2Zme WerRSYr (nd .
Logie and Natinal Largrsge nderskending

Comparison of Logic Programming Based Natural
Language Parsing Systems

Toshiyuki Okunishi, Ryoichi Sugimura, Yuji Matsumoto
ICOT Research Center
Institute for New Generation Computer Technology
1-4-28, Mita, Minato-ku, Tokyo, 108, Japan
Naoyoshi Tamura, Tadashi Kamiwaki, Hozumi Tanaka
Tokyo Institute of Technology
Ookayama, Meguro-ku, Tokyo, 152, Japan

ABSTRACT

This paper compares practical natural language parsing
systems based on logic programming. The systems selected are
BUP, LangLAB (a successor to BUP) and SAX.

There are two major aspects of comparison, system facilities
and environment, and parse time and memory space needed to
analyse sample English sentences using a middle scale English
grammar written in DCG.

LangLAB has the most advanced facilities and environment for
developing natural language grammars. It also offers
grammatical formalism that can express left extrapositions. The
debugging facilities of SAX are not yet well developed.

LangLAB is 5 to 11 times faster than BUP when interpreted.
SAX is 6 to 16 times as efficient as LangLAB when compiled,
while LangLAB is 6 to 10 times as efficient as SAX when
interpreted.

Data in this paper shows that SAX in compiled mode has its
upper bound in the BUP family that adopts the bottom-up
algorithm with top-down prediction.

From these results, it is proposed that, at present, it is best to
use both systems jointly.

1. INTRODUCTION

This paper reports a comparison of practical natural language parsing systems
based on logic programming. Since the framework of logic programming is congenial
to natural language processing, research on logic based natural language processing is
active, and various syntactic and semantic analysis tools have been proposed and
developed.

The common formalism for this research is based on context free grammars (CFQ),
and many tools for syntactic analysis have been proposed. Although they have the
same base, each system has a different purpose and facilities, making it difficult to
evaluate and compare each system objectively. The research summarized in this paper
is a starting point for obtaining objective evaluations.

The research reported in this paper started with an investigation and comparison
of three existing natural language parsing systems based on logic programming, BUP
[Matsumoto 83], LangLAB (a successor to BUP) [Tanaka 86] and SAX [Matsumoto
87a] [Sugimura 86]. There are two major aspects of comparison, system facilities and

environment, and parse time and memory space needed to analyse sample English
sentences using a middle scale English grammar written in DCG with about 400
grammar rules and 600 dictionary entries.

Chapter 2 describes the basic mechanisms and the environment of each parsing
system. .

- Chapter 3 gives a qualitative comparison of the three systems.
Chapter 4 gives a quantitative comparison of the three systems.
Chapter 5 describes the results of the comparisons and discusses future research.

2. OVERVIEW OF COMPARED SYSTEMS
2.1 Parsing Systems Based on Logic Programming

Definite clause grammars (DCG), proposed by Warren and Pereira [Pereira 80],
can be seen as an extended formalism of CFG in the following two points.

1) Prolog programs can be written on the left hand side of rules as
extra-conditions.

2) Grammar categories, like Prolog predicates, may have arguments for
carrying information.

DCG formalism provides a representative parser embedded in Prolog. A grammar
in the form of a DCG is directly transformed into a Prolog program and is executed
either by the Prolog interpreter or by being compiled into machine code, without any
auxiliary programs. However, DCGs have the following problems because of the pure
top-down and depth-firstsearch.

1) Handling left-recursive rules
2) Efficiency forlarge scale grammars

To overcome these problems, a parsing method called BUP (bottom up parser
embedded in Prolog) has been developed by Matsumoto et al. A grammar writtenin a
DCG is translated to a Prolog program called the BUP program, which parses a
sentence bottom-up and depth-first. Several improvements on the original algorithm
have given BUP the similar order of computational complexity to Earley’s [Earley 70]
and Pratt’'s [Pratt 75] algorithms.

