in the utterance. Even in cases where there
is no ellipsis, instances of objects are not identi{2-1) “Agent X, pick up the red ball.”

fied at this stage. (2-2) “Move to the front of the blue ball.”

. . i . (2-3) “Putit down.”
Resolving ellipses and anaphora, and identify-

ing instances in the world are performed by the The second dialogue is different from the first
discourse analysis module. Anaphora resolutiojyne only in terms of the verbs in the first and third
and instance identification are achieved by usingtterances. The syntactic structure of each sen-
plan-knowledge, which will be described in sec-tence in the second dialogue (2-1)-(2-3) is the
tion 3. same as the corresponding sentence in the first
dialogue (1-1)-(1-3). However, pronoun “it” in
The discourse analysis module extracts thg1-3) refers to “the blue ball” in (1-2), and pro-
user’s goal as well and hands it over to the plannoun “it” in (2-3) refers to “the red ball” in (2-1).
ning modules, which build a plan to generate theThe difference between these two examples is not
appropriate animation. In other words, the plan-explained by the theories based on surface clues
ning modules translate the user’s goal into animasuch as the centering theory (Grosz et al., 1995;
tion data. However, the properties of these twonalker et al., 1998).
ends are very different and straightforward trans- |n the setting of SHRDLU-like systems, the
lation is rather difficult. The user’s goal is repre- yser has a certain goal of arranging objects in
sented in terms of symbols, while the animationthe world, and constructs a plan to achieve it
data is a sequence of numeric values. To bridgehrough interaction with the system. As Cohen
this gap, we take a two-stage approach — macrgyointed out, users tend to break up the referring
and micro-planning. and predicating functions in speech dialogue (Co-
hen, 1984). Thus, each user’s utterance suggests
During the macro-planning, the planner needs part of plan rather than a whole plan that the
to know the physical properties of objects, suchuser tries to perform. To avoid redundancy, users
as their size, location and so on. For example, thieed to use anaphora. From these observations,
pick up a ball, the agent first needs to move to theve found that considering a user’s plan is indis-
location at which he can reach the ball. In thispensable in resolving anaphora in this type of di-
planning process, the distance between the badllogue system and developed an anaphora resolu-
and the agent needs to be calculated. This sotlon algorithm using the relation between utter-
of information is represented in terms of coordi-ances in terms of partial plans (plan operators)
nate values of the virtual space and handled by theorresponding to them.
micro-planner. The basic idea is to identify a chain of plan op-
erators based on their effects and preconditions.
To interface the macro- and micro-planning,Our method explained in the rest of this section
we introduced th&PACE object to represent a lo- finds preceding utterances sharing the same goal
cation in the virtual space by its symbolic and nu-as the current utterance with respect to their cor-
meric character. Th8PACE object is described in responding plan operators as well as surface lin-
section 4. guistic clues.
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3.2 Resolution Algorithm ing the surface information, then filters them out
: : : . with linguistic clues and the plan library. For ex-
Recognized speech input is transformed into a g . P . y“ ;
. ) ample, demonstratives such as “this”, “that” are
case frame. At this stage, anaphora is not re- . . o
. usually used for objects that are in the user’s view.

solved. Based on this case frame, a plan oper

. . : . . al'herefore, the referent of anaphora with demon-
tor is retrieved in the plan library. This process . . . . .

) ) S stratives is restricted to the objects in the current
is generally called “plan recognition.” A plan USEr's View

operator used in our system is similar to that of If the effect of a plan operator satisfies the pre-
STRIPS (Fikes, 1971), which consists of precon- " P P P

. ; o condition of another plan operator, and the utter-
dition, effect and action description.

Variables in th rieved bl ‘ ances corresponding to these plan operators are
_vanabes in the retneved pian operator ar€, o aq in discourse, they can be considered to
filled with case fillers in the utterance. There

iaht be missi il h h intend the same goal. Thus, identifying a chain
might be missing case Tilers when anaphora (zer%f effect-precondition relations gives important

pronoun) is used in the utterance. The SYSteM tormation for grouping utterances sharing the

tries to resolve these missing elements in the plagame goal. We can assume an anaphor and its
operator. To resolve the missing elements, th?eferent appear within the same utterance group.

system again uses clue words and the plan library. Once the utterance group is identified, the sys-
An overview of the anaphora resolution algorithm . L
tem finds the referent based on matching variables

is shown in Figure 3.
Wh h includ | ds. th between plan operators.
en the utterance includes clue words, the After filtering out the candidates, there still

system uses them to search the history databa?ﬁght be more than one candidate left. In such a
for the preceding utterance that shares the same

. .. case, each candidate is assigned a score that is cal-
goal as the current utterance. Then, it |dent|f|esc

. . ulated based on the following factors: saliency,
the referent on the basis of case matching.

