Language and Artificial Intelligence
M. Nagao (Editor) 353
© Elsevier Science Publishers B.V. (North-Holland), 1987

DCKR -- Knowledge Representation in Prolog and' I1ts Application
to Natural Language Procei%lng

Hozumi Tanaka
(Tokyo Institute of Technology)

i tment of Computer
Tokyo Institute of Technology, Depar
Science, O-okayama,2—l2—l.Meguro-ku,Tokyo,Japan

ABSTRACT: Semantic processing is one of the important tasks
for natural language processing. Basic to semantic processing
are descriptions of lexical items. The most frequently-used form
of description of lexical items is probably Frames ogj Objects.
Therefore in what form Frames or Objects are expressed is a key
issue for natural language processing. A method of the Object
representation in Prolog called DCKR will be introduced. It will
be seen that if part of general knowledge and a dictionary are
described in DCKR, part of context-processing and the greater
part of semantic processing can be left to the functions built in
Prolog.

1. Introduction

Relationships between Kknowledge represented in predicate
logic formulas and knowledge represented in Frames or Structured

objects are clarified by [Hayes 801, [Nilsson 80]. (Goebel

85]1.[Bowen 85]. et al, but their methods requires separately an

interpreter for their representation. The authors have
developed a knowledge representation form called DCKR (Definite
Clause Knowledge Representation) [Koyama 851]. In DCKR, each of

the slots composing of a Structured Object (hereinafter simply

called an object) 1is represented by a Horn clause (a Proloyg
statement) with the “"sem" predicate (to be explained in Section
2) as its head. Therefore, an Object can be regarded as a set of
Horn <clauses (slots) headed by the sem predicate with the same
first argument. From the foregoing it follows that almost all of
a program for performing inferences relative to knowledge
described in DCKR can be replaced by functions built in Prolog.
That is. there is no need to prepare a special program to perform
inferences.

DCKR will be described in detail in Section 2. Section 3
will suggest a method to do efficient inference in DCKR. Section
4 will discuss applications of DCKR to natural language
processing, semantic processing and semantic matching algorithm.
Programming efforts of semantic processing will be alleviated a
lot 1if DCKR is used for the description of lexical items, since
most of programming efforts can be left to the functions built in
Prolog.

2. Knowledge Representation in DCKR
2.1 Object representation and inference.

The following examples of knowledge representation in DCKR
will be used in Section 3 and later.

354 H Tanaka

-op(100,yfx, '™,

op(100,yfx, " :),
op(90,xfy, '#').

01) sem(clyde#l,age:5,_).

02) sem(clyde#l,P,S) :-
isa(elephant,P, [clyde#1!S1).

03) sem(elephant#l,birthYear:1980,_).

04) sem(elephant#t,P,S) :-
isa(elephant,P, [elephant#1i5]).

05) sem(elephant#2,birthYear:1982,).

06) sem(elephant#2,P,S8) :-
isa(elephant,P,[elephant#2:iS]).

07) sem(mcCarthy#!,address:stanford,).

08) sem(mcCarthy#l.nationality:american,_).

09) sem(mcCarthy#l.P,S) :-
isathuman,P,{mcCarthy#!1:iS1).

) sem(misterSG#!,address: japan,).
) sem(mister5G#1,P,S) :-
isa(human,P, [mister5G#1:S1).

12) sem(misterAl#1,address:america,_).

13) sem(misterAlI#t,P,S) :-
isaChuman,P,[misterAI#1:{S]1).

14) sem(human,P,S) :-
isa(mammal,P, ChumaniS1).

15) sem(elephant,P,S) :-
isa(mammal ,P,(elephant!S]).

16) sem(mammal,bloodTemp:warm,_).

17) sem(mammal,P,S) :-
isa(animal,P, (mammaliS]).

18) sem(animal,P,S) :-
isa(creature,P,[animaliS]):
hasa(body,P,lanimal iS]).

19) sem(creature,age:X,_) :-
bottomof (S,B),
sem(B,birthYear:Y._),

X is 1885 - Y.

20) sem(america,P,S) :-
isa(country,P,[americaiSl);
hasa(california,P,lamericaiSl),

21) sem(california,P,S) :-
isa(state,P,[californiaiSl);
hasa(stanford,P,[californiaiSl),

Now the meanings of the sem, 1isa and hasa predicates, which
are 1important to descriptions in DCKR, are explained using the
DCKR examples given above.

