Natural Language Understanding and Logic Programming
V. Dahl and P. Saint-Dizier (Editors)
© Elsevier Science Publishers B.V. (North-Holland), 1985

Facilities of the BUP Parsing System

Yuji MATSUMOTO,
Electrotechnical Laboratory
Ibaraki, 305, Japan

Masaki KIYONO,
Matsushita Electric Industrial Co., Ltd.
Tokyo, 105, Japan

and

Hozumi TANAKA
Tokyo Institute of Technology
Tokyo, 152, Japan

ABSTRACT

The BUP Parsing System [1] is a bottom-up parsing system written
in Prolog. It is intended for natural language analysis. Grammar
rules and dictionary entries are written in an T"epsilon-free" DCG
formalism (a DCG formalism [2] that does not contain empty production
rules). The BUP translator transforms the grammar rules and the
dictionary entries into Prolog clauses. The resulting clauses
together with some additional Prolog clauses combine to form a
bottom-up parsing program. This can be viewed as a compilation of
context-free grammar rules into a Prolog program.

This paper introduces the basic concept of the BUP system and
some of the utility programs that are currently available for
supporting the development of parsing programs. In addition to the
BUP translator, the system includes utilities for morphological
analysis, an idiom handler, and a tool for automatic segmentation of
Japanese sentences. These facilities are neatly embedded in the
framework of our system.)

1. Introduction

The aim of this paper is to introduce the current facilities of
the BUP parsing system [1]. The BUP system, is a general parsing
system for natural languages, and is currently used for analysis of
English and Japanese text.

DCGs (Definite Clause Grammars) of Pereira and Warren [2] give a
clear grammatical formalism for natural languages. A DCG is directly
transformed into a Prolog program which comprises a top-down
backtracking parser for context-free grammars. Although the formalism
is very clear, the derived parsing system has problems due to its
reliance on a top~-down backtracking algorithm. The parser cannot deal
with left recursive rules, for they may cause an infinite loop; it
cannot be an efficient parser because of its naive parsing strategy;
and it is not easy to know when to consult the dictionary, since the
dictionary is put on the same level as the grammar rules.

98

Y. Matsumoto, M. Kiyono and H. Tanaka

The basic component of the BUP system is a set of Prolog clauses
called BUP clauses, which are obtained through a wuniform
transformation from grammar rules written in DCGs. We can say,
therefore, that the BUP system gives another procedural semantiecs to
DCGs.

A parsing system must have many flexible facilities to analyze a
broad area of a language. Two such facilities are the automatic
segmentation and idiom handlers. For example, text in some languages
like Japanese do not include word separators, such as spaces. Parsing
systems for such languages must take word inflection into account
while partitioning sentences into their components. Another special
problem is unusual word patterns (idioms) which often occur in
sentences in many languages.

This paper introduces the basic concept of the BUP system and
presents two utility programs that cope with the automatic
segmentation and idiom handling problems mentioned in the previous
paragraph.

2. A Brief Introduction to the BUP Parsing System

In the BUP system, users first describe grammar rules and
dictionary entries using DCGs. Empty production rules are prohibited
in our system, but most such rules can be included in the grammar
rules with some modifications [1]. Next context-free grammar rules
written in DCG formalism are then transformed into Prolog clauses
(called BUP clauses) by the BUP translator [3]. For example, the
following context-free grammar rules:

1) sentence(s(NP,VP)) -->
noun_phrase (NP),verb_phrase(VP).
2) noun_phrase(np(john)) --> [john].

are transformed by the BUP translator to become:

1') noun_phrase(Goal, [NP],Info) --> {link(sentence,Goal)}},
goal(verb_phrase,[VP]),
sentence(Goal,[s(NP,VP)],Info).

2') dict(john,noun_phrase,[np(john)]) --> [john].

We will not describe the system in detail here. Dictionary
entries in the system are DCG clauses where the first element of the
body is a list (i.e. a terminal symbol). All other clauses are
treated as grammar rules. The informal meaning of BUP clause 1') is
stated as follows: When a noun_phrase is found, first we check
whether the non-terminal symbol ‘'sentence' can link to the current
goal 'Goal' as a descendant. This process checks whether it is worth
using this grammar rule in this context or not. If this check is
successful the next thing to do is to find a verb_phrase. And we
would get a sentence, if all of these are successful. The predicate
'1ink' is computed and all of the instances are asserted during the
transformation. This predicate works as the top-down expectation just
like the 'oracle' of LINGOL [4] and Extended LINGOL [S5]. BUP clauses
like 2') are dictionary entries. In this case, it says that 'Jjohn' is

Facilities of the BUP Parsing System

a noun_phrase.

