
Direct Combination of Spelling and
Pronunciation Information for Robust

Back-Transliteration

Slaven Bilac and Hozumi Tanaka

Tokyo Institute of Technology
Ookayama 2-12-1, Meguro, 152-8552 Tokyo, Japan

{sbilac,tanaka}@cl.cs.titech.ac.jp,

Abstract. Transliterating words and names from one language to an-
other is a frequent and highly productive phenomenon. For example, En-
glish word cache is transliterated in Japanese as キャッシュ “kyasshu”.
Transliteration is information losing since important distinctions are not
always preserved in the process. Hence, automatically converting translit-
erated words back into their original form is a real challenge. Nonetheless,
due to its wide applicability in MT and CLIR, it is an interesting problem
from a practical point of view.
In this paper, we demonstrate that back-transliteration accuracy can
be improved by directly combining grapheme-based (i.e. spelling) and
phoneme-based (i.e. pronunciation) information. Rather than producing
back-transliterations based on grapheme and phoneme model indepen-
dently and then interpolating the results, we propose a method of first
combining the sets of allowed rewrites (i.e. edits) and then calculating
the back-transliterations using the combined set. Evaluation on both
Japanese and Chinese transliterations shows that direct combination in-
creases robustness and positively affects back-transliteration accuracy.

1 Introduction

With the advent of technology and increased flow of goods and services, it has
become quite common to integrate new words from one language to another.
Whenever a word is adopted into a new language, pronunciation is adjusted to
suit the phonetic inventory of the language. Furthermore, the orthographic form
of the word is modified to allow representation in the target language script.
For example, English word cache is transliterated in Japanese as キャッシュ
“kyasshu”.1 In similar fashion, a proper noun Duncan is transliterated as 桔刃
“deng4ken3” in Chinese.2 This process of acquisition and assimilation of a new
word into an existing writing system is referred to as transliteration [1].
1 We use italics to transcribe the English words, while Japanese transliterations (e.g.
キャッシュ) are given with romaji (i.e. roman alphabet) in “typewriter” font (e.g.
“kyasshu”). The romanization used follows [1], thus closely reflecting English–like
pronunciation with long vowels transcribed as “aa” rather than “ā”.

2 Chinese transliterations are given with the PinYin romanization with numerical tone
codes.

Since integration of new words is a very productive process, it often happens
that they are not recorded in machine or human dictionaries. Therefore, it is
impossible to rely on dictionary lookup to find the transliteration pairs. Inabil-
ity to find a target language equivalent represents a major problem in Machine
Translation (MT) since it can cause translation failures. Furthermore, translit-
eration represents a serious problem in the area of Cross-Language Information
Retrieval (CLIR) where new technical terms are frequently used in the queries
and thus greatly affect performance [2, 3].

Back-transliteration is the transliteration back into the original language. It
is generally more difficult than transliteration. Increase in difficulty results from
the fact that various distinctions, present in the source language, are not always
preserved when the word is transliterated into the target language. For example,
Japanese has only five basic vowels and no /T/ or /D/3 sounds. Non-existent
sounds are replaced with their closest equivalents. Consequently, the following
three English words: bass,bath and bus are transliterated as バス “basu”.4 A
system trying to back-transliterate バス has therefore three valid choices which
cannot be disambiguated in the absence of additional contextual information.

Transliterated words are normally written in katakana, one of three major
character types making up the Japanese writing system. While other vocabulary
(i.e. animal names or onomatopoeic expressions) can also be written in katakana,
the fact that something is written in katakana is a good hint that it might be a
transliterated foreign word or a name. Thus, unlike Arabic, Chinese or Korean,
where a big part of the back-transliteration problem is identifying candidate
transliterations [4–6], in Japanese back-transliteration can be directly applied
to any katakana strings absent from the bilingual dictionary. In the evaluation
on the Chinese data set, we avoid the problem of identifying the transliteration
candidates since we train and evaluate on already extracted transliteration pairs.
However, a real back-transliteration application would have to address this issue.

