France-Japan Artificial Intelligence and Computer Science Symposium 86

DCKR
~ Knowledge Representation in Prolog
and its Applications

by Hozumi Tanaka
Tokyo Institute of Technology

1. Introduction

Relationships between knowledge representation in predicate
logic formulas and knowledge representation in Frames or Struc-
tured Objects. are clarified by [Hayes 80). [Nilsson 80 1) [Goebel
851, [Bowen 851 et al. but their methods require separately an
interpreter for their representation. [Nilsson 801 transforms
knowledge representation in predicate formulas form into Object
form which is finally transformed into a semantic network. An
inference on a network is reduced as the operations which
traverse it.

The authors have developed a knowledge representation
called DCKR (Definite Clause Knowledge Representation) [Koyama
861 In DCKR. the slots consisting of a Structured Object
(hereinafter called an object) is represented by a Horn clause (a
Prolog statement with the ~“sem”™ predicate (to be explained
tater)) as its head. Therefore. an Object can be regarded as a
set of Horn clauses (slots) headed by the sem predicate with the
same first argument. From the foregoing it follows that almost
all of a program for performing inferences relative to knowledge
described in DCKR can be replaced by functions built in Prolog.
That is. there is no need to prepare a special program to perform
inferences.

DCKR will be described in detail in Section 2. Section 3
will suggest a method to do efficient inference in DCKR to natur-
al language processing. semantic processing and semantic matching
algorithm. Section 4 is about the level of knowledge representa-
tion in machine language. and it indicates that a high level
knowledge representation language is needed. SRL/0 will be pro-
posed as a high level knowledge representation language that is
translated 1into DCKR forms. Finally we explain how temporal
knowledge is described by DCKR.

2. Knowledge Representation in DCKR
2.1 Object representation
The following are simple examples in DCKR.

t-op(100. yfx. 7).
op(100. yfx, :).
op(90. xfy. #).

1. 1) sem(clyde#l, age:6,).

1. 2) sem(clyde#l.P.S8) :-
isa(elephant. P.| elephant#1I1S .

2. 1) sem(elephant#l.birthYear:1980.).

2. 2) sem(elephant#1.P.8) :-

—415—

isa(elephant.P.[elephant#1I1S).

3. 1) sem(elephant.color:gray._).
3.2) sem{(elephant.P.S) :-
isa(mammal.P.l elephant!IS D).

4. 1) sem(mammal.bloodTemp:warm. _).

The meanings of the predicates isa and hasa will be present-
ed below.

a. 1) isa(Upper.P.8) :-
P = isa:Upper:
sem(Upper. P, S).

The first arguments in the sem predicate is the Object name.
For the examples 1.1) and 1.2). 2.1) and 2.2). 3.1) and 3. 2), and
4. 1) the object descriptions are respectively clydettt,
elephant#1. elephant. and mammal. Objects are broadly divided
into two types. individuals and prototypes. Psychologists often
refer to prototypes as stereotypes. An Object name with #
represents an individual name and the one without #. a prototype
name.

For example. clydef#1 in 1.1) and 1.2) is an individual name.
while elephant in 3.1) and 3.2) is a prototype name. A set of
Horn clauses headed by the sem predicate with the same individual
name represents an individual. A set of Horn clauses headed by
the sem predicate with the same prototype name represents a pro-
totype. Therefore. the Object representation by DCKR (in a Horn
clause) can be completely compiled. Knowledge compilation leads
to high speed.

The second argument in the sem predicate is a pair composed
of a slot name and a slot value. For example., the description of
1.1) indicates the fact that the age of the individual clydefti is
6. Age 1is the slot name and 6 is the slot value. A pair com-
posed of a slot name and slot value is hereinafter called an S8V
pair.