The first argument in the sem predicate is the Ob.ject nane.
Objects are broadly divided into two types, individuals and
Prototypes. Psychologists often refer to prototypes as
stereotypes. An Object name with # represents an individual name
and the one without #, a prototype name. For example, clydeil
and elephant, which appears in 01) and 02), represent an
individual name and a prototype name, respectively. A set of
Horn clauses headed by the sem predicate with the same individual
name represents an individual. A set of Horn clauses headed by
the sem predicate with the same prototype -name represents a
prototype. Therefore, the Object representation by DCKR (in a
Horn clause form) can be completely compiled. Knowledge
compilation leads to high speed.

DCKR 355

The second argument in the sem predicate is a pair composed
of a slot name and a slot value. For example. the description
in 01) indicates the fact that the age of the individual clyde#l
is 5. And the age is a slot name and 5 is a slot value. A pair
composed of a slot name and a slot value is hereinafter called an
SV pair.

The description in 02) is to be read as showing that clyde#l
is an instance of the prototype elephant. Here, note that 02) is
a direct description of inheritance of knowledge from prototypes
at higher level. 02) means that if a prototype called elephant
has a property P, the individual clyde#l also has the property P.
14) and 17) describe the fact that a human is a mammal and that a
mammal is an animal. Also, note that inheritance of knowledge is
automatically performed by the unification built in Prolog. 18)
describes the fact that an animal 1is a creature and has a body.
From the foregoing it can be seen that the isa predicate used for
the inheritance of knowledge is a predicate for traversing the
hierarchy of prototype Objects. The predicates, isa, hasa and
bottomof are defined below.

22) isa(Upper.pP,S) :-
P = isa:Upper;
sem(Upper,P,S).
23) hasa(Part,X:Y,S) :@-
X == hasa,
(Y = Part;
sem(Part,hasa:Y,S)).
24) bottomof (IBiIT]1,B) :-
) (var(T);atomic(T)),!,nonvar(B).
25) bottomof (LHIT1,B) :-
bottomof (T,B).

The hasa predicate is used for the inheritance of knowledge
through part-whole relations.

Let us look back at the description of 02) from a different
perspective. 02) can be regaraed as a description for «calling
the world of prototypes from the world of individuals and extract
the information held by prototypes. In DCKR, once an entry is
made into the world of prototypes by means of the isa predicate,
it is possible to access all prototypes existing in the world of
prototypes.

Since, however, individuals are dynamically produced, it is
impossible to Kknow about the world of individuals beforehand.
DCKR 1is provided with the bottomof predicate, which is used 1in
the body of 19) and is defined by 24) and 25), as a means for
gaining Kknowledge of the world of individuals from the world of
prrototypes. By using the predicate, it is possible to know what
the calling individual (the individual that called the world of
prototypes) is and extract the knowledge held by that individual.
This is accomplished by using the third argument in the sem
Prealcate, since 1in the third argument of the sem predicate is
stacked the route followed in tracing the hierarchy.

For example, 19) identifies the caller B by means of the
bottomof predicate and calculates his age by using B's birthyear.
Therefore, if
. ?7-sem (elephant#l,age:¥X,)
is executed, 19) is reached by +the isa predicate in 04). 15),
17) and 18). As a result,

X=5
is derived.
Also, - if

356 H Tanaka

?-sem(elephant#l,P,)
is executed, a succession of pieces of knowledge about elephant#l
can be obtained as follows:

birthYear:1980:
isa:elephant;
isa:mammal;
bloodTemp:warm:
isa:animal;
isa:creature;
age:5

VUV TUTTOUVO
I TR TR | I TR T

Note that all Kknowledge (SV pair:; property) at higher level
prototypes than elephant#l! is obtained through the wunification
mechanism of Prolog. In other words, inheritance of knowledge is
carried out automatically by the functions built in Prolog.
As you may notice, if
?7-sem (X,Y,_)
is executed. the system begins calculating all knowledge it has
(as X-Y pairs).
If
?-sem (X,isa:mammal,)
is executed by utilizing the features of Prolog. it is possible
to access an individual or prototype at the lower level from a
mammal at the higher level. However, this is not always executed
efficiently. For this good can be unified with all heads of Horn
clauses which perform inheritance of knowledge as in 02). Since
many of them end in failure, the cost of computation increases
with the number of Horn clauses which perform inheritance of
knowledge. This problem will be addressed again in Section 3.
and a possible solution presented. Finally, to check the
function of the hasa predicate, you may execute
?-sem (america,hasa:X,_).
From the foregoing explanation, you will understand what the
descriptions of 07) and later are like and that there is no need

whatever for an inference program. If only Kknowledge is
described in DCKR, inference is automatically performed by the
interpreter built in Prolog. Knowledge described in DCKR seems

easy to read. This also leads to ease of describing knowledge.