Previously, [7] proposed a hybrid back-transliteration method combining
grapheme-based (i.e. spelling) and phoneme-based (i.e. pronunciation) informa-
tion and demonstrated significant improvements over methods relying only on a
single information source. In this paper, we show that the back-transliteration
accuracy can be further improved by altering the manner in which grapheme-
based and phoneme-based information is combined in the transliteration process
and show that our method can easily be applied to Chinese (and, implicitly, other
languages). Rather than producing back-transliterations based on grapheme and
phoneme model independently and then interpolating the results, we propose a
method of first combining the sets of allowed rewrites (i.e. edits) and then calcu-
lating back-transliterations using the combined set. Evaluation on both Japanese
and Chinese transliterations shows that the manner in which grapheme-based
and phoneme-based information are combined can significantly affect the system
performance.

3 All phonemes given in // are written in IPA symbols.
4 Here /T/ is replaced with /s/, and /æ/ is replaced with /a/.

The reminder of this paper is organized as follows: in Sect. 2 we review
previous research. Sect. 3 outlines the proposed transliteration model and the
system implementation. Finally, Sect. 4 gives an evaluation and a discussion of
the results obtained, whereas Sect. 5 gives the conclusion.

2 Previous Research

Transliteration has received significant attention from researchers in recent years.
Commonly, the source language considered is English and the target language
is an Asian language void of an alphabetic writing system (e.g. Japanese, Ko-
rean, Chinese). Based on the underlying model, previous approaches to (back-)
transliteration can be roughly divided into grapheme- and phoneme-based.

In the grapheme-based (or direct) modeling framework, the English string
is not converted into a phonemic representation before its alignment with the
transliterated string. Several different methods have been proposed within this
framework: a decision tree based transliteration model [8], a maximum entropy
based model [9], etc. Recently, [10] proposed a joint source-channel model that
simultaneously models both source and channel context. In this model, after
initial alignment, the preceding context (bigram, trigram) of both English and
Chinese aligned units is considered simultaneously. Its main advantage is that it
can be used for both transliteration and back-transliteration.

For back-transliteration of Japanese, [11] propose a noisy channel model al-
lowing for non-atomics edits [12]. The input string is broken down into arbitrary
substrings, each of which is output independently (and possibly incorrectly). The
best back-transliteration is chosen using a modified edit distance algorithm [13,
14]. Since the best transliteration is determined through comparison with dictio-
nary entries, this method does not handle phrases directly. This is a significant
shortcoming since a large percent of transliterated strings are phrases.

In the phoneme-based (or pivot) modeling approach the pronunciation, rather
than the spelling of the original string, is considered as a basis for transliteration.
Among several approaches proposed are: an HMM based transliteration model
[5], a rule based model [15] and a machine-learned phonetic similarity model [3].

For Japanese, [1] employ a compositional noisy-channel model combining
romaji-to-phoneme, phoneme-to-English and English word probability models.
The combined structure is treated as a graph, and the top ranking strings are
found using the k-best path algorithm [16]. However, in this model there is no
consideration of context information although context is crucial in determining
the correct pronunciation of a given phoneme.

Recently, [7] proposed a back-transliteration model combining statistical string
segmentation with a hybrid grapheme-phoneme transliteration model. The seg-
mentation of the input string decreases the calculation complexity and allows
for correct back-transliteration even of strings containing abbreviations. Further-
more, by taking both the spelling and pronunciation of the original into account
when modeling transliteration, the system is able to achieve higher accuracy.
However, the manner of combination is suboptimal since back-transliterations

are produced by each model independently and then the results are interpolated
to obtain the final back-transliterations. In this paper we propose a different
method of combining the grapheme- and phoneme-based models. The unit align-
ment sets (collections of allowed edits in the noisy channel model) are combined
into one set and then, back-transliterations are produced based on this set. Since
alignment sets obtained by each base model are different, their combination re-
sults in a more comprehensive alignment set that can successfully handle a larger
number of transliterations.

3 Transliteration Model

As mentioned above, in Japanese transliterated words are normally written in
katakana. However, we implement katakana to romaji conversion as a preprocess-
ing module and view back-transliteration as a process starting with a romanized
string.5

Given some string in romaji Ja, the goal is to find the English word (phrase)
Ea that maximizes the probability P (Ea|Ja). Applying the Bayes’ rule and drop-
ping the constant denominator we get P (Ja|Ea) × P (Ea), where P (Ea) is the
source model and P (Ja|Ea) is the noisy channel. For the source model, we use
a word-based model which can output words from a list of valid tokens Ea with
a certain probability distribution P (Ea). For the channel model we train several
different models (Sec. 3.1), and then invert each to enable handling of the romaji
input. The source model and each inverted channel model are then combined to
obtain the back-transliterations.

