Programming of Future Generation Computers
K. Fuchi, M. Nivat (Editors)
Elsevier Science Publishers B.V. (North-Holland), 1988 427

DCKR -~ Kngwledge Representation in Prolog and
Its Application to Natural Language Processing

Hozum!{ Tanaka

Dept. of Computer Science
Tokyo Institute of Technology
2-12-1 Ookayama. Meguro-ku
Tokyo. Japan

ABSTRACT: Semantic processing 1{is one of the important tasks for
natural language processing. Basic to semantic processing are
descriptions of 1lexical {tems. The most frequently wused form of.

description of lexical items is probably Frames or Objects. Therefore
in what form Frames or Objects are expressed {s a key issue for natural
language processing. A method of the Object representation in Prolog
called DCKR will be introduced. It will be seen that {f part of general
knowiedge and a dictionary are described in DCKR. part of context-
processing and the greater part of semantic processing can be left to
the functions built in Prolog.

1. Introduction

Relationships between knowledge represented in predicate logic
formulas and knowledge represented in Frames or Structured objects are
clarified by { Hayes 80) {Nilsson 80) | Goebel 851 Bowen 851 et al.
but their methods requires separately an interpreter for their
representation. The authors have developed a knowledge renresentation
form called DCKR (Definite Clause Knowledge Reprasentation) | Koyama 85 1
In DCKR. each of the slots composing of a Structured Object (hereinafter
simply called an object) is represented by a Horn clause (a Prolog
statement) with the °“sem” predicate (to be explained in Section 2) as
its head. Therefore. an Object can be regarded as a set of Horn clauses
(slots) headed by the sem predicate with the same first argument. From
the foregoing it follows that almost all of a program for performing
inferences relative to knowledge described in DCKR can be replaced by
functions built 1{in Prolog. That is. there is no need to prepare a
special program to perform inferences

DCKR will be described in detail in Section 2. Sectifon 3 will
discuss applications of DCKR to natural language processing. semantic
processing and semantic matching algorithm. Programming efforts of
semantic processing will be alleviated a lot if DCKR is used for the
description of lexical ftems. since most of programming efforts can be
left to the functions built in Prolog. In Section 4. a method |is
discussed to increase the execution speed of DCKR.

2. Knowledge Representation in DCKR
2.1 Object representation and inference

The following examples of knowledge representation in DCKR will be
used in Section 3 and later.

t=op(100. yfx. "7").

428 H. Tanaka

op(100.yfx. "),
op(80. xfy. "8').

01) sem(clyde#1.age:5.).
02) sem(clydo$1.P.8) :-
isalelephant.P.l clyde811S 1.
03) sem(elephantsi.birthYear:1880._).
04) sem(elephant#i1.P.8) :-
isa(elephant.P.[elephants1!S).
05) sem(elephant$2.birthYear:1982._).
06) sem(elephant$2.P.S) :-
isa(elephant.P.{ elephants2I1S .
07) sem(mcCarthysi. address:stanford.).
08) sem(mcCarthysi.nationality:american._).
09) sem(mcCarthy$1,P.S8) :-
isa(human, P. {mcCarthy$11S).
10) sem(mister5G%#1, address:japan..).
11) sem(mister5G#1.P.S) : -
isathuman.P.I mister5G21iS 1),
12) sem(misterAls1. address:america._).
13) sem(misterAlIgi1.P.S) :-
fsathuman.P.l misterAIg11S D.
14) sem(human.P.S) :-
isa(mammal. P.| humanl!S).
15) sem(elephant.P.S) :-
fsa(mammal.P.l elephant!S).
16) sem{mammal.bloodTemp:warm. _).
17) sem{(mammal.P,S) :-
{satanimal.P.[mammaliS D).
18) sem(animatl.P.S) :-
{sa(creature.P.l animalls }):
hasa(body.P.l animallIS]).
19) sem(creaturs.age:X..) i~
bottomof(S.B).
sem(B. birthYear:Y..).
X {s 1985 - V.
20) sem(america.P.S) :-
isa(country.P.l americalS |):
hasalcalifornia.P.l amerjcalS]},
21) sem(california.,P.8S) :-
isa(state.P.lcalifornfalsS)):
hasa(stanford.P.l californialS).

Now the meanings of the sem. {sa and hasa predicates. which are
important to descriptions in DCKR. are explained using the DCKR examples
given above.