2.2 Inheritance of knowledge and inference

The description in 1.2) is to be read as showing that
clyde#tt is an instance of the prototype elephant. Here. note
that 1.2) is a direct description of inheritance of knowledge
from prototypes at a higher level. From the prespective of the
inheritance of knowledge. 1.2) is read that clyde#1 has property
P 1if elephant has the property P through isa predicate. For ex-
ample. in the description of 1.2) the individual clydef#i becomes

the 1instance of the prototype elephant. The inheritance of
knowledge is automatically performed by the unification built in
Prolog. When the following statement ?7-sem(elephant#i.P._). is

carried out. the following statements which are related to
elephant#1 are produced one by one

P = birthyear:1980:

—416—

\
P b et

isa:elephant:
color:gray:
isa:mammal:
bloodTemp:warm:

0 U 00
now B on

Note that all the information is from the higher levels of
elephant#1. When

7-sem(X. Y. _).
is executed, the system outputs all the pieces of information in
the form of X and Y pairs.
If
?7-sem (X, isa:mammal, _.).
is executed by utilizing the features of prolog. the following

information on the prototype and the individual located below
mammal is produced.

X = clydeft1:
X = elephantti:
X = elephant:

The individual and the prototype which are located in a position
Llower than mammal can be known

In the description in 1.2). the prototype environment is
called from the individual one. According to 1.2) once one
enters the prototype environment. one can access all knowledge
which exists there. On the one hand. because the individual is a
dynamically made object. the individual environment can be under-
stood beforehand. There 1is a predicate instance which is used
for finding out information about the 1individual environments
from the prototype.

b. 1) instance(l InstancelY l. Instance) :-
(var(Y);atomic(Y)). !. nonvar(Instance).
b. 2) instance(l X1Y | Instance) :-
instance(Y. Instance).

Clarifying the descriptions of 1.2).2.2).3.2) etc.. the
third argument of the predicate sem stacks the route followed in
tracing the isa hierarchy. This is given to the first argument
of instance and informs what is the individual (instance) that
called the prototype environment. It can expose the knowledge
which is held by the individual. For example. there is a
description for mammal in 4. 1) and also for 4.2).

4. 1) sem(mammal. bloodtemp : warm. _).
4. 2) sem(mammal,age @ X.S) - .
instance(S. Instance).
sem{Instance. birthyear:Y._),
X is 1986 - Y.

The body in 4.2) uses the predicate instance and the In-

stance of mammal 1is known. and the from birthyear in Instance.
the age is calculated. Therefore. when

—417—

7-sem(elephant#l. age: X, _).

is executed.
X =6

is produced
The body in 4.2) can be regarded as showing the if-needed

method used to determine age. For the part-whole relation. there
is a transition rule. The predicate hasa in DCKR is. for this
purpose, defined below.

c. 1) hasa(Part. X:Y.S8) :-
X == hasa.
(Y = Part:
sem(Part. hasa:Y.$).

The following examples show how hasa works.

5. 1) sem(america. capital:newYork,_).
5.2) sem(america.climate:temperate. -).
5.3) sem(america.P,S) :-
T =1[americalS)
isa(country.P. T):
hasa(california.P, T):

.....................

6.1) sem(california. P._) -
T = [californialS L
isa(state.P. T):
hasa(stanford. P. T):

After the above definitions are given and this statement is
executed.

?- sem(america. hasa:'X,).
the following information is produced retating to america.

california:
stanford:

.........

Finally. an exercise from [Sugawara 851 will be described

That 1is, "If the <climate of a certain place is not known. the
higher level of the place is found and the climate there |is
used.” Note how. for example. definitions are made in 7. 1).

7.1) sem(state.climate:X.S) :-
instance(S. Instance).
sem(Superpart. hasa:Instance. _).
sem(Superpart.climate: X_).

When

—~418—

?- sem(california,.climate:X._).

is executed. state located at the higher level of california is
reached and from the description in 7.1). the value of climate at
superpart of california. america is taken and the following
response is produced.

X = temperate

Lastly. to expand the definition of a.1). the scope of the
category (the scope of the inheritance of knowledge) can be res-
trained by using the third argument.