3.1 Base Models

Grapheme-based model. In the grapheme-based model (GM) the English
word is directly rewritten as a Japanese romaji string with the probability
Pg(Ja|Ea). Rewriting can be viewed as a sequential process where the first stage
is the partitioning of the input string into sub-word units which are then rewrit-
ten according to some mapping rule (1). Rather than trying to estimate the
probability of breaking up the string in a certain way, we allow all valid segmen-
tations given the segments in our learned mapping set with equal probability.
Thus, the resulting equation is simplified as (2). Under the assumption of seg-
ment independence, (2) can be further simplified so the resulting probability of
outputting Ja can be rewritten as in (3).

Pg(Ja|Ea) = P (Ea1 , Ea2 . . . Ean |Ea)× (1)
Pg(Ja1 , Ja2 . . . Jan |Ea1 , Ea2 . . . Ean) .

5 Katakana is a syllabary, and each character corresponds to one or more alphabet
letters (e.g. ア “a”, マ “ma” or シ “shi”, etc.). By romanizing the input, we allow
the model to capture the similarities on the letter level (e.g. that m in English often
maps to “m” in Japanese) and reduce the data sparseness problem.

Pg(Ja|Ea) ∼= Pg(Ja1 , Ja2 . . . Jan |Ea1 , Ea2 . . . Ean) . (2)

Pg(Ja|Ea) ∼=
n∏

i=1

Pg(Jai
|Eai

) . (3)

In Sect. 3.2 we describe how we get the set of allowed edits (Eai
→ Jai

) and
how we go about assigning the probability to each Pg(Jai |Eai) .

Phoneme-based model. In this model the channel is broken up into two
stages: a) conversion of the English alphabet into English phonemes with some
probability P (Ep|Ea) and b) conversion of English phonemes into romaji with
some probability P (Ja|Ep). Hence, Pp(Ja|Ea) can be rewritten as Eq. (4). Rather
than manipulating these two distributions separately, we compute their compo-
sition to obtain a unique probability distribution Pp(Jai

|Eai
). The composition

produces a set of edit pairs (Eai
→ Jai

) such that (Eai
→ Epi

) is a member of
the first set and (Epi

→ Jai
) is a member of the second set for some Epi

[19].6

Pp(Ja|Ea) ∼=
n∏

i=1

P (Jai |Epi)×
n∏

i=1

P (Epi |Eai) . (4)

Since obtained mapping set does not contain any English phoneme units, all
English alphabet strings can be rewritten directly into romaji without requiring
their conversion into intermediate phoneme representation. This removes the
requirement of having a pronunciation dictionary for the back-transliteration.7

Note also that both GM and PM are dealing with the same types of edits (i.e.
English alphabet to romaji (Eai → Jai)) and can be directly combined.

3.2 Training

The training consists of learning possible edits and their probabilities. We train
the GM and PM sets independently and then combine them.

For the grapheme-based model, romanized Japanese strings are aligned with
English strings directly using the non-weighted Levenshtein distance [13, 14]. Af-
ter initial alignment, each atomic edit (i.e. one aligning unit pair) is expanded
through combination with adjacent edits. By doing so, we add contextual infor-
mation to each edit, which helps reduce the ambiguity associated with atomic
edits [17]. For example, for the pair (vinyl, biniru) we get the following align-
ment:

v → b i → i n → n y → i l → r → u

6 This is a slight simplification since Epi can actually be a concatenation of several
Epn..m with respective mappings Epn..m → Jam..n .

7 However, the pronunciation dictionary is still necessary for the training since the
mapping set is obtained via intermediate use of English phoneme representations.

For N = 1, the following edits are then also added to the set:

vi → bi, in → in, vin → bin, ny → ni, iny → ini,

yl → ir, nyl → nir, yl → iru, l → ru

We collect a complete set of edits αg → βg in the training set and assign
the probability to each according to (5). Throughout, we distinguish edits that
appear at the beginning or the end of the word or neither.