2.2 General knowledge representation and inference

In the example of Object descriptions in DCKR given in 2.1,
an Object was represented as a set of Horn clauses headed by the
sem predicate (which has an Object name as the first argument).
And the Object name was always a constant (representing an
individual or prototype). By contrast, Kknowledge in which the
first argument in the sem predicate is a variable representing an
individual sometimes plays an important role in DCKR. Such a

Generally, an individual wvariable 1is represented, for
instance. as A#B. A DCKR expression headed by the sem predicate
which has an individual variable as the first argument functions
as an jinference rule which creates new knowledge mainly from
existing knowledge.

Let us take up an example and describe it in DCKR to find
how it works. The DCKR description corresponding to the sentence
“"Everyone who lives in stanford is a professor”" is as follows:

26) sem(X#J,profession:professor,_J} :-
sem(X#J,isa:human,)},

DCKR 357

sem(X#J,address:stanford,_).

Here X#J represents an individual wvariable. 07) has no
description related to the profession of mcCarthy#l. Under the
inference rule of 26), however, executing the following goal.
which corresponds to the question "What is the profession of
mcCarthy#12?",

?-sem{mcCarthy#l,profession:A,_)
can get the following:

A = professor

DCKR inferences can be also carried out by functions built in
Prolog.

As general knowledge representation is not so frequently
used in natural language processing, this short explanation will
be sufficient for later discussions. Interested readers should
consult [Tanaka 85b] to obtain more detailed information.

3. Inference Speedup by DCKR

To provide detailed controls, such as traversing back and
forth only one level and blocking repeated computations by the
backtrackings, requires a monitoring mechanism to detect the same
computations. The 1isa predicate is intended for that purpose.
For blocking repeated computations, a method can be used that was
employed for the first time by BUP, a bottom-up parsing system
using Prolog [Matsumoto 831. Hereinafter the predicate isa will
be defined on the basis. Followings are definitions of the isa
predicate that replaces 22) given before:

22.1) isa(_,P,[HIT]1) :-
anchored(P),
(wfisa(H,P),!,true;

failisa(H,P),!,fail).

22.2) isa(Upper,P,[HIT]) :-

(P == isa:Upper,!,true;
P = isa:Upper;
sem(Upper,P,[HIT1)),
wfassert(H,P).

22.3) isa(_,P,[HIT1) :-
(var(T);atomic(T)),
not(wfisa(H,P)), :
asserta(failisa(H,P)),!,fail.

27) wfassert(H,P) :-
(wfisa(H,P);asserta(wfisa(H,P)),!.

28) anchored (X:Y#Z) :-
t,atom(X),atom(Y),atomic(Z).

29) anchored(X:Y) -
l,atom(X),atomic(Y).

22.2) and 22.3) asserts a success or failure result,
respectively. The execution of the isa predicate begins with
22.1). It is going to bring either a success or failure result if
it was asserted. Blocking recomputations are guaranteed by cut
symbols in the. body of 22.1). In the case of no success or
failure result, 22.2) and 22.3) will be executed in the order.

358 H Tanaka

4. DCKR Applications to natural language processing

This section explains a method of semantic processing’ of
natural language and semantic pattern-matching a;gorlthm
as applications of DCKR. The effectiveness of DCKR 1is also

discussed.
4.1 Semantic processing of natural language
Semantic processing is one of the important tasks for

natural language processing. Basic to semantic processing are
descriptions of lexical items. The most frequently usgd form of
description of lexical items is probably Frames or Objects. a

method of the Object representation in Prolog called DCKR is
introduced in section 2. In this section, it will be shown that
DCKR representation of lexical items enables to alleviate a lot
of programming efforts of semantic processing.