LangLAB, developed at the Tokyo Institute of Technology, is a comprehensive
natural language system based on the BUP algorithm. LangLAB has facilities and
tools for helping users to develop grammars. One is an extension of grammar
formalism for expressing left extrapositions, such as extraposition grammars (XQ)
‘[Pereira 81]. Another is an interactive tracer. Several improvements have also been
made in the efficiency of both the speed and the memory space.

In another recent trend, a parallel parsing method called AX (analyser for
natural language syntax) has been proposed by Matsumoto [Matsumoto 86]. AX is
able to parse sentences using grammar in DCG form with a similar bottom-up strategy
to BUP, butin a parallel environment, i.e., in a breadth-first search. AX can be seen
as the parallel bottom-up version of Kay’s chart-parser [Kay 80]. The target
environment of AX is parallel logic programming languages such as Guarded Horn
Clauses (GHC) [Ueda 85] and Parlog [Clark 84].

The basic idea is to translate a (restricted) DCG into a program of Prolog or
parallel logic programming languages. The translated code results in an efficient
code suitable for existing compiling techniques of sequential logic programming
languages, such as indexing and tail-recursion optimisation (TRO). These are described
in Section 2.4. Therefore, relatively efficient parsing can be expected even in

sequential implementation. The AX system in a parallel language is called PAX, and
thatin a sequential language is called SAX.

2.2 BUP

The BUP program, which is generated from a DCG by the BUP system, is a set of
Horn clauses, each of which corresponds to a rule in the original grammar. The BUP
program parses a sentence bottom-up and depth-first. This gives rise to the following
problems, which are also found in top-down and depth-first parsing of DCGs.

1) Generation of useless partial parse trees
2) Repetition of computations

Both problems are overcome by extending the original algorithm of BUP.
Generation of useless parse trees can be reduced by combining a top-down prediction
with bottom-up parsing. The BUP system represents this information as the predicate
‘link’ that worksin the same way as Pratt’s ‘oracle’.

Depth-first parsing has a problem in efficiency, where preceding computations
are forgotten at every backtrack. This problem is generally solved by introducing a
tabular method, where the partial parsing results are saved and re-used.

In the BUP algorithm, both success and failure of predicate ‘goal’ are registered
by side-effects. These two improvements on the original algorithm give BUP a similar
order of computational complexity to Earley's and Pratt’s algorithms.

The BUP algorithm is also the basis of LangLAB. Since a detailed parsing
algorithm of BUP appeared in [Matsumoto 83], only a brief explanation and example
are given here. Suppose there is a DCG grammar shown in (1). The BUP system
generates Prolog clauses shown in (2) for this grammar. (3) is the definition of the
predicate ‘goal’ which isinvoked from (2).

(1) sentence(sentence(NP,VP))--> np(NP), vp(VP).

np(np(you))--> [youl].
vp(vp(walk)) --> [walk].

(2) link(X,X).
link{np,s).
np(np,A,B,B,A).
vp(vp,A,B,B,A).
sentence(sentence,A,B,B,A).

np(Goal,[NP],S1,5,Arg) :-

link(sentence,Goal),

goal(vp,[VP],$1,52),

sentence(Goal,[sentence(NP,VP)],S2,5,Arg).
dict(np,[np(you)],lyou|S0],50).
dict(vp,[vp(walk)],[walk|SO],S0).

(3) goal(CurGoal,Arg,S0,S) :-
(wf_goal(CurGoal,_,S0,_), !, wf_goal(CurGoal,Arg,S0,S) ;
fail_goal(CurGoal,s0),! fail).
goal(CurGoal,Arg,S0,S) :-
dict(Nt,Arg1,50,51),
link(Nt,CurGoal),
Pred =..[Nt,CurGoal,Arg1,51,5,Arg],

call(Pred),
assertz(wf_goal(CurGoal,Arg,50,S)).
goal(CurGoal,Arg,S0,S) :-
(wf_goal(CurGoal,_,S0,_);
assertz(fail_goal(CurGoal,S0))), !, fail.