_ _ ~agent’s view, and user’s view.
There are cases in which the proper preceding

utterance cannot be identified even with the clut_aﬂr Handling Spatial Vagueness

words. These cases are sent to the left branch in

Fig. 3 where the plan library is used to resolveTo interface the macro- and micro-planning, we

anaphora. introduced theSPACE object which represents a
When there is no clue word or the clue wordlocation in the virtual world. Because of space

does not help to resolve the anaphora, the procedgitations, we briefly explain th&pACE object.

goes through the left branch in Fig. 3. First, the The macro planner uses plan operators de-

system enumerates the candidates of referents useribed in terms of the logical forms. Thus, the
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l (A) space#l := new inFrontOf(desk#1, viewpoint#1,
MIRROR)
Unique iltering i — 1 i
— erine (B) list#1 := space#1.findObjects()
(C) ball#1 := list#1.getFirstMatch(kindOf(BALL))

In step (A), an instance dBPACE is created as

an instance of the classFrontof. The construc-

tor of inFrontOf takes three arguments: the ref-
erence object, the viewpoint, and the axis order.

Referent o : )

identified Although it is necessary to identify the reference
frame, we focus on the calculation of potential
functions given a reference frame.

Figure 3: Anaphora resolution algorithm Suppose the parametersiafrontof have been

resolved in the preceding steps, and the discourse

L . analysis module chooses the axis mirror order and
SPACE object is designed to behave as a sym- . . . : :

. o . . the orientation of the axis based on the viewpoint
bolic object in the macro-planning by referring to

its unique identifier. On the other hand, a Ioca-Of the light-colored arrows in Fig. 4. The closest

. . arrow to the viewpoint-based “front” axis ((1) in
tion could be vague and the most plausible placcla:ig 4) is chosen as the “front” of the desk. Then
changes depending on the situation. Therefore, It ~ ' !

should be treated as a certain region rather than.{i{e parameters of potential function correspond-

. : o : in “front” ar :
single point. To fulfill this requirement, we adopt g'to front are set

. . In step (B), the methoehatchObjects() returns
the idea of the potential model proposed by Yaa list of objects located in the potential field of

mada et al. (Yamada et al., 1988). VVagueness of a o , . .
S . . space#1 shown in Fig. 5. The objects inthe list are
location is naturally realized as a potential func-

tion embedded in th&PACE object. The most sorted in descending order of the potential value

. . . of their location.
plausible point is calculated by using the poten- In step (C), the most plausible object satisfy-

:lé:chJLuenS(;tlon with the Steepest Descent Method orlmg the type constraintB@LL) is selected by the

Consider the following short conversation be—methOdgetF'rSt.MétChO' B .
. When receiving the next utterance, “Put it on
tween a human (H) and a virtual agent (A).

the desk.”, the discourse analysis module resolves
H: Do you see a ball in front of the desk? the referent of the pronoun “it” and extracts the
user’s goal.

Scoring

A: Yes.
. . walk(inFrontOf(ball#1, viewpoint#1, MIRROR)
H: Putit on the desk. AND reachableByHand(ball#1)

AND NOT (occupied(ball#1
When the first utterance is given in the situation (occupted( %

shown in Fig. 1, the discourse analysis module The movemenivalk takes aSPACE object rep-
identifies an instance of “a ball” in the following resenting its destination as an argument. In this
steps. example, the conjunction of thre&@PACE objects
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must react to the request for agent A and coor-
dinate with agent A to receive a box.

Parallel Actions. Most intelligent agent sys-
tems perform only one action at a time. Yet, if we
want to make systems become more flexible, we
must enable them to handle more than one action
at a time. Hence, they must speak while walking,
wave while nodding, and so on.

Figure 5: Potential field ofpace#1
Memory System. A history database is not

enough to serve realistic dialogue in the domain
is given as the argument. The potential functionyf 3. In such a domain, people often mention a
of the resultanSpACE is calculated by multiply-  previous statee.g, “Put the ball back to the place
ing the values of the corresponding three potentiayhere it was.” To comply such a request, agents
functions at each point. must have a human-like memory system.
As this example illustrates, thBPACE object
effectively plays a role as a mediator between thdnterruption  Handling. ~ Agents sometimes

macro and micro planning. misunderstand requests and perform not intended
actions. In case of human conversations, a
5 Conclusions and Future Work speaker usually interrupts hearer and try to repair

misunderstanding. Conversational agents also
We have introduced our prototype syst&mg two  should be able to accept such interruptions.
distinctive features of which are described in thisinterruption handling is also essential to request
paper. Plan-based anaphora resolution enablegsnext action before agents finish actions.
Ksg to interpret the user’s intention more pre-
cisely than the previous, surface-cue-based resé\cknowledgment
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