4.1.1 Descriptions of lexical items in DCKR
Basic to semantic processing are descriptions of lexical

items. The most frequently used form of description of lexical
items is probably frames (Objects). In DCKR, an Object consists
of a set of slots each of which is represented by a Horn <clause
headed by the sem predicate. However, the first argument in the
sem predicate is the Object name. The values of slots used in
semantic processing are initially undecided but are determined as
semantic processing progresses. This is referred to as slots
being satisfied by fillers. To be the value of a slot, a filler

[f the filler satisfies the constraints written in a slot,
action 1is started to extract a semantic structure or to make a
more profound inference. Constraints written in slots are
broadly divided into two, syntactic constraints and semantic
constraints. The former represent the syntactic roles to be
played by fillers in sentences. The letter are constraints on
the meaning to be carried by fillers. Typical semantic
processing proceeds roughly as follows:

i) If a filler satisfies the syntactic and semantic
constraints on a slot selected, start action and end with
success. Else, g0 to ii)

ii) If there is another slot to select, select it and go to
i). Else, go to 1ii)
iii) I1f there is a higher-level prototype, get its slot and go

to i). Else, and on the assumption that the semantic
processing is a failure.

From the semantic processing procedures in i) through iii)
above, the following can be seen:

a) The semantic constraints 1in i) are often expressed in
logical formulas. This can be easily done with DCKR as
explained later.

b) The slot selection in ii) can use the backtracking
mechanism built in Prolog. For in DCKR a slot is
represented as a Horn clause.

c) iii) can be easily implemented by the knowledge inheritance

mechanism of DCKR explained in 2.1.

Thus, if lexical 1items are described in DCKR. programs
central to semantic processing can be replaced by the basic
computation mechanism built in Prolog. This will be demonstrated

DCKR 359

by examples below. Cited first is a DCKR description of the
lexical item "open" [Tanaka 85al.

(30) sem(open.subj:Filler~In~0Out,_) :-
sem(Filler,isa:human,),
exXtractsem(agent:Filler~In~0Out);
(sem(Filler,isa:eventOpen, _);

sem(Filler,isa:thingOpen,_)),
extractsem(object:Filler~”In~0ut);
sem(Filler,isa:instrument,_),
extractsem(instrument:Filler~In~0ut):
sem(Filler,isa:wind,_),
extractsem(reason:Filler~In~0ut).

(31) sem(open,obj:Filler~In~0ut,_) :-
(sem(Filler,isa:eventOpen._);

sem(Filler,isa:thingOpen,_)},
extractsem(object:Filler~In™Out).

(32) sem(open,with:Filler”In~0Out,_) :-
sem(Filler,isa:instrument,_),
extractsem(instrument:Filler~In~0ut).

(33) sem(open,P,S) -
isa(action,P, [openiS1);
isatevent,P, [openiS]).

30),31) and 32) are slots named subj, obJ and with, which
constitute open. Variable Filler is the filler for these slots.
The slot names represent the syntactic constraints to be
satisfied by the Filler. Subj, obj and with show that the Filler
must play the roles of the subject, object, and with-headed
prepositional phrase, respectively, 1in sentences. The body of
each of the Horn clauses corresponding to the slots describes a
pair composed of semantic constraint and action (hereinafter
called an CA(Constraint-Action) pair). For example, the body of
30) describes four CA pairs, each of them joined by or(";").

The first CA pair:

sem(Filler,isa:human,_},

extractsem(agent:Filler™In~0ut);
shows that if the Filler is a human,
extractsem(agent:Filler~In~Out), action to make the deep case of
the Filler the agent case, 1is started to extract a deep case

structure. Here, sem(Filler,isa:human,_), which checks if the
Filler 1is a human, represents a semantic constraint on the
Filler. Predicate extractsem returns the extracted deep case

structure with results added to In sent to Qut.

As described above, checking semantic constraints can be
replaced by direct Prolog program execution. Therefore,
relatively complex semantic constraints, e.g., person of blood
type A or AB. can be easily described as shown below:

sem(Filler,isa:human,_),
(sem(Filler,boodType:a,_);

sem(Filler,boodType:ab,_))
The second SA pair:
(sem(Filler,isa:eventOpen,_);
sem(Filler,isa:thingOpen,_)),
extractsem(object:Filler~In~0ut);
shows that if the Filler is an even which opens (eventOpen) or a
thing which opens (thingOpen), its deep case is made the object
case.
The third CA pair:
sem(Filler,isa:instrument,_),
extractsem(instrument:Filler~In~0ut);

360 H Tanaka

indicates that if the Filler is an instrument, 1its deep case is
made the instrument case.