The sentence 'you walk' is parsed using this program. Parsing a sentence means
that a category of the input string is recognised as ‘sentence’. This corresponds to the
success of the procgdure ‘goal(sentence,Tree,[you,walk],[])’. First, a check is made to
determine whether the predicate ‘goal’ has already been executed. Since it has not yet
been executed, ‘goal’ tries to consult the dictionary. The predicate ‘dict’ recognizes
that 'you'is a word with category 'np’. A check is made to determine whether the
category 'np’ can be the left-most descendant of ‘sentence’ using the predicate ‘link’, a
top-down prediction, so as not to generate useless partial trees. When the predicate
‘link’ succeeds, a partial parse tree ‘'np’, the daughter of which is 'you’, has been
formed. Next, the program tries to compose a larger parse tree with ‘'np’ as its
leftmost category. This corresponds to invoking the procedure
‘np(sentence,Arg1,[walk],5,Arg)’. The predicate ‘np’ checks whether the category that
will be composed by the success of this rule (in this case, ‘sentence’) is linked to the
current goal ‘Goal’ (it is also instantiated to ‘sentence’ in this case). Next, the
predicate 'np’ tries to obtain 'vp’. This corresponds to invoking the procedure
‘goal(vp,[VP],[walk],S2)'.

The rest of the parsing is done in the same way. Every result of 'goal’ is saved
by the Prolog predicate ‘assertz’, preventing repetition of computations caused by the
backtrack mechanism of Prolog.

2.3 LangLAB

LangLAB is a tool for building natural language processing systems based on
Prolog. Since LangLAB follows the method used in BUP, the problem of left-
recursive rules does not arise. LangLAB has two major extensions to the original
BUP, which enable the user to handle left extrapositions and idioms.

Left extraposition is the movement of a phrase that typically appears in
constructs such as relative clauses and yes-no questions. If the grammar is written in
the form of extraposition grammar with slash category (XGS) [Konno 86], left
extrapositions are processed automatically in LangLAB. Grammar written in XGS is
translated to a Prolog program which is called the BUP-XG program. This translator
can insert variables showing the parse tree into the BUP-XG program automatically.
(1) is an example of an XGS rule.

(1) np(Np_syn, Np_sem) -->
det(Det_syn, Det_sem),
noun(Noun_syn, Noun_sem),
relative_sentence(Srel_syn, Srel_sem) ../np(Noun_syn, Noun_sem).
relative_sentence(Srel_syn, Srel_sem) -->
relative_pronoun(Relpro_syn, Relpro_sem),
declare_sentence(Sdec_syn, Sdec_sem).

In the above rules, ‘relative_sentence(...)../np(...)" is the slash category which
indicates the existence of a trace 'np’ within the mother category of ‘relative_sentence’.
The notation of XGS constributes to decrease the number of grammar rules The
key mechanism for processing XGS is a trace operation. In XG [Pereira 81], the trace
is searched for using the stack operation. The same mechanism has also been adopted

in LangLAB. In the case of bottom-up parsing, the timing of the stack operation causes
inefficiency. LangLAB has overcome the problem by effective use of top-down
prediction and by a slight extension of the goal clause [Konno 86].

To process both fused and separable idioms, LangLAB translates each related
group of idioms into a special kind of a tree called TRIE [Kamiwaki 85]. Common
words in the dictionary share the structure, saving memory space in the dictionary
and increasing parsing speed. The original DCG rules (2) for idiom description are
translated into the TRIE structure dictionary (3).

(2) v(1)-->"[get,up],!.
v(2) --> [get,on].
v(3) --> [get].
np(4) --> [not,only], np(NP1,_), [but,also], np(NP2,_), {check(NP1,NP2)}.
adj(5) -- >[not,only], adj(AJ1,), [but,also], adj(AJ2,_).

(3) dicta(get,[[v.[3]]LI
[on.[Iv.[21]]],
(up.(l,
ERIARNIIIN)E
dicta(not,[].{
[only,[],
[[adj,AJ1,_LI],
[but,(],
[also,[],
[[adj,AJ2,_],[[adj,[51]1110),
((np,NP1,_L01,
[but,[].
[also,[],
[[np,NP2,_1.0],
[(check(NP1,NP2)),[[np,[41111]11)])).