The first argument in the sem predicate i{s the Object name.

Objects are broadly divided into two types. {individuals and prototypss.

Psychologists often refer to prototypes as stereotypss. An Object name
with ® represents an individual name and the one without 2. a prototype
namse. For example. clyde#1 and elephant. which appears in 01) and 02).

represent an individual name and a prototype name. respectively. A set
of Horn clauses headed by the sem predicate with the same {individual
name represents an individual. A set of Horn clauses headsd by the sem
predicate with the same prototype name represents a prototype.
Thereforse. the Object representation by DCKR (in a Horn clause form)
can be completsly compiled. Knowledge compilation leads to high spesd.

The second argument in the sem predicate is a pair compossd of a

DCKR - Knowledge Representation in Prolog 429

slot name and a slot valus. For example. the description in 01)
indicates the fact that the age of the individual clyde#1 is 5. And the
age is a slot name and 5 is a slot value. A pair composed of a slot

name and a slot value is hereinafter called an SV pair.

The description in 02) {s to be read as showing that clydefi {s an
instance of the prototype elephant. Here. note that 02) is a direct
description of 1inheritance of knowledge from prototypes at higher
level. 02) means that if a prototype called slephant has a property P
the 1individual clydes1 also has the property P. 14) and 17) describs
the fact that a human is a mammal and that a mammal {s an animal. Also.
note that 1inheritance of knowledge is automatically performed by the

unification built in Prolog. 18) describes the fact that an animal s
a creature and has a body. From the foregoing it can be seen that the
{sa predicate used for the inheritance of knowledge is a predicate for
traversing the hisrarchy of prototype Objects. The predicates. isa.

hasa and bottomof are defined below.

22) {sa(Upper.P.S) :~
P = {sa:Upper:
sem(Upper.P. S).
23) hasa(Part.X:Y.S) :-
X == hasa.
(Y = Part:
sem(Part. hasa:Y.S)).
24) bottomof(I BITI.B) :~
(var(T):atomic(T)). !. nonvar(B).
25) bottomof(l HIT L B) :-
bottomof(T.B).

The hasa predicate is used for the inheritance of knowledge through
part-whote relations.

Let us 1look back at the description of 02) from a di{fferent
perspective. 02) can be regarded as a description for calling the world
of prototypes from the world of individuals and extract the {nformation
held by prototypes. In DCKR. once an entry is made into ths world of
prototypes by means of the fsa predicate, it is possible to access all
prototypes existing in the world of prototypes.

Since. however. individuals are dynamically produced. 1t {s
{mpossible to know about the world of individuals beforshand. DCKR s
provided with the bottomof predicate. which is used in the body of 19)
and is defined by 24) and 25), as a means for gaining knowledge of ths
world of individuals from the world of prototypss. By wusing the
predicate. {t 1is possible to know what the calling individual (the
individual that called the world of prototypes) is and extract the
knowledge held by that individual. This {s accomplished by using the
third argument in the sem predicatse, since in the third argument of the
sem predicate is stacked the route followed in tracing the hierarchy.

For example. 19) identifies the caller B by mesans of the bottomof
predicate and calculates his age by using B's birthyear. Therefore. {f

7-sem (elephantti.age:X._.)
is executed. 19) is reached by the isa predicate in 04). 15). 17) and
18). As a result.

X=5
is derived.

Also., {f

t-sem(elephantst1.P.)
is executed. a succession of pieces of knowledge about elephantsi can be
obtalned as follows:

P = birthYear:1980:

430 H. Tanaka

fsa:elephant:
isa:mammal:
bloodTemp:warm:
ifsa:animal:
isa:creature:
age:5

i B a B« B« Min o
LI I T O B

Note that all knowledge (SVY pair: property) at higher level prototypes
than elephant$t is obtained through the unification mechanism of Prolog.
In other words. inhsritance of knowledge is carried out automatically by
the functions built in Prolog.

As you may notice. {f

7-sem (X.Y..)
is executed. the system begins calculating all knowledge it has (as X-Y
pairs).

It

?7-sem (X, isa:mammal._.)
fs executed by wutilizing the features of Prolog. it is possible to
access an individual or prototype at the lower level from a mammal at
the higher level. However. this is not always executed efficiently.
For this good can be unified with all heads of Horn clauses which
perform inheritance of knowledge as in 02). Since many of them end in
failure. the cost of computation increases with the number of Horn
clauses which perform inheritance of knowledgs. This problem will be
addressed again in Section 3. and a possible solution presented.
Finally. to check the function of the hasa predicate. you may execute

?-sem (america. hasa:X._).