2.3 General knowledge representation and inference.

In the example of Object descriptions in DCKR given in 2.1.
an Object was represented as a set of Horn clauses headed by the
sem predicate (which has an Object name as the first argument).
And the Object name was always a constant (representing an indi-
vidual or prototype). By contrast.knowledge in which the first
argument in the sem predicate is a variable representing an indi-
vidual sometimes plays an important role in DCKR. Such a vari-
able 1is hereinafter called an individual variable. Generally, an
individual variable is represented. for instance. as A#B. A DCKR
expression headed by the sem predicate which has an individual
variable as the first argument functions as an inference rule
which creates new knowledge mainly from existing knowledge. An
example from [Nilsson 80) is easily expressed in DCKR form.

8 1) sem(X#J.worksin:Y#K,) :-
sem(YHK. isa:department.).
sem(Y#K. manager:X#J, _).

8. 1) shows that Y#K is a department. X#J is its manager. and
that X#J worksin Yi#K. Examine the following

9. 1) sem(joeSmith#1. worksIn:pd#i._).

10. 1) sem(pd#1. manager: joeJdones#l._).

10. 2) sem(pd#1.P.S) :-
isa(department. P.[pd#11S .

Here the following goal corresponds to the question "Who work in
pdft1?”

7-sem(A#B. worksIn:pd#1.).
and the following is produced.
joeSmith
1;

joedones
1

@ > W

[LI (||

Using 10.1). because the manager of pd#1 is joeJones#1. the fact
“joedones#1 worksin pd#1” can be output.

Finally. in order to confirm the validity of DCKR. please
compare the production rule of section 9.4.6 in [Nilsson 801 and

—419—

the description in 8.1). From this. at the same time that the
description of DCKR is simple to understand. the ability of sub-
stituting DCKR inference for builtin Prolog functions will be
easily understood

3. DCKR Applications to semantic processing of natural language

3.1 Descriptions of lexical items in DCKR

Basic to semantic processing are descriptions of lexical
items. The most frequently used form of description of lexical
items is probably frames (Objects). In DCKR. an Object consists
of a set of slots each of which is represented by a Horn clause
headed by the sem predicate. However. the first argument in the
sem predicate 1is the Object name. The values of slots used in
semantic processing are initially undecided but are determined as
semantic processing progresses. This is refer'ed to as slots be-
ing satisfied by fillers. To be the value of a slot. a filler
must satisfy the constraints written in the slot.

If the filler satisfies the constraints written in a slot.
action 1is started to extract a semantic structure or to make a
more profound inference. Constraints written in sltots are broad-
ly divided into two. syntactic roles to be played by fillers in
sentences. The latters are constraints on the meaning to be car-
ried by fillers. Typical semantic processing proceeds roughly as
follows:

i) If a filler satisfies the syntactic and semantic constraints
on a slot selected. start action and end with success. Else.
go to ii).

ii) If +there 1is another slot to select. select and go to i).
Else go to iii).

iii) If there is a higher-level prototype. get its slot and go to
1). Else. and on the assumption that the semantic
processing is a failure.

From the semantic processing procedures in i) through iii)
above., the following can be seen:

a) The semantic constraints in i) are often expressed in logical
formulas. This can be easily done with DCKR as explained later.

b) The slot selection in ii) can use the backtracking machanism
built in Prolog. For in DCKR a slot is represented as a Horn
clause.

c) 1ii) can be easily implemented by the knowledge inheritance
mechanism of DCKR explained in 2. 1.

Thus. if lexical items are described in DCKR. programs cen-
tral to semantic processing can be replaced by the basic computa-
tion mechanism built in Prolog. This will be demonstrated by ex-
amples below. Cited first is a DCKR description of the lexical

item "open” [Tanaka 85 .

11. 1) sem(open. subj:Filler~In"Cut._) :-
sem{(Filler. isa:human._),
addProp(agent:Filler In Out):
(sem(Filler, isa:eventOpen._): sem(Filler., isa:thingOpen._))
addProp(object:FillerTIn™0ut):
sem(Filler. isa:instrument.).
addProp(instrument:Filler~In Out):
sem(filler, isa:wind.).
addProp(reason:Filler~In 0ut).
11. 2) sem(open.obj:Fitler~In Out._) :-
(sem(Filler. isa:eventOpen._) :sem(Filler, isa:thingOpen._)),
addProp(object:Filler~In"Out).
11.3) sem(open,with:Filler~In Out._) :-
sem(Filler. isa:instrument._).
addProp(instrument:Filler~In"Out).
11. 4) sem(open.P.S) :-
T =[(openlS|
isaCaction.P. T):
isa(event. P, T).

