Implementation and Evaluation of Yet
Another Generalized LR Parsing
Algorithm

K.G. SURESH*
HOZUMI TANAKA*

Abstract

The recognition and understanding of natural languages by computers
is an important task. There are different methods for recognising natural
languages syntactically and semantically. However, none of them is
satisfying in terms of time complexity for ambiguous grammars and
sentences. In this paper we present an implementation and evaluation
of our new generalized LR parsing algorithm called Yet Another
Generalized LR parsing algorithm (YAGLR) [11]. In implementing
YAGLR we use the tree-structured stack (trss) instead of the graph-
structured stack (GSS) as in (14]. Through our implemeniation we will -
show that our trss is as effective as that of GSS. Due lo the effective
merge operations, which are deeper than top nodes, and due to the
nature of shared-siructure of Prolog, we retain the packed nature of
GSS. We also practically show that even using irss, the time and space
complexity of YAGLR is #* and n® respectively, where n is the length of
an input sentence. We create items called dot reverse items (drit) as our
parsing result, which are symmetrically different from the items formed
in [2]. We explain the advantages of creating drits and also practically
prove the effectiveness of drits. The parsing trees (synlactic siructures)
can be formed from a set of drits created after the parsing is completed.
We use the logic programming language Prolog in implementing YAGLR.
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1 Introduction

Some compilers of programming languages have made use of the LR(k) parsing
algorithm devised by Kunth [5] which enables us 1o parse an input sentence
deterministically and efficiently. But the grammars used in this algorithm are limited
to LR(k) grammars so that Context-Free Grammars (CFG) in general cannot be
handled. '

In regent ‘imes, ambiguous context-free grammars are used for the syntactic and
semantic processing of natural languages. Efficient syntactic and semantic parsing
for conlext-free languages are generally characterized as complex, specialized, highly
formal algorithms: There are two exceptional methods which are used for efficient
parsing. The first is Earley’s algorithm [2), which produces the parsing results in
the form of a parse list consisting of a set of items. This reduces the computational
dependence on input sentence length froni exponential to cubic cost. An attractive
feature of Earley’s algorithm is that it can easily be modified to parse coordinate
structures of unlimited breadth. Such structures exist in the logical form of natural
sentences. Numerous variations on Earley's method have developed into a family
of chart parsing algorithms [15].

~The second is Tomila's algorithm (13, 14), which generalizes Kunth's LR(k)
parsing techniques and extends it to handle CFG. Tomita's algorithm uses the data
structure called graph-structured stack (GSS) and construct a parse forest as the
parsing result consisting of all the trees in packed form. Empirical results of Tomita's
and Earley's algorithm reveal that the Earley/Tomita ratio of parsing time is larger
when the length of an input sentence is shorter or when an input sentence is less
ambiguous [13].

Even though Tomita's algorithm produces all the parsing trees in the packed
form during the parsing process, they are nothing but a set of items with pointers. A
method for disambiguation of trees from the parse forest is proposed by Tomita
(13], in which the disambiguation is done by asking the user. According to Johnson
(3], any algorithm which uses packed forest representation will suffer from an
exponential time and space worst case complexity with respect to the input length
and also with respect to grammar size. Some modifications to the Tomita’s algorithm
were made by Kipps (4], so that the worst case time complexity became n, but the
Kipps algorithm's space complexity is worse than Tomita's. In Earley's algorithm,
parse trees are formed from the parse list created during parsing. In this paper we
refer 1o the item created in Earley's algorithm as Earley's item. Earley's algorithm
works with time and space complexity in the order of n* and n? respectively for any
CFG (1]. In our new generalized LR parsing algorithm we stick to the items formed
as the result of parsing. But our items are symmetrically different from Earley's.

In this paper we present an implementation and evaluation of our new generalized
LR parsing algorithm called YAGLR [11]. In its original version we used GSS, but
in the implementation we use tree-siructured stack (trss). In this paper we explain
all the actions of YAGLR on a set of trss, which we call TRSS. Due to our merge
algorithm, which merges the trss deeply in an effective way, and due to the nature
of the shared structure of Prolog, we retain the packed nature of GSS. Through our
implementation we practically show that even using trss, the time and space
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complexity of YAGLR is »* and n® respectively where n is the length of an input
sentence. YAGLR creates items called dot reverse items (drits) as parsing results
which aré symmetrically different from Earley’s items. These drits not only make
effective merge operations possible, but also ease the removal of duplicated items.
The rest of this paper is organized in the following way. Section 2 gives.a brief
introduction to the generalized LR parsing algorithm. In Section 3, we introduce the
drit by comparing it with Earley’s item and discuss the merits of creating drits
instead of Earley’s items. We also prove experimentally the advantages of creating
drits in Scction 5. Section 4 gives an implementation of the YAGLR algorithm
along with the merge algorithm for TRSS. In Section 5 we give the evaluation of
YAGLR on the basis of implementation, and we practically prove through our
experiment that the time complexity of YAGLR is in the order of n® for a grammar
with reasonable size and time complexity in practical natural’language processing.
We conclude our paper with a brief discussion on our future research directions.