The fourth CA pair:

sem(Filler,isa:wind,_).

extractsem(reason:Filler”In~0ut).
shows that 1if the Filler is wind, 1its deep case is made the
reason case.

Form the foregoing explanation, the meaning of the slots in
31) and 32) will be evident. In addition to "with". there are
many slots corresponding to prepositional phrases. but they are
omitted to simplify the explanation.

33) shows that if the Filler cannot satisfy the slots in 30).
31) and 32), the slots in the prototype action or event Iis
accessed automatically by backtracking. This was explained 1in
detail as inheritance of knowledge in 2.1. and provides an
example of multiple inheritance of knowledge as well.

The descriptions of 30) through 33) can be completely
compiled, thus ensuring higher speed of processing. This makes
a good contrast with most conventional systems which cannot
compile a description of lexical items because it is represented
as a large data structure.

4.1.2 Description of grammar rules

The DCG notation [Pereira 80] is used to describe grammar
rules. Semantic processing is performed by reinforcement terms in
DCG. An example of a simple grammar rule to analyze a declarative
sentence is given below.

sdec(SynVp,SemSdec) -->

np(SynSubj, SemSubj),

vp(SynVp,SemVp),

{concord (SynSubj,SynvVp),

seminterp(SemVp,subj:SemSubj,SemSdec) }.

The part encircled by { } is a reinforcement term. The
predicate concord is to check concord between subject and wverb.
The predicate seminterp, intended to call sem formally, 1is a
small program of about five lines. In this example the grammar
rule checks if the head noun in SemSubj can satisfy the subj slot
of the main verb frame (e.g.. open in 30) -33)) in SemVp and
returns the results of semantic processing to SemSdec.
Therefore, we can see that there is little need to prepare a
program for semantic processing.

As semantic processing is performed by reinforcement terms
added to DCG, syntactic processing and semantic processing are
amalgamated. This has been held to be a psychologically
reasonable language-processing model.

4.1.3 Test result

Some comments will be made on the results of semantic
Processing based on the concept explained in 4.1.1 and 4.1.2. The
sentence used in the semantic processing is "He opens the door
with a key."

Input sentences

i+ He opens the door with a key.
Semantic structure is:

sem(open#5,P,S) :- isa(open,P.lopen#5iS]1).
sem(open#5, agent:he#4,).

sem(open#5, instrument :key#7,_).
sem(open#5,object door#6,_).

sem(he#4,P,S) :- isa(he,P,[he#4i51).
sem(door#6,P.S) :- isa(door,P,[door#6:iS1).

DCKR 361

sem(door#6.det:the,_).

sem(key#7,P.5) - isa(key.P,[key#7iS1).

sem(key#7.det:a,_).

Besides, results of semantic processing of "the door with a key"
are obtained but their explanation is omitted.

Here it is to be noted that results of semantic Pprocessing
are also in DCKR form. By obtaining semantic processing results
in DCKR form, it is possible to get. for example.

sem{open#d, instrument:X,_)
from the interrogative sentence "With what does he open the
door?" and get the answer

X=key#7
by merely executing that

4.1.4 DCKR and natural language understanding system

Now the relationship between DCKR and a natural language
understanding system will be touched on. From what has no far
been discussed, we can envision a natural-language-understanding
system architecture as illustrated in Fig. 1.

- - - o - ———————

--------------- iSemantic Structurei----------------

H ! (DCKR) i '

e T :

] ' H
—————————— i Inferencei i
iContext i----- iEngine === mmmmmm - i
tdnalysisi i R ! i H
! { ' g H H

P e iKnowledge Base(DCKR + ?)! H !
—————————— 1 i e e
iSemanticl~=~==---- d i ____t_iSentencel
tAnalysisi | e e e i i iGenera- |
] ' i + Dictionary(DCKR)! H i ition H
---------- I i ! I
iSyntactici-------- I bbb ! i | i
iAhalysis | i | Grammar { ' ! '

i 1 P H H H {
' H t
Input Sentence(Source) Answer (Target)