In addition to the above extensions, several optimisations, including the
following three, have been applied to the LangLAB system [Tanaka 86] .

1) Indexed search for predicate ‘'link’
2) Direct consultation of dictionary, not via predicate ‘goal’
3) Indexed search for asserted goals (‘wf_goals’ and ‘fail_goals’)

‘2.4 SAX

As described in Section 2.1, SAX is a sequential, efficient implementation of AX
parsing method. This section briefly describes the organisation of SAX. Suppose there
is a context free grammar shown in (1). On the right side of the grammar rules, the
symbol ‘id’ followed by a number is not a grammatical symbol, but stands for an
identifier that indicates a particular position in a particular grammar rule. The key
mechanism of SAX is passing of identifiers.

(1) sentence--> np,id1 noun.
np --> det, id2 noun.
np --> np, id3 coconj, id4 np.
noun --> noun, id5 rel_clause.
noun --> noun, id6 pp.
rel_clause --> [that], id7 vp.

pp --> prep, id8 np.

vp --> verb.

vp --> verb, id9 np.

vp --> vp, id10 coconj, id11 vp.

The parsing process operates from left toright and from bottom to top. Suppose a
noun phrase has just been found. There are two kinds of processes that must be
performed according to the grammar rules. The first is to start parsing using new
grammar rules. The other is to augment already constructed incomplete tree
structures to form more complete ones. In the system, the discovery of a noun phrase
corresponds to a call of the definition of ‘np’. Since the parsing process proceeds from
left to right and bottom to top, a call of 'np’ produces identifiers ‘id1’ and ‘id3’,
which indicate that the parsing process has successfully proceeded up to these points
in the grammar rules. It is defined as Prolog clause (2).

(2) np1(X,[id1(X),id3(X)]Yt], Yt).

The second and third arguments of the clause represent the set of these two
identifiers by difference lists. The first argument of this clause is a list of identifiers
that are produced by the words or grammatical symbols immediately preceding the
noun phrase in the given input sentence. The clause (2) produces the identifiers
without regard to the contents of the first argument. It is, however, modified when
top-down prediction is used. (This process is not described here.) This clause
corresponds to the first job for a noun phrase. The second job for the noun phrase is to
build up more complete tree structures by modifying partially constructed trees. This
job is defined by the Prolog clauses shown in (3).

(3) np2([1.X,X).
np2([id4(X)|Xt],Y,Y1) :-
np(X,Y,Y1), 1, np2(Xt,Y1,Yt).
np2([id8(X)|Xtl,Y,Y1) :-
pp(X,Y, Y1), !, np2(Xt,Y1,Yt).
np2([id9(X)|Xt],Y, Y1) :-
vp(X,Y,Y1), !, np2(Xt,Y1,Yt).
np2([_|Xt],Y,Y1) :- np2(Xt,Y,Yt).

The second clause of (3) states that a noun phrase can be constructed if it receives
‘id4’, which is only produced by a coordinating conjunction that has already received
"a noun phrase. The third and fourth clauses correspond to other occurrences of 'np’
in the grammar rules. The first clause defines that it produces an empty difference list
when it receives an empty list. The lastclause is necessary to discard the identifiers
that areirrelevant toa noun phrase.

Definition (2) is for the occurrences of ‘np’ as the leftmost element on the right
side of grammar rules. Definition (3) is for the other occurrences of ‘np’ on the right
side of grammar rules. They are called type one occurrences and type two occurrences.
The complete definition of a noun phrase is a union of these definitions, as shown in

(4).

(4) np(X:Y:Yt) -
np1(X,Y,Y1), np2(X,Y1,Yt).

Although only analysis of 'np’ was described here, the rest of the parsing also

proceeds by receiving identifiers and producing new processes and new identifiersin
the same way.

There is always a single clause for the definition of type one occurrence, and cut
symbols are embedded in each clause in (3), guaranteeing that the parsing process is
deterministic and never backtracks. This means that SAX is very efficient for the
following two reasons.