We must define the predicate 'goal!'. Additional clauses are
necessary to terminate the procedure:

3) goal(Goal, Args,[Word!X],Z) :-
dict(Word, Cat, Args1,[Word}X],Y),1link(Cat,Goal),
P=..[Cat,Goal, Args1, Args, Y,Z2],call(P).

4) cat(cat,I,I, X, X). (for every non-terminal symbol 'cat')

The predicate 'goal' first consults the dictionary and obtains a
non-terminal symbol ('Cat'). Next 'goal' checks whether the obtained
non-terminal symbol can link up to the current goal, and makes a call
whose predicate name is that non-terminal symbol (Thus we have now
identified a phrase in the text which belongs to that non-terminal).
Clause 4) says that the process terminates immediately if the current
goal is equal to what has just been found.

All of the above Prolog clauses combine to form a parsing
program. This is a basic view of the BUP parsing system.

A slight modification of 'goal' improves the efficiency of the
parsing algorithm a great deal. The idea is to avoid useless
repetitions by saving partial successes and failures, The predicate
'goal' is rewritten as follows:

goal(Goal, Arg, X, Y) :-
wf_goal(Goal,_,X,_),!,wf_goal(Goal, Arg,X,Y);
fail_goal(Goal, X),!, fail.

goal(Goal, Arg,X,Z) :-
dictionary(Cat, Argt,X,Y),link(Cat,Goal),
P=..[Cat,Goal, Arg1,Arg,Y,2],call(P),
assertz(wf_goal(Goal, Arg, X,2)).

goal(Goal, Arg,X,2) :-

(wf_goal(Goal,_ ,X,);

assertz(fail_goal(Goal, X))),!, fail.

dictionary(Cat, Arg, X,Y) :-
wf_diet(_,_,X,_),!,wf dict(Cat, Arg, X, Y).

dictionary(Cat, Arg,[Word!X],Y) :-

(dict(Word,Cat, Arg,[Word}X],Y) ;
morpheme(Cat, Arg, [Word|X],Y)),
assertz(wf_dict(Cat, Arg,[Word{X],Y)),
fail.

dictionary(Cat,Arg,X,Y) :-
wf_dict(Cat, Arg,X,Y).

In the above clauses, ‘'wf_goal', 'fail_goal', and 'wf dict' are
predicates used for asserting partial information, which correspond to
the partial successes, partial failures, and the successful dictionary
entries. The predicate 'morpheme' performs the morphological .analysis
and returns the original form of the word and the information about
the inflection.

29

100

Y. Matsumoto, M. Kiyono and H. Tanaka

3. Facilities of the System

This section describes two major facilities of the BUP system,
the automatic segmentation and the idiom handler.

3.1 Combining Automatic Segmentation with Morphological Analysis

Preliminary analysis of Japanese sentences poses an especially
difficult problem: the division of sentences into words. Although it
seems better to segment input sentences beforehand, it is difficult
even for a Japanese to segment a sentence correctly. We have combined
the processes of automatic segmentation and morphological analysis.
The segmentation algorithm isolates a word from the beginning of the
input based on the longest successful matching. When the word has an
inflection, the type of inflection and the suffix are examined using
the following 'morpheme' predicate:

morpheme(Cat, N _Arg, [Bunso{Bun],Bunl) :-
name(Bunso,B List),
reverse(B_List,B List_R),
wakachi(B_List_R,[],R_List,Word, Cat, Arg),
gobi_shori(Word, Cat, Arg, R_List,Bun,N_Arg,Buni).

wakachi([Char|W_List_R],Rest,[Char|Rest],Word, Cat, Arg) :-
reverse(W_List_R,W _List),
name(Word, W_List),
dict(Word, Cat, Arg, [Word],[]).
wakachi([Char |W_List_R],Rest,[Char|{Rest],Word,doshi, Arg) :-
onbin shori(W_List_R, Arg).
wakachi([Char{W_List_R],Rest,R List,Word,Cat, Arg) :-
wakachi(W_List_R,[Char|Rest],R_List,Word, Cat, Arg).

The predicate 'wakachi' takes one character from the given word and
consults the dictionary. If the consultation fails, 'wakachi' then
examines the possibility of euphonic changes (using the predicate,
'onbin_shori'), causing unusual formation of verb inflections. This
process is executed repeatedly. Dictionary entries of inflectional
words are indexed by their stems. Thus the inflectional analysis
(*gobi_shori') is performed once a stem of a word has been isolated by
'wakachi'. Fig. 1 shows a sample analysis of a Japanese sentence,
As is seen by the program, a partially segmented sentence is analyzed
nore efficiently than a sentence not segmented. A partially segmented
input sentence, "tarou wa hanako wo siranakatta youda", takes a total
of 938 msec. to execute.