Fig. 1 DCKR and Natural-Language-Understanding System

The shaded parts in Fig. 1 are those will be achieved by the
interpreter built in Prolog. From the foregoing explanation., it
will be seen that if part of general knowledge and a dictionary
are described in DCKR, part of context-processing and the greater
part of semantic processing can be left to the functions built in
Prolog. As for syntactic processing, the grammar rules described
in DCG [Pereira 801 automatically converted 1into .a Proloy
program, and parsing can be replaced by Prolog program execution.
As shown in Fig. 1, therefore, syntactic processing can be left
almost 1in its entirety to the Prolog interpreter. There is no
need to prepare a parser [Tanaka 841]. '

362 H Tanaka

Given the foregoing facts and assuming the inference engine
to be the Prolog interpreter, it may be concluded that a Prolog
machine plus something else will be a natural-language-processing
machine. [If asked what that something will be. we might say that
it will be a Knowledge base machine. Anyway. this concept is in
line with what the Japanese fifth-generation computer systems
project is aimed at.

4.2 Implementation of Semantic Matcher
4.2.1 Semantic Matching

Various Objects must be treated in the field of natural
language processing. And there often arises a need for pattern

matching between Objects. For example, identifying anaphora and
recognising coordinate components in a coordinate structure will
need semantic pattern matching. Carried further in this

direction, it was developed a language employing unifications of
Objects in its basic computation mechanism [Mukai 851 but it was
limited to the level of syntax.

One problem in unification of Objects is that since there
are no constraints on the order in which slots constituting

Objects are arranged, the unification must be independent of the
order in which slots are arranged. This gives rise to the problen
of computation cost when an Object is represented as a big data
structure (e.g., a list structure). This problem is somewhat
alleviated by DCKR: Since a slot is represented as a Horn clause,.
the slot selection required for unification can be left to the
backtracking function built in Prolog. Identifying anaphora and
coordinate components require semantic pattern matching which is
not limited to the level of syntax.

Meantime, the importance of Jjudging identity between Objects
and unifying Objects with regard to semantics is discussed as
Forced Matching by [Bobrow 77], as Semantic Matching by [Nilsson
801, and as the attempt to expand the unification function of
Prolog by Colmeraure. Here a DCKR-based method for wunification
of Objects will be discussed against the background of the
relatively simple linguistic knowledge explained in Section 2.
In the latter case, it will be necessary to know what the body of

knowledge described in DCKR is like. Therefore, the algorithm
discussed here ‘uses the following meta knowledge.

34) metakb(mammal,ntype:exclusive).
35) metakb(age,ltype:exclusive).
36) metakb(address,ltype:exclusive).

34) shows that prototypes (e.q., human and elephant)
immediately below the prototype mammal are mutually inconsistent.
35) and 36) mean that slots with different slot values for age
and address, respectively, are mutually inconsistent. In other
words, 34) shows that an individual that is a human cannot be
unified with an individual that 1is an elephant, while 35)
indicates that an individual aged 44 cannot be unified with an
individual aged 55. Now some examples of Semantic Matching
are given. From the DCKR descriptions in Section 2, we can
easily derive the following inferences i) - iv).

i) Address of mcCarthy#l1 is stanford and address of misterAl#l
is america. Since we know that stanford lies within
america, we <can infer that it 1is not inconsistent to
identify and unify misterAl#l with mcCarthy#l.

DCKR 363

ii) Likewise, we can infer that since america and japan are two
different countries, it is impossible to identify mister5G#l
with mcCarthy#l.

iii) If the present year minus the birth year represents age. we
can infer that «clyde#l, aged five, may be unified with
fégg?antﬁl born in 1980 (assuming the present year is

iv) By similar reasoning we can conclude that clyde#l cannot be

unified with elephant #2.
v) mcCarthy#! cannot be unified with clyde#l because the former
is a human and the latter an elephant.

The unification of two Objects by considering their meanings
is called Semantic Matching (Forced Matching). And a program to

perform Semantic Matching is called a Semantic Matcher.
4.2.2 Algorithm for Semantic Matchers

While the need for Semantic Matchers has often been
discussed, there have not been many attempts made to prepare such
programs. This 1is presumably because even a semantic match of
the level illustrated above would be very complex. With DCKR,
however, it is relatively easy to prepare Semantic Matchers. By
using the algorithm shown in [A]l] through [F1 below, we can
prepare a Semantic Matcher with the level of unification
capability illustrated in i) through v) above, though it is not a
rerfect progran.