1) Tail-recursion optimisation can be applied in compiled mode.
2) Noside-effectis used for the well-formed substring table, while the same
effectis achieved by the tail-recursive definition of type two clauses.

3. QUALITATIVE COMPARISON
This chapter compares the following three aspects of qualitative facilities.

1) Grammar descriptive power
2) Idiom handling and morphological analysis
3) Environment for grammar development

3.1 Grammar Descriptive Power

Current SAX system imposes some restrictions on DCG [Matsumoto 87a],
because of its parsing mechanism.

Since the parsing process of SAX runs deterministically, as explained in Section
2.4, an extra-condition that contains ambiguous interpretations is evaluated only once
during the parsing process, no matter what the grammar writer's intention is. This
means that only the first successful substitution of variables is computed.
Furthermore, if the grammar itself is ambiguous, the ambiguities spawn as many
processes. Variables in spawned processes must be copied or renamed to ensure that
they work correctly. To cope with these problems, SAX applies a restriction to DCG by
modifying its formalism as follows.

c_ 0-->c_1,{extra_1}, ..., c_n, {extra_n} & {delayed_extra}.

The extra-conditions to the left of ‘& are evaluated only once. 'Delayed_extra’ to
the right of ‘&’ is evaluated after the termination of the parsing process and may have
ambiguities.

In parsing systems based on DCG with bottom-up parsing, such as BUP and
LangLAB, the grammar developer need not be concerned with left-recursive rules.

As stated in Section 2.3, LangLAB also provides XGS formalism. XGS is effective

‘for expressing structures such as relative clause and yes-no questions. In this
experiment, a DCG with about 400 rules required only about 300 rules in XGS.

The current grammar formalism offered by SAX is a restricted DCG, as
described above. However, SAX is also designed to provide parsing [Matsumoto 87b]
for gapping grammars (GGs) [Dahl 84a] [Dahl 84b]. GGs are a very powerful
grammar formalism that enables grammar writers to specify a rule concentrating on
constituents in a sentence that are not necessarily adjacent.

3.2 Idiom Handling and Morphological Analysis

A parsing system must have flexible facilities to analyse various language
phenomena. The separation of dictionary and grammar rules in BUP and LangL.AB
simplifies the introduction of morphological analysis and idiom handling by modifying
the predicate 'dict’ of the BUP program.

In BUP, an idiom dictionary distinct from the word dictionary is checked every

Table 3-1 Qualitative comparison

BUP LangLAB SAX
Parsing Bottom-up Bottom-up Bottom-up
method and depth-first and depth-first and breadth-first
Side-effect Used Used Not used
Copy -) . .
) Not required Not required Required
of environment
Parallel
_) Impossible Impossible PAX
implementation
Grammar XGS
o DCG Restricted DCG
description (extension of DCG) esHne

Deterministic Prolog
programs and

. Any Prolog Any Prolog .
Extra-condition delayed evaluation
program program L.
of nondeterministic
Prolog programs
idi Idi TRIE
rom Idiom e (Being designed)
handling dictionary structure
Morphological Longest TRIE Parallel analyser
analysis matching structure (under development)
Debuggi Interacti .
ebugging None nierachive (Being designed)
tools tracer

Retranslation
i Corrected part
after correction Whole | Whole
on

of grammar Y

time ‘dict’ is consulted [Matsumoto 84]. LangLAB handles idioms with a special
structure called TRIE, and is reported to be superior to BUP for the following reasons
[Kamiwaki 85].

1) Idiomscan be described within the word dictionary.
2) Idiomswithinflection can be handled.
3) Efficiency in both memory usage and analysis speed

In BUP, the processes of automatic segmentation and morphological analysis are
combined. The segmentation algorithm isolates a word from the beginning of the input
string based on the longest successful matching. When the word has an inflection, the
type of inflection and suffix are examined [Matsumoto 84).

The morphological analysis system for SAX is under development [Sugimura 87].
The keymechanism is parallel search, like the AX parser.

