C y———— .

It is the last one

Please copy now!!!
4 Hethod of Semantic Processing in Prolog

Hozumi TANAKA
(Tokyo lastitute of Technology)

After the proposal of wmetamorphosis grammar hy A. Colmeraure,
F.C.N. Pereira and D.H.D Warren have developed an exccllent parsing
mathod embedded in Prolog. They have not only devaloped a2 grammar
description formalism called DCG (Definite Clavse Grammar), but
also given us a flexible way of performing syntactic processing of
natural languages. According to their method., it is not necessary
for us to use a special program called a parser, which is replaced
by Prolog interpreter.

In this paper, we will propose 3 semantics representation formalism
called DCD (Definite Clause Dictionary) which not only makes easy

for us to describe semantics of each lexical entry, but also alleviates
our programming efforts of semantic processing. Essential parts of
semantic processing is directly carried out through Prolog interpreter.

& usual lexical entry has been expressend in the form of 2 frame or

a structured object that is composed of many slots. In BCD, each slot
in a frame is expressed in the form of a definite clause, and a frame,
which corresponds to the description of a lexical entry, is composed
of a set of definite clauses. An example of DCD is shown in Fig. 1
where a frame and a slot name appear in the head of each clause.

With regard to the first clause ia the Fig.l, a frame nawe 3and a slot
name are "open” and "subj”, respectively. Semantic constraints for the
slot are described in the body of each clause, where a variable N is
considered as a filler of the slot.

B OP(IUU:)VfX»’*').Op(lﬂﬂ,yfx.':‘).

sem(open,subj:N~1~0) :- nonvar (), Y]
(sem (N, human), '
addProp(agent:N~1~0)

(sem(N,thingOpened) :
sem(N,meeting)),
addProp(object:N~1~0)

sem(N,instrument),
addProp(instrument:N~1~0)

sen{N,wind), .
addProp(reason:N~1~0)),
]

sem{open,obj:N~1~0) :- nonvar(N),
(sen(N,thingOpened) :
sem(N,meeting)),
addProp(object:N~1~0).

sem{open,with:N~1~0) :- nonvar(¥),
sem(N,instrument),
addProp(instrument:N~1~0).

sem(open,Prop) :-
sem(act,Prop).

sem(X,X).

Fig.i An example of DCD descriptions for "open.”

From the DCD description shown in the Fig.1l, it is easy for us to
understand the following facts:

1) The selection of a slot is carried out automatically
through the backtracking mechanism of Prolog interpreter.

2) Checking of semantic constraints is replaced by the
execution of the body of each Prolog clause.

3) DCD descriptions are completely compilable.

DCD provides a natural and a simple way of expressing the inheritance
of knowledge. The following clause in the Fig.l indicates an example:

sem(open,Prop) :- sem(act,Prop).
The above clause means that if "act”, which is an upper concept of
"open”, has the property of Prop, "open’ gets the same Prop. Through

the unification mechanism of Prolog interpreter, all slots in "act”
will be able to access from "open.”

In order to understand the mechanism of our inheritance of knowledge.
let us take another example from [Nillson 801]:

- op(100,yfx,’~"),0p(100,yfx,”).
sem(clyde,Prop) :- sem(elephant,Prop).
sem(elephant,color:gray).

sem(elepahnt,Prop) ;- sem(mammal,Prop).
sen{(mammal,bloodTemp:warm).

sem(X,X).
?- sem{clyde,bloodTemp:X).

X = warm
yes

?-sem{clyde,Prop).

Prop = color:gray;
Prop = bloodTemp:warm;
Prop = mammal;

Prop = elephant;
Prop = clyde;
no

¢- sem{(X,bloodTemp:warm) .

clyde;
elephant;
mammal ;

2 < ¢ <
"

o]

From tracing some examples of goal executions give above, it is not
difficult for us to understand how to make the inheritance of knowledge.

An example of semantic processing is shown in the Fig.2 (a) in which
DCD descriptioas of the Fig.l are used. A&s shown in the Fig.2 (b) DCG
description, only a "sewml” predicate is called for the semantic
interpretation. Readers should note that as the results of semantic
processing are also in the forms of UCD, queries for the results is
easily answerable through the use of inference wmechanism in Prolog
interpreter. v

/¥semantic interpretation programs %/
sem! ([Uname,Sem | 0ldSem],
Sname:[Fname|Rest],NewSem) :-
sem(Uname, Sname: Fname
“[Uname,Sem | [[FnamelRest] | OldSem]]
“NewSem) .

sdec([not_adv | VP_AJ,[SDEC_S | ADV1_S]) -->

subj(SUBJ_A,SUBJ_S),
(1,

{ADV1_S=[] };
adv(ADV1_A,ADVI_S)),
vp(VP_A,VP_S).

{ subj_v(SUBJ_A,VP_A),
semi (VP_S,subj:SUBJ_S,SDEC_S) }.

sentence(SDEC_A,SDEC_S) -->
sdec(SDEC_A,SDEC_S).

Input sentences
2 17 i open the door with a key.

open#s:: .
prototype:open & sem(open#5.Prop) :- sem(open,Prop).
agent: i#4 % sem(open#5,agent:i84).
instrument:key#7 % sem(open#S, instrument:key47).
object:door#6 % sem(open#5,object:doorts).

i$4:: .
prototype: i % sem(i#4,Prop) :- sem(i,Prop).
door¥6::
prototype.door % sem(door#6,Prop) :- sem(door,Prop).
det: the % sem(door#6.det:the).
key#7::
prototype:key % sem(key¥7,Prop) :- sem(key,Prop).
det:a , % sem(key$7.det:a).
opend5S::
prototype:open % sem(open#5,Prop) :- sem(open,Prop).
agent:.id4 % sem(open#i5,agent:ifd).
object:doort6 % sem(openf5,object:door$g).
i#4::
prototype. i % sem(i#4,Prop) :- sem(i,Prop).
door$6.::
prototype:door % sem(door#6,Prop) .- sem(door,Prop).
det: the % sem(door#G,det:the).
with:key$7 » sem(door#6,with:keys7).
key#7.. |
prototype:key s sem(key#7,Prop) .- sem(key.Prop).
det:a % sem(key#7,det:a).