From the foregoing explanation. you will understand what the
descriptions of 07) and tlater are like and that thers is no need
whatever for an i{nference program. It only knowledgs is describesd 1in
DCKR. fnference 1{s automatically performed by the interpreter built in
Prolog. Knowledge described in DCKR seems easy to read. This also
leads to ease of describing knowledge.

2.2 General knowledge representation and inference

In the wexample of Object descriptions in DCKR given in 2.1. an
Object was represented as a set of Horn clauses headed by the sem
predicate (which has an Object name as the first argument). And the
Object name was always a constant (representing an {ndividual or
prototype). By contrast. Knowledge in which the first argument in the
sem predicate is a variable representing an individual sometimes plays
an {important, role in DCKR. Such a variable is hereinafter called an
individual variable.

Generally. an individual variable is represented. for instance. as
ABB. A DCKR oexpression headed by the sem predicate which has an
individual variable as the first argument functions as an inference rule
which creates new knowledge mainly from existing knowledge.

Let us take up an example and describe it in DCKR to find how it
works. The DCKR description corresponding to the sentence “Everyone who
lives in stanford is a professor™ s as follows:

26) sem(X8J.profession:professor...) -
sem({X8J. isa:human.).
sem(X8J. address:stanford.).

Here X3$J represents an individual variable. 07) has no description
related to the profession of mcCarthyst. Under the inference rule of
26). however. executing the following goal. which corresponds to the

DCKR - Knowledge Representation in Prolog 431

quastion “What is the profession of mcCarthy317”.
1-sem(mcCarthysi.profession:A.)

can get the following:
A = professor

DCKR inferences can be also carried out by functions built in Prolog.

3. DCKR Applications to natural language processing

This section explains a method of semantic processing of natural
language and semantic pattern-matching algorithm as applications of
DCKR. The effectiveness of DCKR is also discussed.

3.1 Semantic processing of natural language

Semantic processing is one of the important tasks for natural
language processing. Basic to semantic processing are descriptions of
lexical {tems. The most frequently used form of description of lexical
items {s probably Frames or Objects. A method of the Object
representation in Prolog called DCKR is introduced in section 2. In
this section. it will be shown that DCKR representation of lexical {tems
enables to alleviate a lot of programming efforts of semantic
processing.

3.1.1 Descriptions of lexical items in DCKR

Basic to semantic processing are descriptions of 1lexical {tems.
The most frequently used form of description of \lexical 1{tems is
probably frames (Objects). In DCKR. an Objsct consists of a sst of
slots weach of which is represented by a Horn clause headed by the sem

predicate. However. the first argument in the sem predicate is the
Object name. The values of slots used in semantic processing are
initially undecided but are determined as semantic processing
progresses. This 1is referred to as slots being satisfisd by fillers.

To be the value of a slot. a filler must satisfy the constraints written
in the slot.

If the filler satisfies the constraints written in a slot. action
is started to extract a semantic structure or to make a more profound
fnference. Constraints written in slots are broadly divided into two.
syntactic copstraints and semantic constraints. The former represent
the syntactic roles to be played by fillaers in sentences. The letter
are constraints on the meaning to be carried by fillers. Typical
semantic processing proceeds roughly as follows:

) If a filler satisfies the syntactic and semantic
constraints on a slot selected. start action and end with
success. Else. go to {1i)

iy If there is an another slot to select. select it and go to
). Else. go to iii)

{ii) 1f there is a higher-level prototype. get its slot and go
to i). Else. and on the assumption that the semantic
processing is a faiture.

From the semantic processing procedures in i) through {ii{) above.
the following can be sesen:

432 H. Tanaka

a) The semantic constraints in {) are often expressed in
logical formulas. This can be easily done with ODCKR as
explained later.

b) The slot selection in 1{{) can wuse the backtracking
mechanism buitt in Prolog. For in DCKR a slot 1is
represented as a Horn clauss.

c) {11) can be easily implemented by the knowledge inheritance

mechanism of DCKR explained in 2. 1.