P (α → β) =
count(α → β)

count(α)
. (5)

For the PM, we obtain the optimal romaji to English phoneme alignment
using the Estimation Maximization (EM) algorithm [18]. After EM selects the
optimal alignment, we proceed to expand the set of individual alignments with
N adjacent units as above to obtain a set of possible rewrites αep

→ βja
. This

process is repeated to obtain the set of all possible mappings of English alphabet
strings into phoneme strings αea

→ βep
. Each input αea

with all its mappings
βep and corresponding probabilities P (βep |αea) is converted into a Weighted
Finite State Transducer (WFST) Tp with αea as inputs, βep as outputs [19, 1]
and transition costs as negative logs of probabilities. WFST Tp is then composed
with a WFST Tc encoding the complete set of mappings αep → βja to obtain
the set of all possible rewrites of English alphabet strings αp into romaji strings
βp based on the PM.

Directly combined grapheme-phoneme model. By following the above
procedure, we can extract two sets of English alphabet to romaji edits and their
corresponding probabilities. One set is based on direct alignment of Japanese
string with English spelling (6) and the other one on the indirect alignment
via the English pronunciation as a pivot (7). Although the edits in each set
are trained from the same data, the sets are different in the sense that the
first set better reflects influence of English spelling on transliteration and the
second set better reflects the influence of English pronunciation. Since we would
like to obtain a set of edits which reflects the influence both of spelling and
pronunciation we combine the two as given in (8). We designate this set as Sgp

and the corresponding model as GPM.

Sg = (α1, β11, Pg(β11|α1)), (α1, β12, Pg(β12|α1)) . . . (αn, βnm, Pg(βnm|αn))(6)
Sp = (α1, β11, Pp(β11|α1)), (α1, β12, Pp(β12|α1)) . . . (αp, βpq, Pp(βpq|αp)) (7)
Sgp = Sg ∪ Sp s.t. Pgp(βij |αi) = γPg(βij |αi) + δPp(βij |αi)

and γ + δ = 1 (8)

Some statistics of learned mapping sets for N = 2 are given in Table 1. We
can see that the GM and PM sets differ significantly. Hence, their combination
(GPM) results in a more comprehensive set of edits which can handle a wider
variety of transliterations.

Table 1. Statistics of learned mapping sets. Statistics given are for romanized Japanese
strings

GM PM GPM

Unique English strings 15 120 8 662 18139
Avg. length of English strings (char.) 4.18 4.23 4.34
Max. English string length (char.) 7 11 11
Unique Japanese strings 13 933 7 392 16665
Avg. length of Japanese strings (char.) 4.63 4.66 4.80
Max. Japanese string length (char.) 9 10 10
Japanese strings per English string (avg.) 1.95 4.47 3.35

3.3 Model Implementation

Here, we describe how we calculate back-transliterations for a given input string
in romaji. First, the string is segmented as described in [7]. Next, the resulting
string is encoded as a Finite State Acceptor (FSA) I in which any path from
the start to accept state represents a possible breakup of the string into sub-
string units based on the extracted mapping set Sσ.8 We add a transition for
each substring αi that appears in the learned mapping set together with special
beginning-of-string and end-of-string marks.

Next, we rewrite Sσ as a WFST T with αi as inputs, βij as outputs and
transition costs as negative logs of probabilities. This WFST T is then inverted
and composed with the FSA I to obtain a WFST I ◦ TI which represents all
the possible ways to rewrite the input string into English given the mappings
learned in the training process.

We also compile the source model into a WFST O so that all word tokens
are added as valid outputs. A null input, word delimiter output transition is
also added, allowing for multiple words to be output for a single string input.
Hence, phrases can also be handled. Note that the valid word tokens need not
come from any bilingual/English dictionary but can be any list of words/phrases
we would like to make the target of back-transliteration. Probabilities assigned
to each token can be either reflecting corpus trained frequencies or uniformly
distributed. Thus, the source model can easily be adjusted to the given domain
or application.

Finally, WFST I◦TI is composed with the WFST O and the resulting WFST
I ◦TI ◦O is searched for k-best transliterations using the k-best path algorithm.
A probability P (Ea|Ja) is associated with each path obtained. In cases several
paths correspond to the same word (phrase), their probabilities are summed up.
Thanks to the cascading WFST composition we are able to search all possible
back-transliterations based on the available mappings and select the optimal
solution.