[A]: If there 1is a higher-level Object (0i) common to two
individuals o#! and o#2 considered for unification, get the
Object and go to [B]l. Else , go to [D].

(B): If metakb(0i, ntype:exclusive) holds (Objects one level
below 01 are mutually exclusive), go to [C]). Else, g0 to

{A].

{Cl: If there are two different ObJects 0Jj and Ok Jjust one level
below of 0i, and 0J and Ok are positioned above o#l and
o#2, respectively, return on the assumption that the

unification attempt is unsuccessful. Else, g0 to [Al.

[Dl: If o#! has the SV pair Ax:Bx and o#2, the SV pair Ax:By,
form the set S shown below and go to [E]. {(Note that the
slot name of two SV pair is the same.) Else, g0 to [F1 on
the assumption that o#! and o#2 can be unified because
there is no positive reason prohibiting it.

S = {((Ax:Bx, AX:By) | metakb(Ax,ltype:exclusive),
(Bx == By
sem(Bx,isa:By,_);
sem(By,isa:Bx,_);
sem(Bx,hasa: BY._):
sem(By,hasa:Bx,_)) }

(EJ: If S is not an empty set, g0 to [F] on the assumption that
unification 1is possible. If S is an empty set, return on
the assumption that the unification attempt is unsuccessful.

[FJ: If o#1 and o#2 can be unified by the algorithm given in (Al
tggough [E]l, assert the following facts to unify o#! and
o#2.

sem{o#l1,P,5) :- isa(o#2,P,[o#]1iS8]).
sem(o#2,P,S) - isa(o#l1,P, [(0o#2!S]1).

In this way, o#1 and o#2 automatically inherit each other's
prroperties and are thereby unified..

364 H Tanaka

4.2.3 Experiments of semantic matchings

The algorithm explained in [A]l through [F] is realized by
about 40 lines of predicates called mkeq whose complete
definhition with some modifications of the isa predicate is given
in [Tanaka 85b]l]. Test examples are given below.

(a) ?-mkeq(x#1,y#1).

(b} yes

(c) ?-mKeq(x#1l,misterAl#l).

(d) ves

(e) ?-sem(y#l,P,_).

(f) isa:xil;

(g) isa:misterAl#l;

th) address:america;

(i) isa:human;

(Jj) isa:mammal;

(k) bloodTemp:warm;

(1) isa:animal;

(m) isa:creature;

{(n) no

(0) ?-mkeq(mcCarthy#i,mister5GH#1).
(p) no

(q) ?-mKeq(mcCarthy#l,misterAl#l).
(r) yes

(s) ?-mkeq(mcCarthy#!i,clyde#l).
(t) no

(u) ?-mKeq(elephant#l,clyde#l).
(v) ves

(w) ?-mkeq(elephant#2,clydeil).

(X) no

nowonowounononn

TUVUTVTVUTUU

(a) creates two Objects called x#1 and y#1 and makes them
equal [D]. (c) makes x#l1 and misterAl#1 equal [D]. Therefore,
if the properties of y#1 is asked in (e), it can be seen from
responses (f) through (m) that yi#l has inherited the properties

of misterAl#l (F1. Responses to (0),(q),(u) and (w), based on
[E]J, provide examples of Semantic Matching explained in ii)., i),
iii) and iv), respectively. The response to (s), based on (C1],

Provides an example of Semantic Matching explained in (v). Here,
it is to be rated that the correct responses are shown, through
(u) and (w) give no description of the age of either elephant#!
or elephant#2. The reason has already been explained in Section
2.

5. Conclusion

To understand discourse, which consists of a chain of
sentences, it 1is necessary to infer which of the many ObJjects
arising as the discourse proceeds are the same as which other. A
typical example is anaphora in linguistics. For instance, that
"oxygen" and "gas" appearing in the passage (discourse)

"... oxygen was generated. The gas ...,°
are the same things will be known by a Semantic Matchers 1is a
long-term R & D challenge. Therefore, the method discussed in
4.1 is no more than a small step toward a solution to problems of
that sort.

Semantic Matchers are expected to be applicable to the
problems of Analogical Reasoning and Leaning which will assume
growing importance in the research field of artificial
intelligence in the future.