3.3 Environment for Grammar Development
Grammar debugging tools are indispensable for large natural language parsing
systems. This section compares the debugging environments of three systems.
LangLAB provides an interactive tracer for debugging grammars. This tracer

is an interpreter that reads DCG grammar rules and executes them step by step
according to the BUP algorithm. The LangLAB tracer displays various parameters
such as partial parse trees, and changes states by commands from the user.

In LangLAB, grammars can be dynamically or partially corrected in the course
of the development of large scale grammars.

SAX has not yet provided satisfactory debugging tools. This ‘will cause various
difficulties for the user since it is hard to follow the parallel parsing process, which is
the key feature of SAX. Development of debugging tools is one of the most urgent
problems for SAX.

4. QUANTITATIVE COMPARISON
4.1 Environment, Grammar and Dictionary for the Experiment

Systems
BUP ([Matsumoto 84] version)

LangLAB
SAX
Aspects
Parse time
a) Interpreted
b) Compiled
Memory space needed for parsing
Computer and environment
Quintus Prolog version 1.1 on VAX 11/785 VMS version 4.3
(about 10 KLIPS in compiled mode)
Grammar and dictionary
English grammar
BUP and SAX 398 DCG rules
LangLAB 295 XGS rules
(These cover almost the same range of English sentences.)
Dictionary 86 entries
Sample sentences
9 sentences (see APPENDIX)
Restriction
Morphological analysis is excluded because the morphological analysis
system for SAX is under development at present.

4.2 Comparison of Parse Time
' Tables 4-1 a) and b) show the results of the experiment. Some observations follow.

A. The efficiency of SAX and BUP is comparable in interpretive mode.

B. SAXis 7 to 60 times faster than BUP and 6 to 16 times faster than LangLAB in
compiled mode.

C. LanglLAB is5to 11 times faster than BUP and 6 to 10 times faster than SAX in
interpretive mode.

D. SAXin compiled mode is about 150 to 230 times faster than in interpretive
mode.

Result A indicates that SAX, BUP and LangLAB have the same order of
computational complexity, because of top-down prediction and re-use of partial results.
Results B, C and D describe the following key features, which contribute to the
efficiency of SAX and LangLAB.

Table 4-1 Parse time™ of three systems (msec)
*) The time taken by garbage collection and stack shift is excluded.

a) Interpretive mode

Number
Interpreted
of parse trees
Sentence Number
number | ofwords
- BUP SAX LangLAB BUP L LAB SAX
(DCG) (XGS) ang
1 4 1 1 21,330 3,740 35,800
2 5 1 1 16,730 2,050 16,730
3 7 2 2 45,740 7,850 52,200
4 10 1 1 57,320 10,830 60,310
5 11 2 2 70,590 13,310 114,770
6 18 1 2 103,330 20,510 140,550
7 21 5 5 343,590 56,170 414,610
8 19 1 1 128,600 26,520 146,770
9 20 6 2 243,420 22,170 230,070
b) Compiled mode
Number Compiled
of parse trees
Sentence Number
number of words
BUP SAX LangLAB BUP L LAB SAX
an
(DCG) (XGS) E
1 4 1 1 1,290 1,240 190
2 5 1 1 690 800 110
3 7 2 2 3,130 2,660 320
4 10 1 1 4,970 4,130 330
5 11 2 2 11,860 5,630 530
6 18 . 1 2 18,210 8,920 630
7 21 5 5 112,500 27,070 1,750
8 19 1 1 23,490 11,610 770
9 20 6 2 61,490 11,090 1,010

1) The optimisation methods introduced in LangLAB are effective, particularly
in interpretive mode.

2) The Prolog program that SAX generates issuitable for compiling techniques
of Prolog, such as indexing of predicate and tail-recursion optimisation.

3) SAX does not use side-effects.

E. InLangLAB and BUP, the difference between the efficients when compiled
and when interpreted is not as great as in SAX.

Result E shows that, in LangLAB and BUP, the interpretive search for asserted goals
takes the greater part of parse time and that this is the primary reason for the slight
improvement in parse time in the two systems when used in compiled mode.