8 Here, σ ∈ {g, p, gp}.

Table 2. Examples of the NTCIR-2 data

Katakana Romanized Segmented English

ウィンドウサイズ uindousaizu uindou#saizu window size
エキシマレーザ ekishimareeza ekishima#reeza excimer laser
ガスレーザ gasureeza gasu#reeza gas laser
グラビトン gurabiton gurabiton graviton
グリコカリックス gurikokarikkusu gurikokarikkusu glycocalyx

4 Evaluation

We evaluate various aspects of the proposed method on sets of novel katakana
strings not in the EDICT dictionary [20]. The first set consists of 150 katakana
words extracted from the EDR Japanese corpus [21]. The second test comes from
the NTCIR-2 test collection [22]. All 78 out-of-vocabulary katakana words from
the topic section (49 short documents) were used. Several examples from this
test set are shown in Table 2.

A collection of about 6,000 words in katakana together with the correspond-
ing English translation extracted from the EDICT dictionary was used as train-
ing data. This set was expanded, so that for each katakana word containing a long
vowel or a geminate consonant, we add one with these removed. The pronuncia-
tions for training the PM were obtained from the CMU pronouncing dictionary
[23]. When no pronunciations were available the words were excluded from the
training. The AT&T FSM library [24] was used for WFST manipulation.

For the EDR test set we used the complete CMU dictionary word set (around
120,000 words) compiled into a language model with word probabilities reflecting
the corpus frequencies from the EDR English corpus [21]. For the NTCIR-2 test
set we created a language model from about 110,000 words and their frequencies
as counted in the English part of the NTCIR-2 collection. The transliterations
were considered correct, if they matched the English translation, letter-for-letter,
in a non-case-sensitive manner. Table 3 gives results for grapheme-model (GM),
phoneme-model (PM), interpolated combination model (COMB) [7] and pro-
posed method of direct combination (GPM).9 Each model was evaluated with
(+SEG) and without segmentation preprocessing module.

We can see that combination generally helps and that in all top-1 and most
top-10 cases (regardless of the segmentation), GPM fares better than COMB
method. Thus, direct combination seems to be an effective way of combining
grapheme- and phoneme-based models. Only for the NTCIR-2 test set, the high-
est top-1 accuracy is still achieved by GM+SEG model. This can be attributed
to a high number of scientific terms whose transliteration better reflects original
spelling than pronunciation (e.g. グリコカリックス “gurikokarikkusu” glyco-
calyx) that are pushed lower in the combined result sets.
9 For these experiments the combination weights are arbitrarily set at δ = γ = 0.5 for

the GPM whereas for the COMB model we use the trained values of δ and γ [7].
GM and PM models were trained with context N = 2.

Table 3. Transliteration results for the EDR test set (150 inputs) and for the NTCIR-2
test set (78 inputs)

EDR test set NTCIR-2 test set
Top-1 (%) Top-10 (%) Top-1 (%) Top-10 (%)

SEG 33.33 34.00 25.64 25.64
GM 48.00 66.00 48.72 62.82
GM+SEG 58.00 72.00 66.67 78.21
PM 46.00 61.33 35.90 52.56
PM+SEG 57.33 68.00 57.69 74.36
COMB 49.33 72.00 44.87 67.95
COMB+SEG 59.33 75.33 62.82 83.33
GPM 54.00 70.00 48.72 70.51
GPM+SEG 60.67 79.33 62.82 78.21

4.1 Evaluation on Chinese Test Data

In order to test whether our proposed method is also effective for other lan-
guages, we conducted an additional evaluation of back-transliteration on Chinese
transliterations of foreign names. The data set used consists of 11,584 transliter-
ation pairs listed by Xinhua News Agency [25]. We use 8,688 pairs to train the
system and 2,896 pairs for the evaluation. The training procedure is identical to
the one used for Japanese data with the exception of the romanization module
which was modified to work with Chinese input and output pinyin transcriptions.
We wanted to see whether tone marks and Chinese character (hanzi) segmenta-
tion affect the back-transliteration so we compared three different schemes: 1)
Toneless where pinyin tone marks are removed from the training data, 2) Tone
where pinyin tone marks are left as-is and Hanzi where unit-segmentation is en-
forced so that all alphabet characters corresponding to one Chinese character
are in one unit. For example, for the transliteration 套戦 “pei4li3” of Perry,
we would get the training pairs: (perry, peili), (perry, pei4li3) and (perry,
pei li), respectively. Finally, a language model was constructed from all 11,584
words assigned equal weights.