11.1).11.2), and 11.3) are slots named subj. obj. and with,
which constitute open. Variable Filler is the filler for these
slots. The slot names represent the syntactic constraints to be
satisfied by the Filler. In other words. subj., obj. and with
show that the Filler must play the roles of the subject. object.
and with-headed prepostitional phrase. respectively. in sen-
tences. The body of each of the Horn clauses corresponding to
the slots describes a pair composed of semantic constraint and
action (hereinafter called an CA(Constraint_Action) pair). For
example. the body of 11.1) describes four CA pairs. each of them
joined by or (":").

The first CA pair:

sem(Filler. isa:human.).
extractsem(agent:Filler~In"Out):

shows that if the Filler is a human.
extractsem(agent:Filler In"Out). action to make the deep case of
the Filler the agent case. is started to extract a deep case
structure. Here sem(Filler. isa:human...). which checks if the
Filler is a human. represents a semantic constraint on the Fill-
er.

The second SA pair:
(sem(Filler. isa:eventOpen._):
sem(Filler. isa:thingOpen._)).
extractsem(object:Filler~In Out):

shows that if the Filler is an event which opens (eventOpen) or a
thing which opens (thingOpen). its deep case is made the object
case.

The third CA pair:

sem(Filler. isa:instrument.).

—421—

extractsem(instrument:Filler In"Out):

indicates that if the Filler is an instrument. its deep case |is
made the instrument case.
The fourth CA pair:

sem(Filler, isa:wind.).
extractsem(reason:Filler~In 0ut).

shows that if the Filler is wind. its deep case is made the rea-
son case

From the foregoing explanation. the meanirg of the slots in
11.2) and 11.3) will be evident. In addition to "with”. there
are many slots corresponding to prepositional phrases. but they
are omitted to simplify the explanation.

11. 4) shows that if the Filler cannot saitsfy the slots in
11. 1), 11.2). and 11.3), the slots in the prototype action or
event is accessed automatically by backtracking. It is an exam-
ple of multiple inheritance.

The descriptions of 11.1)~11.4) can be completely compiled.
thus ensuring the higher speed of processing. This makes a good
constrast with most conventional systems which cannot compile a
description of lexical items because it is reprepresented as a
large data structure.

3.2 Description of grammar rules

The DCG notation | Pereira 801 is used to describe grammar
rules. Semantic processing 1is performed by augmented terms in
DCG. An example of a simple grammar rule to analyze a declara-
tive sentence is given below.

sdec(SynVp. SemSdec) -->
np(SynSubj. SemSubj).
vp(SynVp. SemVp).
{concord(SynSubj. SynVp).
seminterp(SemVp. subj:SemSubj. SemSdec) }.

The part surrounded by { } is an augmentation part. The predi-
cate concord 1is to check concord between subject and verb. The
predicate seminterp. intended to call sem formally. is a small
program of about five lines. In this example the grammar rule
checks if the head noun in Sem Subj can satisfy the subj slot of
the main verb frame in Sem Vp and returns the results of semantic
processing to SemSdec. There. we can see that there 1is little
need to prepare a program for semantic processing

3.3 Test results

Some comments will be made on the results of semantic actual
processing based on the concept explained in 3.1 and 3.2. The
sentence used in the semantic processing is "He opens the door
with a key. "~

Input Sentences
| He opens the door with a key.

Semantic structure is:

—422—

sem(open#5.P.8) :- isa(open.Pl opentt5IS).
sem(open#tb, agent:he#4,).

sem(opentb, instrument :key#7._).
sem(open#b. object:doort#s.).

sem{he#4.P.S) :- isa(he.P.[l he#41S).
sem(door#6.P.S) :- isa(door.P.| door#6IS).
sem(key#?7.P,S) - isa(key#71S1]).
sem(key#7.det:a,_).