F. Thelonger the sentence is and the more parse trees there are, the
greater the difference is in parse time between BUP and SAX and between
BUP and LangLAB when used in compiled mode.

This result means that SAX and LangLAB have the characteristic, G, desirable for
large scale grammar in practical use.

G. Parse time increases approximately in proportion to the length of the
sentence in SAX and LangLAB when compiled.

4.3 Comparison of Memory Space Needed for Parsing

Table 4-2 shows the size of the grammar used for evaluation and the programs
translated by three systems. Table 4-3 shows the size of the heap memory that is used
during the parsing process. Since SAX does not use side-effects, there is no data in
Table 4-3.

Table 4-2 proves that the translated program of SAX is more than twice as large
as those of BUP and LangLLAB. However, the gross size of used memory space (i.e.,
the sum of the program size and the size of the heap memory used in parsing) of BUP
becomes close to that of SAX for long sentences, depending on the experimental results.

Table 4-3 shows that the optimisations introduced in LangLAB are effective not
only for parse time but also for memory space.

Table 4-2 Program size (bytes)

DCG
(Grammar BUP LangLAB SAX

and dictionary)

52,896 103,000 98,648 227,084

°5. DISCUSSION
This paper compared three natural language parsing systems based on logic
programming (BUP, LangLAB and SAX) in both the qualitative and quantitative
aspects. In qualitative comparisons, SAX gives the fastest parsing method for the
DCG formalism (currently, restricted DCG) when used in compiled mode. SAX is 6 to
16 times faster than LangLLAB, and LangLAB is 1 to 6 times faster than BUP. These
results show that SAX hasits upper boundin the BUP family that adopts the bottom-
up algorithm. The speed of SAX is fast enough for practical uses. If a higher speed for
parsing is required in the future, it will be realized in a parallel environment. Since
SAX originates from the AX algorithm, the basis of which is parallel parsing, it will
satisfy future requirements (in the form of PAX).
As discussed above, SAX (including AX) is one of the most promising parsing
methods. However, it has not yet provided satisfactory environments such as
debugging tools. In addition, it is important to investigate how the restriction given to

Table 4-3 Size of used heap memory (bytes)

Number
Sent Nomb of parse trees
entence mbe
Hmoer BUP LangLAB
number of words
BUP LangLAB
(DCG) (XGS)
1 T4 1 | 2,572 1,884
2 5 1 1 2,528 1,692
3 7 2 2 6,300 4,940
4 10 1 1 9,260 7,372
5 It 2 2 14,380 8,528
6 18] 2 23,744 11,688
7 21 5 5 53,616 29,944
8 19 1 1 25,040 13,244
9 20 6 2 30,132 10,300

DCG formalism is relaxed while keeping it amenable to the AX algorithm. At present,
LangLAB has the most advanced facilities and useful environment for developing
natural language grammars. It also offers grammatical formalism that expresses left
extrapositions.

A debugging model for SAX is expected to be very difficult. Since the grammar
formalism of both LangLAB and SAX is DCG, it is proposed to use DCG as the
interface of both systems and to use them jointly for the time being. Since it is the
fastest among the three systems in interpretive mode, LangLAB will be used during
the development of grammar in DCG form. After debugging the grammar, SAX will
execute it efficiently, although SAX will need flexible facilities, such as tools for idiom
handling and morphological analysis, and the full treatment of DCG formalism.
Development of utilities is one of the most urgent areas of research for SAX.

ACKNOWLEDGMENTS

We would like to thank Dr. Yokoi (Deputy Director of ICOT) and Dr. Uchida
(Chief of the Second Research Laboratory at ICOT) for their advice and
.encouragement. We also extend our thanks to the members of Prof. Tanaka’s
Laboratory at the Tokyo Institute of Technology and the Second Research Laboratory
at ICO'T for many useful discussions and comments.