DCKR 365

Chunking of knowledge was cited as an advantage of knowledge
representation in frame form: Chunking was considered convenient
for association since it permits obtaining all knowledge (slots)
related to a frame by merely accessing the frame. [t was also
said to be a psychologically reasonable memory model.

By contrast, knowledge representation in DCKR regards all
slots existing in the world as standing on an equal footing
instead of framing related slots to differentiate then from
others. On the face of it, this is inconsistent with the frame
concept. Since, however, related Knowledge can be quickly
brought in by hushing the first argument (Object name) in the sem
predicate heading a Horn clause which corresponds to a slot, the
frame concept can be easily simulated.

Fortunately, Prolog 1is provided with a setof and bagof
predicates to extract all related knowledge as a 1list. These
predicates could be utilized for that purpose. At the end of 2.1
we touched on the ease of writing and reading knowledge in DCKR.
But we should develop a higher-ievel Kknowledge representation
language. For instance, the third argument in the description of
02) should be automatically added in the process of compiling
such a high-level knowledge representation language. Also, the
variables In and Out appearing in the descriptions of 33) through
36). Thinking this way, we can see that representation in DCKR
is, as it were, representation in machine language. It is
necessary to develop a higher-level Knowledge representation
lanqguage regarding DCKR as a machine language.

Finally, knowledge representation has a multitude of
difficult problems to be solved, such as how to represent high-
order knowledge, negative knowledge or mathematical concept
of sets and how to achieve default reasoning. The authors wish to
get down to research in natural-language-understanding systems.
In the process they will probably encounter various unexpected
problems. Then will come the real test of DCKR.

[Acknowledgment]

Authors wish to express their great gratitude to Mr.Kazuhiro
Fuchi, the director of the Research Center of ICOT, and Dr.Koichi
Furukawa, the chief of the Research Center of ICOT, for their
encouragements and valuable comments. Mr.Haruo Koyama.Mr.Manabu
Okumura, Mr.Teruo lkeda, Mr.Tadashi Kamiwaki, who are students of

Tanaka Lab. of Tokyo Institute of Technology, helped us +to
implement some application programs based on DCKR. Mrs.Sachie
Saito helped us for preparing this manuscript.

6. References
[Bobrow 77] Bobrow,D.G. et.al.: An Overview of KRL-0, Cognitive
Science, 1, 1, 3-46(1977).

(Bowen 851 Bowen,K.A.: Meta-Level Programming and
Knowledge Representation, Syracuse Univ., (1985).

[Colmeraure 78] Colmeraure,A.: Metamorphosis Grammer. in Bolc
(ed) :Natural LLanguage Communication with Computers,
Springer-Verlag 133-190(1978).

[Goebel 851 Goebel, R.: Interpreting Descriptions in a Prolog-
Based knowledge Representation System, Proc.of [JCAI'85,711-
716(1985).

[Hayes 801 Hayes,P.J.: The Logic of Frame Conceptions an Text

Understanding, Walter de Gruyer, Berlin, 46-61(15980).

366 H. Tanaka

[Koyama 851 Koyama,H. and Tanaka,H.: Definite Clause Knowledge
Representation, Proc.of LPC'85, 95-106(1985), in Japanese.
{Matsumoto 831 Matsumoto,Y. et.al.:BUP--A Bottom-UP Parser

Embedded in Prolog, NEW Generation Computing, 1, 2, 145-158
(1983).
(Mukai 851 Mukai,K.: Unification over Complex Indeterminates in

. Prolog, Proc.of LPC'85, 271-278(19885).
[Nilsson 80} Nilsson,N.J.: Principles of Artificial Intelligence.

Tioga, (1980).
[Pereira 80] Pereira,F. et.al: Definite Clause Grammar for

Language Analysis --A Survey of the Formalism and a
Comparison with Augmented Transition Networks. Artificial

Intelligence, 13, 231-278(1980).

[Tanaka 841 Tanaka,H. and Matsumoto,Y.: Natural Language
Processing in Prolog, Information Processing, Society of
Japan, 25, 12, 1396-1403(1984), in Japanese.

(Tanaka 85al Tanaka,H. et,al: Definite Clause Dictionary and its
Application to Semantic Analysis of Natural Language, Proc.

of LPC'85, 317-328(1385), in Japanese.
(Tanaka 85b] Tanaka.H.: Definite Clause Knowledge Representation

and its Applications, ICOT-TR(in Press).