Thus. 1f lexical {tems are described in DCKR. programs central to
semantic processing can be replaced by the basic computation mechanism
built in Prolog. This will be demonstrated by examples baelow. Cited
first {s a DCKR description of the lexical {tem “open" [Tanaka 85a |}

(30) sem(open.subj:Filler~In"Out._) :-
sem(Filler. {sa:human. _).
extractsem(agent:Filler~In"Out):
(sem(Filler. isa:eventOpen._):

sem(Filler. isa:thingOpen._)).
extractsem(object:Filler~In"0ut):
sem(Filler. {sa:instrument._).
extractsem(instrument:Filler~In"0Out):
sem(Filler. isa:wind._).
extractsem(reason:Filler~In"0ut).

(31) sem(open.obj:Filler~In"Out..) :-
(sem(Filler. isa:eventOpen...):

sem(Filler. {sa:thingOpen._)).
extractsem(object:Filler~In"0Out).

(32) sem(open.with:Filler~In"Out._) :-
sem(Filler. {sa:instrument.).
extractsem(instrument:Filler~In"0ut).

(33) sem(open.P.S) :-
fsa(action.P.l openlIS I):
isalevent.P.l openlIS D).

30).31) and 32) are slots named subj. obj and with. which
constitute open. Yariable Filler is the filler for these slots. The
slot names represent the syntactic constraints to be satisfied by the
Filler. Subj. obj and with show that the Filler must play the roles of
the subject. -object. and with-headed prepositional phrase. respectively.
fn sentences., The body of each of the Horn clauses corresponding to the
slots describes a pair composed of semantic constraint and action
(hereinafter called an CA(Constraint-Action) pair). For example. the
body of 30) describes four CA pairs. each of them jJoined by or(-:").

The first CA pair:

sem(Filler. isa:human..).
extractsem(agent:Filler~In"Out):
shows that 1f the Filler is a human. extractsem(agent:Filler~In"Out).
action to make the deep case of the Filler the agent case. {s started
to extract a deep case structurs. Here. sem(Filler. i{sa:human._.). which
checks {f the Filler {s a human. represents a semantic constraint on the
Filler. Predicate extractsem returns the extracted deep case structure
with results added to In sent to Out
‘" As described above. checking semantic constraints can be replaced
by direct Prolog program execution. Thersfore. relatively complex
semantic constraints. e.9.. person of blood type A or AB. can be sasily
described as shown below:
sem(Filler, isa:human.).
(sem(Filter, boodType:a...):
sem(Filler. boodType:ab..))

DCKR - Knowledge Representation in Prolog 433

The second SA pair:
{sem(Filler. isa:eventOpen. _):
sem(Filler. isa:thingOpen.)},
extractsem(object:Filler~In"Out):
shows that {f the Filler is an even which opens (sventOpen) or a thing
which opens (thingOpen). its deep case is made the object cass.

The third CA pair:

sem(Filler. isa:instrument._).

extractsem(instrument:Filler~In™0ut):
indicates that if the Filler {s an instrument. its deep case is made the
{nstrument case.

The fourth CA pair:

sem(Filler. {sa:wind.).

extractsem(reason:Filler~In"0ut).
shows that 1if the Filler is wind. 1its deep case is made the reason
case.

Form the foregoing explanation. the meaning of the slots in 31) and
32) will be evident. In addition to “with". there are many slots
corresponding to prepositional phrases. but they are omitted to simplity
the explanation.

33) shows that {f the Filler cannot satisfy the slots in 30). 31)
and 32). the slots In the prototype action or event 1{is accessed
automatically by backtracking. This was explained {n detail as
inheritance of knowledge in 2. 1. and provides an exampls of multiple
fnheritance of knowledge as well.

The descriptions of 30) through 33) can be completely compiled
thus ensuring higher speed of processing. This makes a good contrast
with most conventional systems which cannot compile a description of
lexical jtems beacause it is represented as a large data structure

3.1.2 Description of grammar rules

The DCG notation [Pereira 801] {s used to describe grammar rulss.
Semantic processing 1is performed by reinforcement terms in DCG. An
example of a simple grammar rule to analyze a declarative sentence is
given bslow.

sdec(SynVp. SemSdec) -->

np(SynSubj. SemSubj).

vp(SynVp. SemVYp).