REFERENCES

[Clark 84] K. L. Clark and S. Gregory, "PARLOG: Parallel Programmingin Logic",
Research Report DOC 84/4, Imperial College, April 1984

[Dahl 84a] V.Dahl and H. Abramson, "On Gapping Grammars", Proc. 2nd
International Conference on Logic Programming, Uppsala, Sweden, pp.77-88,
1984

(Dahl 84b] V. Dahl, "More on Gapping Grammars", Proc. of the International
Conference on Fifth Generation Computer Systems, Tokyo, pp.669-677, 1984

[Earley 70]J. Earley, "An Efficient Context-Free Parsing Algorithm", C.ACM, 13,
1970

(Kamiwaki 85] T. Kamiwaki and H. T'anaka, "TRIE Dictionary and Idiom Processing",

Proc. of the Logic Programming Conference, T'okyo, 1985 (in Japanese)

[Kay 80] M. Kay, "Algorithm Schemata and Data Structures in Syntactic
Processing”, Technical Report CSL-80-12, Xerox PARC, 1980

[Konno 86] S. Konno and H. Tanaka, "Processing Left-extraposition in Bottom-up
Parsing System", Computer Software Vol.3, No.2, pp.19-29, T'okyo, 1986
(in Japanese)

[Matsumoto 83] Y. Malsumoto, et al.,"BUP: A Bottom-Up Parser Embedded in
Prolog", New Generation Computing, Vol.1, No.2, pp.145-158, 1983

[Matsumoto 84] Y. Matsumoto, M. Kiyono and H. Tanaka, "Facilities of the BUP
Parsing System", Proc. of 1stInternational Workshop on Natural Language
Understanding and Logic Programming”, Rennes, France, 1984

[Matsumoto 86] Y. Matsumoto, "A Parallel Parsing System for Natural Language
Analysis", Proc. of 3rd International Conference on Logic Programming,
London, 1986

[Matsumoto 87a] Y. Matsumoto and R. Sugimura, "A Parsing System Based on Logic
Programming", to appear in Proc. 10th IJCAI, Milan, Italy, Aug. 1987

[Matsumoto 87b] Y. Matsumoto, "Parsing Gapping Grammars in Parallel", to be
published as an ICOT Technical Report, Tokyo, 1987

[Pereira 80] F. Pereira and D. Warren, "Definite Clause Grammars for Language
Analysis -- A Survey of the Formalism and a Comparison with Augmented
Transition Networks", Journal of Artificial Intelligence, 13, pp. 231-278, 1980

[Pereira 81] F. Pereira, "Extraposition Grammars", American Journal of
Computational Linguistics, 7, 4, pp. 243-256, 1981

[Pratt 75] V. R. Pratt, "LINGOL -- A Progress Report", Proc. of 4th IJCAI,
pp. 422-428,1975

[Sugimura 86] R. Sugimura and Y. Matsumoto, "Implementation of SAX on CIL",
Proceedings of IPSJ, 1986, pp. 1799-1800 (in Japanese)

[Sugimura 87] R. Sugimura and Y. Matsumoto, "Parallel Lexical Analysis of Japanese
Sentences", to be published as an ICOT Technical Report, Tokyo, 1987

[Tanaka 86] H. Tanaka et al., "Software System LangLLAB for Natural Language
Processing", Proc. of the Logic Programming Conference, Tokyo, 1986
(in Japanese)

[Ueda 85] K. Ueda, "Guarded Horn Clauses", ICOT' Technical Report TR-103, Tokyo,
1985

APPENDIX Sample sentences (number of words)

I open the window. (4 words)

Diagram is an augmented grammar. (5 words)

The structural relations are holding among constituents. (7 words)

It is not tied to a particular domain of applications. (10 words)

Diagram analyzes all of the basic kinds of phrases and sentences. (11 words)

This paper presents an explanatory overview of a large and complex grammar

thatisused in a sentence. (18 words)

7. The annotations provide important information for other parts of the
system that interpret the expression in the context of a dialogue. (21 words)

8. For every expression it analyzes, diagram provides an annotated description
of the structural relations holding among its constituents. (19 words)

9. Procedures can also assign scores to an analysis, rating some applications
of arule as probable or as unlikely. (20 words)

RS e