Besides., results of semantic processing of “"the door with a kKey”
are obtained but their explanation is omitted. When the above
semantic structures are represented in LFG | Bresnan 811 form. the
following results.
openib
prototype = open

agent = | he#4d |

| |
| |
| |
| |
I I _ prototype = he _I I
| - —]
I instrument = Ikey#7 | |
1 | prototype = key 1 I
| I det = a 1 |
I - - |
| object = idoor#6 | l
| | prototype =door! |
I I_ det = the | I
| |

Note that the results of semantic processing are also in
DCKR form. By obtaining semantic structures in DCKR form. it is
possible to get. for example.

sem(open#dJ. instrument:X._) from the interrogative sentence
"With what does he open the door?” and obtain the answer by means
of builtin functions of Prolog

J
X

5
key#7.

3.4 DCKR and natural language understanding system

Now the relationship between DCKR and a natural language
understanding system will be touched on. From what has so far
been discussed. we can envision a natural language understanding
system architecture as illustrated in Fig. 1.

—423—

- -—w-‘-x-‘—‘:--x <+
pommmmm e ’\}ma ‘t \Structu\\r\?\\l
I : 1y "\ l
|
|
|

*,
tContext
hnalysis

ledge Base
KH+d)

. . l{ " . I
AAN ; |
l.'\\\\\ \\\\ N |
LSwntactic! IxsEm-oof .—— + I
lAna\\s}s i lQ}ct1ona;§3 GSB\\ |
Mo 1

R 4

A
1
I
v
ia/Z/T L
/I B
g8 :
1
ﬁ/: :
1 -
| o
l
1
|
1
1
1
1
1
1
1
1
-+

N I lGnammar (D
e + e e B B
Input sentence Answer

Fig. 1 DCKR and Natural Langugage Understanding System

The shaded parts in Fig. 1 are those that will be achieved
by the interpreter built in Prolog. From the foregoing explana-
tion it will be seen that if part of general knowledge and a dic-
tionary are described in DCKR. part of context processing and the
greater part of semantic processing can be left to the functions
builtin Prolog. As for syntactic processing. the grammar rules
described in DCG [Pereira 801 are automatically converted into a
Prolog program. and parsing can be replaced by Prolog program ex-
ecution. As shown in Fig. 1. therefore syntactic processing can
be left almost in its entirety to the Prolog interpreter.

Given the foregoing facts and assuming the inference engine
to be the Prolog interpreter. it may be concluded that a Prolog
machine plus something else will be a natural language processing
machine. If asked what that something will be. we might say that
it will be a knowledge base machine. Anyway. this concept is in
line with what the Japanese fifth-generation computer systems
project is aimed at.

4. High level knowledge representation in natural language SRL-/0

It is thought that the knowledge description of DCKR. ex-
plained in Section 2. was not too difficult. However. the
description of lexical items in Section 3 was not easy to grasp
either. It suggests that DCKR~based representations are on the
level of machine language representations. Here it was important

—424—

for the authors to again develop a high level knowledge represen-
tation language. In this section for this purpose we propose the
language SRL-/0 [Okumura 861 The DCKR representation and its
equivalent information is given below with a SRL/0 description.

clydeti

[age:6 |

[isatelephant 1
elephanti#i

[birthYear:1980]

[isa:elephant 1
elephant

[color:gray |l

[isa:mammal I

mammal
| bloodTemp:warm]
[age: X
where { X = 1986 -~ birthYear!instance } 1
Note here that where ... is the slot corresponding to the

constraint, and that birthYear!instance 1is the value of the
birthYear of the instance of mammal [Mukai 85 I

america
[climate:temperate !
[isa:country]
(hasa:californial

california
[isa:state |
| hasa:stanford]

state
[climate: X
where
Superpart hasa:instance.
Superpart climate: X I

And a general description of knowledge:

Xtd -
| worksIn:Y#K
where Y#K isa:department.
Y#K manager:X#J

Below is a description of 1lexical items corresponding to
11.1)-11. 4) but it is a relatively more precise description. The
description of 11.1)-11.4). for instance "The conference opens
with a key. " would semantically present a problem for processing