{concord(SynSubj. Syn¥Yp).

seminterp(SemVYp. subj:SemSubj. SemSdec)).
The part encircled by |) is a reinforcement term The predicate
concord is 1o check concord between subject and verb. The predicate
seminterp. {intended to call sem formally. {s a small program of about
five lines. In this example the grammar rule checks if the head noun in

SemSubj can satisfy the subj slot of the main verb frame (e.g.. open in
30) =~33)) {n SemVp and returns the results of semantic processing to
SemSdsec. Therefore. we can see that there i{s little need to prepare a

program for semantic proceassing

As semantic processing is performsd by reinforcement terms added to
DCG. syntactic processing and semantic processing are amalgamated. This
has been held to be a psychologically reasonable language-processing
modet.

3.1.3 Test result

Some comments will be made on the results of semantic processing
based on the concept explained in 3.1.1 and 3.1.2. The sentence used in

434 H. Tanaka

the semantic processing i{s “He opens the door with a key. -

Input sentences
1 He opens the door with a key.

Semantic structure is:

sem(open5.P. S) :- fsalopen.P.l opent5iS)).
sem(opent5. agent:hettd. _).

sem(opend5. instrument:keyt7.).
sem(opent5.object:doorss.).

sem(he#4.P.S) :~ {sa(he.P.l hetdIS).
sem(doort6.P, S) :~ fsa(door.P.l doort6ls).
sem(door6.det:the._).

sem(key#7.P.S) := Isa(key.P.l keys871S).
sem(key#7. det:a._).

Besides. results of semantic processing of “the door with a key” are
obtained but their explanation is omitted

Here it is to be noted that results of semantic processing are also
in DCKR form. By obtaining semantic processing results in DCKR form. it
is possible to get. for example.

sem(opentd. instrument:X. _)
from the interrogative sentence "With what does he open the door?” and
get the answer

X=Key?7
by merely executing that.

3. 1.4 DCKR and natural language understanding system

Now the relationship between OCKR and a natural language
understanding system will be touched on. From what has no far been
discussed. we can envision a naturaL-Language-understandlng system
architecture as illustrated in Fig. 1.

--------------- ISemantic Structurel-=---~-a-cmmooo__.
! | (DCKR) | |
I el 1
| ! I
L et T LU]

---------- l Inference 1]

1 [Engine 1 !

I e bt T T T T - | i
IContext 1 | 1 1 I I
CTAnalysis |1 | =mmemmmeee L (I]
| Ll IKnowledge Base(DCKR + 7)1 [| l
] I T L
1Semantfic 1-1 | 1] I I 1Sentence!
IAnalysis | | f===] ==cocecommm_ ! I I--IGenera- |
| [| I' 1 Dictionary(DCKR) | ! Il I Ition |
! I [! L T,
ISyntactict~-1 I olemer e l ! (I I
lAnalysis | | | I I Grammar 1 ! [|
i |-] ! I !
------------------------------------- I I

1 } |
| | |
Input Sentence(Source) Answer (Target)

Fig. 1 DCKR and Natural-Language-Understanding System

DCKR - Knowledge Representation in Prolog 435

The shaded parts in Fig. 1 are those will be achieved by the
{nterpreter built in Prolog. From the foregoing explanation. {t will be
sesn that If part of genaral knowledge and a dictionary are described in
DCKR. part of contéxt-processing and the greater part of semantic
processing can be 1left to the functions built {n Prolog. As for
syntactic processing. the grammar rules described in DCG | Pereira 80
automaticatly converted into a Prolog program. and parsing can be
replaced by Prolog program execution. As shown in Fig. 1. therefores.
syntactic processing can be left almost in its entirety to the Prolog
interpreter. There is no need to prepare a parser [Tanaka 84 1

Given the foregoing facts and assuming the inference engine to be
the Prolog interpreter. it may be concluded that a Prolog machine plus

something else will be a natural-language-processing machine. It asked
what that something will be. we might say that it will be a knowledge
base machine. Anyway. this concept is {n line with what the Japanese

fifth-genaration computer systems project is aimed at.

3.2 Implementation of Semantic Matcher
3.2.1 Semantic Matching

Yarious Objects must be treated in the field of natural language
processing. And there often arises a need for pattern matching betwsen
Objects. For example. Iidentifying anaphora and recognising coordinate
components In a coordinate structure will need semantic pattern
matching. Carried further {n this direction. it was developsd a
tanguage employing unifications of Objects in its basic computation
mechanism [Mukai 85) but it was limited to the level of syntax.