3.2 Idiom Handling

Natural languages have many idiomatic expressions (idioms). By
an 1diom we mean a particular sequence of words and/or phrases, not
necessarily consecutive, with a peculiar semantic interpretation,
Although such a sequence may fit some of the grammar rules, we call it
an idiom because of its peculiar interpretation. We choose not to
represent idiomatic expressions using grammar rules, as the number of
grammar rules directly affects the efficiency of the parsing system.
Thus we construct an idiom dictionary, whose every element is invoked
by a particular word. So, idioms are registered and referred to only
by their head words. A typical idiom is expressed as follows (we

Facilities of the BUP Parsing System 101

Input a sentence.
|+ tarouwahanakowosiranakattayouda.
(Tarou seemed not to know Hanako.)

937 msec.
No. 1
bun
I
1
predicate~---mecseevcmmmmcme e —cc e cce e end
]
|
Np=ee==m—————— predicate
1]
H i
Nem—e——] predicate
! !
]]
I i
stem-suf auxpe==-=-- aux

auxp---aux stem-suf
]

aux

]
i

|
t
]
I
}
]
!
d
! stem-suf
'
a
)

— o v ——

o3
1
[}
!
]
!

‘o
<

o

3

o
[}
[}
[}
i
[}
|
!
1
[
1
1
]
f

1]

[

>

o
e e et e = ————— —— =~ — 03

[}
1
'
!
!
]
|
! ! !
na kat ta you da

(not) (past) (seem)

tarou wa hanako wo sir
(subj~-case)(obj-case)(know

Total Time = 1576 msec.

number of wfgoal was : 28.
number of failgoal was : 11.
number of wfdict was : 22.

Fig. 1 A Sample Analysis Tree of a Japanese Sentence

(Words in parentheses are not the system output)

102

Y. Matsumoto, M. Kiyono and H. Tanaka

refer to this clause as an 'idiom clause'):
idiom(word, category, receive_var,return_var) --> body.
The first argument, 'word', is the key word which invokes this idiom.

The morphological analysis ensures that even when idiomatic words in a
given sentence are inflected, the proper idiom clauses are identified.

The second argument, 'category', stands for the name of the grammar
category that the idiomatic expression belongs to. The third
argument, 'receive_var', represents the information of the key. The

fourth variable, 'return var', gives the complete information for the
idiom when the call to the idiom clause has succeeded. All the idiom
clauses comprise the idiom dictionary.

We now show some kinds of idiomatic expressions and how they are
represented in the idiom diectionary.

(1) idioms made up of words only:

The body of such idiom clauses consists only of terminal symbols.
However, we provide a predicate 'word' to handle words that may be
inflected. Examples are:

a) idiom(as, postmod,_,[Syn, Sem, [postmod, 'as well']]) -->
[well].

b) idiom(computer,n,_,[Syn, Sem,[n,[n,computer],Treel]) ~->
word(system,_,n,[Syn1,Sem1,Tree]).

The first example a) includes the non-inflected words, 'as' and
'well!'. In the second example b), 'system' can appear in the plural
form. The first argument of the predicate 'word' is the base form of
the word and the third is the name of its grammar category. The
second is for returning the information of suffix, which is not wused
here.

(2) idioms including phrases:

When an idiom includes not only simple words but some phrases, it
can use the 'goal' predicate and any Prolog predicate to indicate the
properties of the phrases.

a) idiom(by,adv,_,[Syn, Sem,[adv,[prep,by]l,Treel]) ~->
goal(pron,[Syn1,Sem1,Tree]),
{ type_of(Syni,reflexive) }.
b) idiom(look,v,Argl,Arg) -->
(goal(np, Arg2) ; [1),lupl,
{ look_up(Argil,Arg2,Arg) }.

The first example treats a phrase consisting of 'by' followed by a
reflexive pronoun. The second example shows an idiom 'look up', that
can have a noun phrase between its components.

(3) idioms including phrases not belonging to specific categories

Let us consider the following example:

Facilities of the BUP Parsing System

idiom(not,Goal,_,[Syn, Sem,([Goal,[not,not],(only,only], Treel,
[but,but],[also,also],Tree2]]) -->
[OnlY] ’
goal(Goal, [Syn1,Sem1,Tree1]),[but,also],
goal(Goal,[Syn2, Sem2,Tree2]).

Two phrases (indicated by 'goal') that appear in this example are not
specified by a certain grammar category. Instead, this idiom clause
indicates that they belong to the same grammar category (The variable
'Goal' ensures this property) as does the whole sequence.