The description by SRL-/0O below (Fig. 2). the condition for
co-occurence of other slots is expressed as when object!instance
isa:thingOpen. The character $ which comes immediately after the
slot name expressed an unsatisfied slot. Under $ is the CA pair
A slot surrounded by [. | describes an neccesary deep case. A

—425—

slot surrounded by (.) expresses one with an optional deep case
Please refer to [Okamura 86] to find out how these correspond to
the DCKR representation and how it works.

open

[subj $ isa:human => agent |

[obj 8 isa:eventOpen:
isa:thingOpen => object |

(with 8 isa:instrument
when object!instance isa:thingOpen
=> instrument)

(with 8 isa:animal => coagent)

[subj $§ isa:eventOpen:isa:thingOpen => object]

[subj § isa:instrument => instrument:
isa:wind => reason|
[obj § isa:thingOpen => object]

({(at'in) §$ isa:place => location).
Fig.2 SRL-s0 description of an lexical item open

Here. “"when object!instance isa:thingOpen”. the value of the
object slot of the 1instance open must be thingOpen. For the
description that used when. when there is no value for the object
slot of instance. demon is made and waited for until it is satis-
fied. After this. the demon is activated when the value 1is sa-
tisfied and after the semantic constraint is checked., failure or
success 1s determined. '

5. Temporal knowledge representation

Temporal knowledge represented in DCKR will be discussed
here. First we will consider how the state of the environment
changes through time intervals. The time 2zone from Timel to
Time2 is expressed as Time1 " Time2. A point of time. Timeil is ex-
pressed as Timel Timel. The fact that holds Time zone
Time1 " Time2 is expressed in the following manner.

sem(<objname>. <property>, T17T2, TT1"TT2) :-
time(Timel1 " Time2. T17T2. TT17TT2).

The predicate time takes the first two variables.
Time1 " Time2 and T17T2. and produces the result in the third vari-
able. TT17TT2 that is overlapping time zone of Timeli " Time2 and
T17T2. If there is no overlapping. failure results. However, if
T1 or Timetl remains as a variable. it is assumed to be infinite.
Below is a simple example.

sem(clyde#1. location:india. T.TT) :- time(1_3.T.TT).
sem(clyde#1, location: japan. T.TT) :- time(410. T.TT).
sem(cludet 1. location:india. T.TT) :- time(11712. 7. TT).

The following is executed with the information given above.

—426—

?-sem(clyde#1. location:Location.376.TT).

which can be expressed as "Where was clyde#1 during the time
zone 3767 The results are

Location = india

T =373
Location = japan
T = 476

And for the following question.

?7-sem(clydet1, location:india. T.TT).
TT = 178:
17T 11712

can be output as the results

In DCKR. “sometimes”. “always”. “next”. and “until” are
dealt as operators. In DCKR. as shown below. the definition of
sometimes is given but for a more detailed time-related defini-
tion refer to the explanation in [Koyama 86 1.

sometimes sem(X, Y. T"T.TT) - sem(X.Y. T T1.TT).

Note that the present time T is given when a goal is execut-
ed. but the variable T1 of the body can be left in that state
The above difinition says that sometimes sem(...) holds if
sem(X. Y. T"T1.TT) of the body is once hold after the present time
T

6. Conclusion.

As an advantage to knowledge represenatation of Frames.
chunking of knowledge. could have been given. For chunking. to
access only one frame. all the related information (slot) can at
one time be gotten: it can be thought as having good cir-
cumstances

In addition. it is asserted as being an appropriate psycho-
logical model. However. for the information representation given
for DCKR up until this point. based on frames. there are not
frames which differentiated between those slots which are sur-
rounded and those which are not. All the slots which exist in
the environment are considered equivalent. This might be seen as
contradicting the one-glimpse frame idea. However. for the hush-
ing of the predicate sem of the Horn clauses. the related

“knowledge can be easily taken in as can simulated of frame ideas.