One problem in unification of Objects is that since there are no
constraints on the order in which slots constituting Objects are
arranged. the unification must be independent of the order in which
slots are arranged. This gives rise to the problem of computation cost
when an Object is represented as a bfg data structure (e.9.. a 1l{st
structure). This problem is somewhat alleviated by DCKR: Since a slot
is represaented as a Horn clause. ths slot selection required for
unification can be left to the backtracking function built in Prolog.
Identifying anaphora and coordinate components requires semantic pattern
matching which is not 1limited to the level of syntax.

Meantime. the Iimportance of judging identity between Objects and
unifying Objects with regard to semantics {s discussed as Forced
Matching by [Bobrow 77). as Semantic Matching by I Nilsson 80) and as
the attempt to expand the unification function of Prolog by Colmeraure.
Here a DCKR-based method for unification of Objects will be discussed
against the background of the relatively simple 1linguistic knowledge
explained 1{in Section 2. In the latter case. {t will be necessary to
know what the body of knowledge described in DCKR is like. Therefors
the algorithm discussed here uses the following meta knowledge.

34) metakb(mammal. ntype:exclusive).
35) metakbfage. Ltype:exclusive).
36) metakb(address. ltype:exclusive).

34) shows that prototypes (e.g.. human and elephant) {mmediately
below the prototype mammal are mutually inconsistent. 35) and 36) mean
that slots with different slot values for age and address. respectively.
are mutually inconsistent. In other words. 34) shows that an individual
that {s a human cannot be unified with an {ndividual that 1{is an
elephant. while 35) indicates that an indfvidual aged 44 cannot be
unified with an individual aged 55. Now some examples of Semantic

~

436 H. Tanaka

Matching are given. From the DCKR descriptions In Section 2. we can
easily derfve the following inferences {) - {v)

1) Address of mcCarthys1l Is stanford and address of misterAlst
{s america. Since we know that stanford Llies within
america., we can {nfer that {t 1{s not inconsistent to
fdentify and unify misterAl%1 with mcCarthy#i.

{1) Likewise. we can infer that since america and japan are two
different countries. it {s impossible to identify mister5Gs1i
with mcCarthy$!i.

i{i) If the present year minus the birth year represents age. we
can infer that clydesi. aged five. may be wunified with
elephanttt born {n 1880 (assuming the present vyear |is
1885).

iv) By similar reasoning we can conclude that clyde#i cannot bs
unified with elephant #2

v) mcCarthy?1 cannot be unified with clyde#1 btecauss the former
i{s a human and the latter an elephant.

The wunification of two Objects by considering their meanings |is
called Semantic Matching (Forced Matching). And a program to perform
Semantic Matching is called a Semantic Matcher

3.2.2 Algorithm for Semantic Matchers

While the need for Semantic Matchers has often been discussed.
there have not been many attempts made to prepare such programs. This
{s presumably because even a semantic match of the 1level {llustrated
above would be very complex. wWith DCKR. howsver. it {s relatively easy
to prepare Semantic Matchers. By using the algorithm shown in [A)]
through | F] betow. we can prepare a Semantic Matcher with the level of
unification capability {llustrated in {) through v) above. though it is
not a perfect program.

lA): If there 1is a higher-level Object (0i) common to two
individuals o%1 and o%2 considered for unification. get ths
Object and go to B} Else . go to (D)

(Bl If metakb(0i. ntype:exclusive) holds (Objects one 1lsvel
below Of are mutually exclusive). go to{Cl Else. go to
AL

[Cl: 1If there are two diffsrent Objects 0j and Ok just one level
below of 0i. and 0j and Ok ars positioned above o%1 and
oB2. rpspectively. return on the assumption that the

- unification attempt i{s unsuccessful. Else. go to [Al

IDI: 1t oft1 has the SY pair Ax:Bx and o82. the SY pair Ax:8y.
form the sat S shown below and go to [E L {Note that the
slot name of two SY pair {s the same.) Else. go to(F!lon
the assumption that o21 and o082 can be unified because
there i{s no positive reason prohibiting it

S = { (Ax:Bx. Ax:By) 1 metakb(Ax. ltype:exclusive).
(Bx == By :
sem(Bx. isa:By._):
sem(By. {sa:Bx.)}
sem(Bx. hasa:By._):
sem(By. hasa:8x..))]

lE]: It S is not an empty set. ¢o to | F) on the assumption that
unification 1{s possibtle. It S is an empty set. return on

DCKR - Knowledge Representation in Prolog 437

the assumption that the unification attempt Is unsuccessful.