If we choose to restrict these phrases to one of the grammar
categories, noun phrase, adjective phrase or prepositional phrase,
this clause may be rewritten as below:

idiom(not,Goal,_,[Syn, Sem,[Goal,[not,not],{only,only], Treetl,
[but,but],[also,also],Tree2]]) -->
(only],{ member(Goal,(np,adjp,ppl) !,
goal(Goal,[Syn1,Sem1,Treet]),[but,also],
goal(Goal, [Syn2,Sem2,Tree2]).

Partial success results can be saved during the idiomatic
analysis to avoid repetitive computation as in the previous cases of
dictionary look-up and morphological analysis. Failure to find idioms
is noted to avoid useless repetition. These optimizing memorizations
are taken into our system just 1like in the case of 'goal'. The
predicate 'dictionary' is modified as follows:

dictionary(Cat, Arg,X,Y) :-
wf _idiom(_,_,X,_),!,
wf_idiom(Cat, Arg,X,Y);
fail_idiom(X),!,
word(_,_,Cat,Arg,X,Y).
dictionary(Cat,Arg,{Word|Y],Z) :-
idiom(Word,Cat,_,Arg,Y,2),
assertz(wf_idiom(Cat, Arg,[Word!Y],2)),

fail;
word(Rword,__,Cat1,Argt,[WordlY],),
Rword\==Word,

idiom(Rword, Cat, Arg1, Arg, Y,2),
assertz(wf_idiom(Cat, Arg,[Word|Y],Z)),
fail;
wf_idiom(_,_,[WordiY],_),!,
wf_idiom(Cat, Arg,[Word!Y],Z);
assertz(fail_idiom([WordiY])),
fail.
dictionary(Cat, Arg, (Word{Y],Y) :-
wf_dict(Word, Cat, Arg,_,_).

This 'dictionary' predicate differs from the previous one (in Section
2) in that it refers to the idiom handling. Thus this new
'dictionary' uses a 'word' predicate that actually acts the same as

the previous ‘'dictionary' predicate. (Note: 'word' has already
appeared in the definition of idioms). 'Word' has two arguments in
addition to the arguments of the previous ‘'dictionary’. These

additional arguments, the first and the second, unifies with the
original form and with the suffix of the first word of the current

103

104 Y. Matsumoto, M. Kiyono and H. Tanaka

'+ He looks it up. |: He looks up the dictionary.

216 msec. 293 msec.
No., 1 No. 1
bun bun
! i
sentence-~-—===e-=- end sentence-cereccenncccan—ax
| | |
i I 1
sdec ! sdec
1] I]
] 1 1
Subj=ememcaacan v ! Subj-=e=cee- Vommm———— obj
' i ! ! i i
np Vomooe np---p i np Vemooe P np
! ! | P | | ! i
pron v--suf pron | | pron v--suf | det----nomhd
' ' ' ' b 1 i ! P '
he look s it wup . ! | ! I n
H R A i
Total Time = 417 msec. he look s up the dictionary
nunber of wfgoal was : b, Total Time = 531 msec.
number of failgoal was : 20.
number of wfdict was : 5. number of wfgoal was : 5.
number of wfidiom was : 1. nunmber of failgoal was : 26.
number of failidiom was : y, number of wfdict was : 5.
number of wfidiom was : 1.
number of failidiom was : 5.

Fig. 2 Sample Parsing Trees
l: This algorithm is not only clear but also efficient.

634 msec.

No. 1
bun
|
sentenge-e--—cecrcmmrmmrmancmm—c———an end
] |
[} 1
sdec |
i d
Subjemmwm——- bepe———e—mmecn—- pred !
] i] 1
[} ! 1 1
np be adjp }
| ! | !
det---nomhd ! not-only-adjp--but-also---adjp !
| i ' ' | ! | | | !
| n ! ! I adj ! ! adj !
! i i ' | i ! ! ' !
this algorithm is not only clear but also efficient .
Total Time = 1017 msec.
number of wfgoal was : 12.
number of failgoal was : 30.
number of wfdict was : 11.
number of wfidiom was : 1.
number of failidiom was : 8.

Fig. 3 A Sample Parsing Tree

Facilities of the BUP Parsing System

input (the first element of the list given as the value of the fifth
argument).

Note that the last clause for 'dictionary' only calls 'wf_diect'.
This is because 'word' in the second clause of 'dictionary'! has
already searched for every variation of the first word of the current
input by backtracking, and all of them have already been asserted.
Some sample analyses of idioms are shown in Figs. 2 and 3.