A fortunate aspect of Prolog is that all the related information
can be listed by the predicates setof and bagof.

In Section 3. the applicated of DCKR to natural language
processing was discussed. There is difficulty here specifically
in regards to semantic processing. These predicates could be
utilized for that purpose. At the end of 2.1 we touched on the
ease of writing and reading knowledge in DCKR. But we should
develop -a higher-level knowledge representation language. It is

—427—

necessary to develop a higher-level Kknowledge representation
language regarding DCKR as a machine language. In the section 4.
the authers propose a high level Fnowledge representation
language called SRL-0.

Finailly. knowledge representation has a multitude of diffi-
cult ‘problems to be solved. such as how to represent high-order
knowledge., negative knowledge or mathematical concept of sets and
how to achieve default reasoning. The authors wish to get down
to research in natural-language-understanding systems. In the
process they will probably encounter various unexpected problems.
Then will come the real test of DCKR.

[Acknowledgements |

The authors wish to express their great gratitude to Dr.
Kazuhiro Fuchi. the director of the Research Center of ICOT. and
Dr. Koichi Furukawa. the chief of the Research Center of ICOT.
for their encouragement and valuable comments. Mr. Haruo Koya-
ma. Mr. Manabu Okumura. Mr. Teruo Ikeda. Mr. Tadashi Kamiwaki.
who are students of the Tanaka Lab at the Tokyo Institute of
Technology. helped us to implement some application programs
based on DCKR. Mr. Hideyo Imazu and Mrs. Sachie Saito helped in
preparing this manuscript.

References

| Bobrow 77 | Bobrow.D. G.et. al. : An Overview of KRL-0. Cognitive
Science. 1.1,.3-46(1977).

{ Bowen 8%] Bowen.K.A. @ Meta-Level programming and Knowledge
Representation. Syracuse Univ.. (1985)

[Bresnan 82] Bresnan. J. ed.: The Mental Representation of Gram-
matical Relations. The MIT Press(1882).

| Colmeraure 78) Colmeraure. A. : Metamorphosis Grammar. in Bolc
ed.: Natural Language Communication with Computers. Springer-
Verlag. 133-190(1978).

[Goebel 85) Goebel.R. : Interpreting Descriptions in a Prolog-
Based Knowledge Representation System. Proc. of IJCAI'85. 711-
716(1985).

[Hayes 80 | Hayes.P.J.: The Logic of Frame Conceptions. in Metzing.
D. ed.: Frame Conceptions and Text Understanding. Walter de
Gruyer. Berlin. 46-61(1980).

[Koyama 86 | Koyama.H. : Prolog niyoru Structured Object no Hy-
ougenkeisiki to Suiron. Master's Thesis. Tokyo Institute of Tech-
nology(1986) in Japanese.

[Mukai 85) Mukai.K.: Unification over Complex Indeterminates in
Prolog. Proc. of LPC'85. ICOT. 271-278(1985).

(Nilsson 80) Nilsson.N.J.: Principles of Artificial Intelligence.

—428—

Tioga(1980).

[OKkumura 86 1 Okumura.M. @ Imi Kizyutu-you Gengo SRL/0 no Sekkei to
DCKR. Jouhousyori Gakkai Jouhougaku Kiso Kenkyuukai. 1-2(1986) in
Japanese.

[Pereira 801 Pereira. F. et.al.: Definite Clause Grammar for
Language Analysis-- A Survey of the Formalism and a Comparison
with Augmented Transition Networks. Artificial Intelligence. 13,
231-278(1980).

[Sugahara 85 |'Sugahara, T.: Frame System niokeru Keisyou Kinou no
Kakutyou. Tisiki Zyouhousyori Symposium Ronbunsyuu. Monbusyou
Tagenn Tisiki Zyouhou Soukatuhan. 97-106(1985) in Japanese.

[Tanaka 851 Tanaka.H. et.al.: Definite Clause Dictionary--Prolog

niyoru Zisyokoumoku Kizyutu to Imisyori. Proc. of LPC*85. ICOT.
317-328(1985) in Japanese.

—429—