1F): 1f o811 and o832 can be unified by the algorithm given in (Al
through [E L assert the following facts to unify o211 and
082.

sem(o81.P.S) - isa(o82.P.lo81ISD.
sem(082.P.8) :~ {sa(o81.P.{ 08218 I).

In this way. o81 and o382 automatically {nherit each other’'s
properties and are thereby unified.

3.2.3 Experiments of semantic matchings

The algorithm explained in t A} through | F1 is realized by about 40
lines of predicates called mkeq. Test examples are given below.

(a) ?7-mkeq(x#1.ys1).

(b) yes

(c) 7-mkeq(x%1.misterAlsi).
“{d) yes

(@) ?-sem(ygi.P._),

(f) P = {sa:x¥#1:

(g) P = isa:misterAlgt:

(h) P = address:america:

(i) P {sa:human:

(jr p isa:mammal:

(k) P bloodTemp:warm:

(L) P isaranimal:

(m) P {sa:creature:

(n) no

(o) ?-mkeq{mcCarthy81.mister5Gs1).
(p) no

(q) ?7-mkeq(mcCarthy81.misterAls1).
(r) yes

(s) ?7-mkeqi{mcCarthy#1.clydss1),
(t) no

(u) ?t-mkeq(elephantgi.clydeti).
(v) yes

(w) ?-mkesqlelephant$2. clydesi).
(x) no

(a) creates two Objects called x#1 and y£1 and makes them equal
D) (¢) makes x%1 and misterAl$1 equal (D1 Therefore. {if the
properties of y81 is asked in (e). it can be seen from responses (f)
through (m) that y81 has inherited the properties of misterAlsl (F)
Responses to (o). (q).(u) and (w). based on[E) provide examples of
Semantic Matching explained in {i). {). 1ii) and i{v). respectively. The
response to (s), based oni1Cl provides an example of Semantic Matching
explained in (v). Here. it is to be rated that the correct responsss
are shown. through (u) and (w) give no description of the age of either
slephantsl or elephant#2. The reason has already been explained in
Section 2.

4. Speedup of Execution Time
In the above sections. we have sxplained DCKR is a powerful and
flexible formalism to express many sorts of knowledge. Inferences on

the knowledge in DCKR are directly carried out by Prolog ({nterpreter.

438 H. Tanaka

However. there 1is a problem we did not mentioned {n the preceding
paragraphs.

As all pleces of knowledge is expressed by a set of Horn clausses
headed by the same “$em” predicate. the order of retrieval time will be
problematic. The reader can understand the s{tuation when considering a
following example: If a goal “sem(X.isa:mammal._)" will be executed.
almost all of “fsa” link knowledge will be Invoked once. The reason is
that the first argument of "“sem” is a variable. (See 02. 04 and 06 in
the section 2.) Note that the above goal statement forced us to traverse
“isa” links in a reverse way. namely from superordinate to subordinate.
In such a case. it is much time consuming

Degradation of retrieval speed will cause a serious problem {f we

are going to build a large knowledge base. However the situation will
be alteviated {f we can use Quintus Prolog. Instead of using a “sem’
predicate., we can use a “record” predicate that creates an internal
database which gives us a fast Llook-up method. However. naive

transformation of “sem” {nto “record” unables to solve the problem
mentioned before.

One of the easest solutions is to create two types of knowledge in
our Internal database. one of which expresses a normal “isa” link. and
the other expresses a reversal of “isa” link record. Now. a top level
predicate “sem” should be changed: If the first argument of “sem” s
not a varfable., then follows a normal “{sa” link record. else follows a
reversal of ~“i{sa” link record.

The results of our experiment suggest that the retrival time is not
exponetially but \inealy {ncreased when size of ({nternal datasbase
Increases.

5. Conclusion

To understand discourse. which consists of a chain of sentences. 1{t
is necessary to infer which of the many Objects arising as the discourse
proceeds are the same as which other. A typical example {s anaphora in
linguistics. For instance. that “oxygen™ and °“gas” appearing in the
passage (dlscourss)

- oxygen was generated. The gas
are the same things will be known by a Semantic Matchers {s a long-term
R & D challenge. Therefore. the method discussed in 3.1 {s no more than
a small step toward a solution to problems of that sort.

Semantic Matchers are expected to be applicable to the problems of
Analogical Reasoning and Leaning which will assume growing importance in
the research field of artificial intelligence in the future.