The results of the experiment are given in Table 4. Besides the proposed
method, we give the accuracy figures for 3-gram TM, a method proposed by [10]
for the same test set (taken from their paper). We can see that for this data
set the GM model generally performs better than PM,10 but that combined
models (COMB and GPM) achieve better accuracy than either of the individual
models for all three experiment settings. The best performance is achieved by
the GPM model trained on pinyin with tone marks, showing that not only is
the modeling of pronunciation and spelling simultaneously beneficial but that
the direct combination yields better results than interpolation. Finally, we can
see that the segmentation negatively affects the top-1 performance in most test
10 Somewhat worse performance of the PM model can be attributed to a smaller train-

ing set due to a large number of pronunciations missing from the CMU dictionary.

Table 4. Transliteration results for the Chinese test set (2,896 inputs)

Toneless Tone Hanzi
Top-1 (%) Top-10 (%) Top-1 (%) Top-10 (%) Top-1 (%) Top-10 (%)

3-gramTM N/A N/A N/A N/A 37.90 75.40
GM 68.99 95.99 70.79 94.30 52.14 67.09
GM+SEG 67.68 95.99 70.20 94.30 53.66 70.79
PM 62.81 91.71 65.68 91.69 41.95 62.40
PM+SEG 58.18 91.64 61.11 91.64 40.74 68.78
COMB 69.33 96.82 70.96 96.44 58.49 81.32
COMB+SEG 67.85 96.82 69.99 96.44 57.91 81.32
GPM 69.33 96.75 72.76 96.96 57.32 80.35
GPM+SEG 68.09 96.75 71.51 96.96 58.77 85.08

cases. This can be attributed to the fact that all the inputs in this data set are
single words, thus any additional segmentation taxes performance.

4.2 Discussion

For Japanese evaluation sets, we observe similar trends as [7]. The performance of
singleton models (GM,PM) can be significantly improved through combination
and addition of segmentation module. However, the proposed combination model
(GPM) performs better than the interpolated combination (COMB) for most of
the test cases/settings. This leads us to believe that a back-transliteration system
using direct combination is more robust than systems based on the singleton
models or interpolated combination. Although we do not provide evaluation
results, we have noticed that increase in the number of tokens in the source
model negatively affects both the transliteration speed and accuracy. Thus, it
would be beneficial to explore methods for reducing the size of the source model
depending on the input and/or domain.

For Chinese evaluation set, we compare our back-transliteration model with
3-gram TM which outperformed other Chinese back-transliteration systems in
evaluation given in [10]. 3-gram TM is a character-based model possibly out-
putting non-valid English strings. Thus, its accuracy could be increased by fil-
tering the outputs against a list of valid tokens. However, such filtering is not an
integral part of 3-gram TM. Furthermore, 3-gram TM forces Chinese string seg-
mentation on Chinese character boundaries (akin to the Hanzi scheme above)
and our experiments show that better results can be achieved by allowing finer
segmentation.11 Although both models consider source and target string context
simultaneously, our model considers both the preceding and following context
while 3-gram TM model only considers preceding context. Furthermore, our

11 Admittedly, our model does not incorporate smoothing and is more susceptible to
the data sparseness problem that arises when using this alignment scheme. Also [10]
use the full set of 34,777 transliteration pairs for training as opposed to 8,688 pair
subset we used.

model considers both pronunciation and spelling of the original string but 3-
gram TM model only considers the spelling of the original. Given all this, it
is not surprising that our model achieves significantly higher accuracy in the
evaluation.

5 Conclusion

In this paper we propose a method for improving the back-transliteration ac-
curacy by directly combining grapheme-based and phoneme-based information.
Rather than producing back-transliterations based on grapheme and phoneme
model independently and then interpolating the results as was previously pro-
posed, we first combine the sets of allowed rewrites (i.e. edits) based on the
two models and then calculate the back-transliterations using the combined set.
We evaluate the proposed combination method on Japanese transliterations and
show that the manner in which grapheme-based and phoneme-based information
are combined can significantly affect the system performance.

Furthermore, we show the proposed method can easily be applied to back-
transliteration of Chinese and that significant improvements can also be achieved
by combining the grapheme and phoneme models.

Acknowledgments. We would like to thank Zhang Min for help with Chinese
evaluation data and an anonymous reviewer for valuable comments.