4. Discussions and Conclusions

We have presented some of the facilities of the BUP parsing
system, This bottom-up parsing system is more powerful than top-down
realization of DCGs in that it is as efficient as Earley's [6] and
Pratt's [U4] algorithms, and that it does not fall into infinite loops
even when left-recursive rules are included. The facilities described
here have been achieved by slight modifications to the auxiliary
predicates, 'goal' and 'dictionary'. The majority of the programs and
the basic parsing strategy can be used with widely differing
grammatical structures. Thus the system is a highly versatile
facility for parsing many different natural languages, most notably
Japanese and English.

Weak points in the system are that empty production rules are
prohibited, and that cycles of grammar rules (sets of grammar rules
which make a self recursive loop) may cause an infinite loop. The
problem of cycles, which we have not yet discussed, is actually a
special case of left recursive rules. Cycles can be rewritten without
greatly changing the size of grammar rules and thus without greatly
affecting the efficiency.

Future research on syntactic problems will consider undefined
words, ellipses, parenthetical expressions, and movements.

In languages such as English and other Indo-European languages,
undefined words can be easily identified after morphological analysis,
even though no dictionary entry occurs. However, in a language like
Japanese, where sentences usually do not delineate words with spaces
or other separators, the identification of undefined words is very
troublesome. Even if a sentence includes an undefined word, a part of
the word may be recognized as a different word because of a wrong
segmentation. Although the identification of undefined words might be
performed by an exhaustive search, we need more sophisticated methods
for the identification so as not to lose the efficiency.

Pereira's analysis of extraposition grammars (7] 4is inspiring.
Most of his 1dea on 1left extrapositions, a major problem in the
phenomenon of movements, can be incorporated into the original BUP
system. We hope to adjust the memorization feature of the revised
version so as to implement left extraposition with this optimization.

Bottom-up strategies are better than top-down strategies for the
problems of ellipses and parenthetical expressions (For a discussion
of these problems, see [8]). We plan to attack such phenomena using
the BUP system.

105

106

Y. Matsumoto, M. Kiyono and H. Tanaka

The entire system is implemented both in DEC-10 Prolog [9] ,[10]
on DEC 2060 and in C-Prolog [11] on VAX-11/780. The execution time
shown in the examples is the CPU time of the compiled version of
DEC-10 Prolog on the DEC 2060. The interpreted versions on the DEC
2060 and VAX-11/780 require respectively about five times and seven
times as much execution time as the compiled version on the DEC 2060.

Acknowledgments

The authors wish to express their thanks to Mr. Kazuhiro Fuchi,
Director of the ICOT Research Center for his encouragement. We thank
the members of Dr. Tanaka's Lab at the Tokyo Institute of Technology,
the natural language processing group at ICOT Research Center, and the
Machine Inference Section of ETL for their discussions and comments.
Thanks are also due to Monica Strauss for her various comments on this
manuscript.

References

[1] Matsumoto, Y., et al., BUP: A Bottom-Up Parser Embedded in Prolog,
New Generation Computing, vol.1, no.2, pp.145-158, 1983.

[2] Pereira, F.C.N. and Warren, D.H.D., Definite Clause Grammar
for Language Analysis--A Survey of the Formalism and a Comparison
with Augmented Transition Networks, Artificial Intelligence, 13,
pp.231-278, 1980.

[3] Matsumoto, Y., Kiyono, M. and Tanaka, H., BUP Translator
(in Japanese), Bulletin of Electrotechnical Laboratory, vol.47,
no.8, pp.67-85, 1983.

(4] Pratt, V.R., LINGOL--A Progress Report, Proc. of 4th IJCAI,
pp.422-428, 1975.

[5] Tanaka, H., Sato, T. and Motoyoshi, H., Extended LINGOL
--A Programming System for Natural Language Processing
(in Japanese), IECE Japan, J60-D, Dec. 1977.

(6] Earley, J., An Efficient Context-Free Parsing Algorithm, C.ACM,
13, Feb. 1970.

[7] Pereira, F.C.N., Extraposition Grammars, AJCL, vol.7, no.%4,
pp.243-256, October-December, 1981.

(8] Hayes, P.J., Flexible Parsing, AJCL, vol.T, no.4, pp.232-242,
October-December, 1981.

[9) Pereira, L.M., Pereira, F.C.N. and Warren, D.H.D., User's Guide
to DECsystem-10 Prolog, Edinburgh, 1978.

[10] Bowen, D.L. (eds.), DECsystem-10 Prolog User's Manual,
DAI Occasional Paper no.27, Edinburgh, 1982.

{11] Pereira, F., C-Prolog User's Manual version 1,2a, EJCAAD,
Edinburgh, 1983.