Chunking, of Kknowledge was cited as an advantage of Kknowledge
representation {n frame form: Chunking was considered convenient for
assoctiation since it permits obtaining all knowledge (slots) related to
a frame by merely accessing the frame. It was also said to be a
psychologically reasonable memory model.

By contrast. knowledge representation in DCKR regards all slots
existing in the world as standing on an equal footing instead of framing
related slots to differentiate then from others. On the face of it.
this is inconsistent with the frame concept. Since. however. related
knowledge can be quickly brought in by hushing the first argument
(Object name) {in the sem predicate heading a Horn clause which
corresponds to a slot. the frame concept can be sasily simulated.

Fortunately. Prolog 1is provided with a setof and bagof predicates
to extract all related knowledge as a list. These predicates could be
utilized for that purpose. At the end of 2.1 ws touched on the ease of
writing and reading knowledge in DCKR. But we should develop a higher-
level knowledge representation \languags. fFor {nstance. the third

DCKR - Knowledge Representation in Prolog 439

argument in the description of 02) should be automatically added in the
process ot compiling such a high-level knowledge representation

language. Also. the variables In and Out appearing in the descriptions
of 33) through 36). Thinking this way. we can see that representation in
DCKR is. as it were. representation in machine languags. 1t s

necessary to develop a higher-level knowledge representation language
regarding DCKR as a machine language.

Finally. knowledge representation has a multitude of difficult
problems to be solved. such as how to represent high-order knowledge.
negative knowledgs or mathematical concept of sets and how to achiseve
default reasoning. The authors wish to get down to research in natural-
language-understanding systems. In the process they will probably
encounter various unexpected problems. Then will come the real test of
DCKR.

| Acknowledgment |

Authors wish to express their great gratitude to Dr.Kazuhiro Fuchi.
the director of the Research Center of ICOT. and Or. Koichi Furukawa.
the chisf of the Research Center of ICOT. for their encouragements and
valuable comments. Mr. Haruo Koyama. Mr.Manabu Okumura. Mr.Teruo Ikeda.
Mr. Tadashi Xamiwaki. who are students of Tanaka Lab. of Tokyo Institute
of Technology. helped us to implement some application programs based on
DCKR.

6. References

| Bobrow 77 } Bobrow.D.G. et.al.: An Overview of KRL-0. Cognitive
Science. 1. 1. 3-46(1977).

| Bowen 85| Bowen. K. A. Meta-Lovel Programming and
Knowledge Representation. Syracuse Univ.. (1986).

{ Colmeraure 78 Colmeraure.A.: Metamorphosis Grammer. {n Bolc
(ed):Naturatl Language Communication with Computers.
Springer-Yerlag 133-190(1878).

[Goebel 85) Gosbel. R.: Interpreting Descriptions in a Prolog-
Based knowledge Representation System. Proc.of [JCAI 85,711~
716(1985).

{ Hayes 801 Hayes.P.J.: The Logic of Frame Conceptions an Text
Understanding. Walter de Gruyer., Berlin. 46-61(13980).

| Koyama 85! Koyama.H. and Tanaka.H.: Definite Clause Knowledge
Representation. Proc.of LPC’'85. 85-106(1985). in Japaness.

| Matsumoto &3] Matsumoto.Y. et.al. :BUP--A Bottom-UP Parser
Embedded in Prolog. NEW Generation Computing. 1. 2. 145-158
(1883). ,

| Mukai 85) Mukai.K.: Unification over Complex Indeterminates in
Prolog. Proc.of LPC'85. 271-278(1885).

{ Nilsson 80) Nilsson.N.J.: Principles of Artificial Intelligence.
Tioga. (1980).

{ Pereira 80) Pereira.F. et.al: Definite Clause Grammar for
Language Analysis --A Survey of the Formalism and a
Comparison with Augmented Transition Networks. Artificial
Inteltigence. 13. 231-278(13980).

| Tanaka 84) Tanaka.H. and Matsumoto.Y.: Natural Language
Processing in Prolog. Information Processing. Society of
Japan. 25. 12. 1396-1403(1884). in Japanese.

| Tanaka 85a}! Tanaka.H. et.al: Definite Clause Dictionary and tts
Application to Semantic Analysis of Natural Language. Proc.
of LPC 85, 317-328(1985). in Japaness.