References

1. Knight, K., Graehl, J.: Machine transliteration. Computational Linguistics 24
(1998) 599–612

2. Fujii, A., Ishikawa, T.: Japanese/English cross-language information retrieval: Ex-
ploration of query translation and transliteration. Computers and Humanities 35
(2001) 389–420

3. Lin, W.H., Chen, H.H.: Backward machine transliteration by learning phonetic
similarity. In: Proc. of the Sixth Conference on Natural Language Learning. (2002)
139–145

4. Stalls, B.G., Knight, K.: Translating names and technical terms in Arabic text. In:
Proc. of the COLING/ACL Workshop on Computational Approaches to Semitic
Languages. (1998)

5. Jeong, K.S., Myaeng, S.H., Lee, J.S., Choi, K.S.: Automatic identification and
back-transliteration of foreign words for information retrieval. Information Pro-
cessing and Management 35 (1999) 523–540

6. Kang, B.J., Choi, K.S.: Effective foreign word extraction for Korean information
retrieval. Information Processing and Management 38 (2002) 91–109

7. Bilac, S., Tanaka, H.: A hybrid back-transliteration system for Japanese. In:
Proc. of the 20th International Conference on Computational Linguistics (COLING
2004). (2004) 597–603

8. Kang, B.J., Choi, K.S.: Automatic transliteration and back-transliteration by de-
cision tree learning. In: Proc. of the Second International Conference on Language
Resources and Evaluation. (2000)

9. Goto, I., Kato, N., Uratani, N., Ehara, T.: Transliteration considering context
information based on the maximum entropy method. In: Proc. of the IXth MT
Summit. (2003)

10. Li, H., Zhang, M., Su, J.: A joint source-channel model for machine translitera-
tion. In: Proc. of the 42th Annual Meeting of the Association for Computational
Linguistics. (2004) 159–166

11. Brill, E., Kacmarcik, G., Brockett, C.: Automatically harvesting katakana-English
term pairs from search engine query logs. In: Proc. of the Sixth Natural Language
Processing Pacific Rim Symposium. (2001) 393–399

12. Brill, E., Moore, R.C.: An improved error model for noisy channel spelling correc-
tion. In: Proc. of the 38th Annual Meeting of the Association for Computational
Linguistics. (2000) 286–293

13. Damerau, F.: A technique for computer detection and correction of spelling errors.
Communications of the ACM 7 (1964) 659–664

14. Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and re-
versals. Soviet Physics–Doklady 10 (1966) 707–710

15. Oh, J.H., Choi, K.S.: An English-Korean transliteration model using pronunciation
and contextual rules. In: Proc. of the 19th International Conference on Computa-
tional Linguistics. (2002) 758–764

16. Eppstein, D.: Finding the k shortest paths. In: Proc. of the 35th Symposium on
the Foundations of Computer Science. (1994) 154–165

17. Bilac, S., Tanaka, H.: Improving back-transliteration by combining information
sources. In: Proc. of the First International Joint Conference on Natural Language
Processing (IJCNLP-04). (2004) 542–547

18. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
via the EM algorithm. Journal of the Royal Statistical Society 39 (1977) 1–38

19. Pereira, F.C.N., Riley, M.: Speech recognition by composition of weighted finite
automata. In Roche, E., Shabes, Y., eds.: Finite-State Language Processing. MIT
Press (1997) 431–453

20. Breen, J.: EDICT Japanese/English dictionary file (2003) Available:
ftp://ftp.cc.monash.edu.au/pub/nihongo.

21. EDR: EDR Electronic Dictionary Technical Guide. Japan Electronic Dictionary
Research Institute, Ltd. (1995) (In Japanese).

22. Kando, N., Kuriyama, K., Yoshioka, M.: Overview of Japanese and English In-
formation Retrieval Tasks (JEIR) at the Second NTCIR Wordshop. In: Proc. of
NTCIR Workshop 2. (2001)

23. Carnegie Mellon University: The CMU pronouncing dictionary (1998) Available:
http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

24. Mohri, M., Pereira, F.C.N., Riley, M.: AT&T FSM library (2003) Available:
http://www.research.att.com/ mohri/fsm.

25. Xinhua News Agency: Chinese transliteration of foreign personal names. The
Commercial Press (1992)