2 Generalized LR Parsing—An Overview

The generalized LR parsing algorithm uses stacks and an LR parsing table gcncAraLcd
from given grammar rules. An English grammar and its LR parsing table are shown
in Figs. 1 and 2 respectively [14]. C

(1) S —= NP, VP
(2) S-S, PP
(3) NP = n

(4) NP = det, n
(5) NP = NP, PP
(6) PP — p, NP
(7) VP = v, NP

Fig. 1 An English context-free grammar

Slate ACTION field : GOTO field
det n - v p $ NP | PP VP S
0 sh3 sh4 2 _ 1
1 shé ace 5
2 sh7 sh6 9 8
-3 sh10
4 red re3 re3
5 re2 re2
6 sh3 shd 11
7 sh3 sh4 12
8 red red
9 re5 red re5
10 re4 re4 red
11 re6 | re6/sh6 | reb 9
12 re7/sh6 | re7 9

Flg. 2 LR parsing table for the grammar in Fig. 1
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The parsing table consists of two fields, a parsing ACTION field and a GOTO -
field. The parsing actions are determined by state (the row of the table) and a look
ahead preterminal (the column of the table), which is the grammatical calegory of
an input sentence. Here, $ represents end of the input sentence. There are mainly
two kinds of stack operations—shift and reduce. Some entries in the LR table
contain more than two operations and are thus in conflict. In such cases, a parser
must conduct more than two operations, snmultaneously

The ‘shN’ in some entries of the ACTION field in the LR table indicates that the
generalized LR parser has to push a look-ahead preterminal on the LR stack and
shift to ‘state N'. The symbol ‘reN’ indicates that the parser has to pop the number
of elements corresponding to the right-hand side of the rule numbered ‘N’, from the
top of the stack and then go to the new state determined by the GOTO field. The
symbol! ‘acc’ means that the parser has successfully completed parsing. If an entry
contains no operation, the parser will detect an crror. The LR table in Fig. 1 has
conflicts in states 11 and 12 for column p. Each of the two conflicts contains both
a shift and a reduce action, making for what is said o be a shift/reduce conflict.
When our parser encounters a conflict, all reduce actions should be carried out
before the shift action.

No. Slack Input B Actions
1y lo | |saw a gir with the tel$ shift to 4
(2) |On4 ' saw a girl with the tel$ reduce by
- NP = n
(3) ] ONP 2 saw a girl with the tel$ shiftto 7
(4) |ONP2V7 a girl with the tel$ shift to 3
(5) | ONP 2v7det3 girl with the tel$ shift to 10
(6) | ONP2v7det3ni0 with the tel$ reduce by
B ' NP = det, n
(7) ] ONP2Vv7NP 12 with the tel$ shift to 6/
' , _ reduce by
' VP = v, NP
(8) | ONP 2 [v 7 NP 12 with the tel$ *shift to 6
VP 8 reduce by
S - NP, VP
9) 0[ NP 2v7NP12 with the tel$ *shiftto 6
shiftto 6
(10) | Of NP2v7 NP 12p 6 | thetel$
' S 1p6

Fig.3 An example of generalized LR parsing

On input “I saw a girl with the lelescope”, the sequence of stack and input
contents is shown in Fig. 3. For example, at line (1) the parser is in state 0 with “I"
the first input symbol. As the ACTION ficld of Fig. 2 in row 0 and column n (the
preterminal of “I'") contains sh4, it pushes n and covers the stack with state 4. This

“is what has happened in line (2).

Then, “saw” becomes the current input symbol. As the action of state 4 on v (the

grammatical category of “saw”) is re3, it carries out a reduce operation by using the
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rule NP — n. One state symbol and one grammar symbol are popped from the stack
and 0 again becomes the top of the stack. Since the GOTO field of state 0 on NP is
2, NP and 2 are pushed onto the stack. We now have the configuration in line (3).
Each of the remaining moves is determined similarly until the shift of “girl".

In line (7), we get a conflict with sh6/re7, where we carry out re7 at first and sh6
is kept in abeyance until all the other remaining stacks experience shift actions. At
line (10) both the stacks with shift action sh6 are shifted to state 6. The remaining
parsing process proceeds in this way.

3 Earley’s Item and Dot Reverse Item

In YAGLR we do not use grammatical categories along with a state number as in
generalized LR parsing algorithm shown in Fig. 3; instead we use a position number
along with a state number. The position number indicates the position up to which
the shift of an input sentence has been completed. Note that a sequence of state
numbers alone completely determines the basic parsing process.

During reduce actions, YAGLR creates drits which are symmetrically different
from Earley’s items. Since a state is always accompanied by the position number,
we call the pair a node in the rest of this paper (see subsection 4.1). From the trss,
we can create either Earley’s items or drits. In this section, we will give the basic
idea of drits and discuss the merits of creating drits instead of Earley’s items.

Let us consider the following stack with a reduce action ‘re,x’ and an input
sentence wiw, ... W,.

@ ...~{(3), S3——((5), S2]———((6). S1]  Top (re.x)

Here, §1, §2 and §3 indicate states, and 3, S and 6 position numbers. The position
‘number i in a node means that the parser has shified the input words.up to w;. Thus
the node [{6], S1] in (a) covers the input word wg, the node [(5), S2] which is
between [(6}, S1] and (3], §3], covers the input word wy to ws and so on.

Now, assume that the rule ‘x’ in the reduce action is A — BC, then two nodes
from the top must be popped and we create the Earley's items as shown in (b).

(b) Earley's items:

Is3(A-8B-C,3] I¢3[A— BC- 3]

In the items in (b), number 3 inside the item is the position number, starting from
which Earley’s items are formed and ending with the dot position stated by the
suffix of /5 or /. This indicates that a part of an input sentence from position 3 to §
(wqws) in the first item has been recognized as “B”. In this way a part of the input
sentence from position 3 to 6 (wywsweg) in the second item has been recognized as
“BC” and combined as “A” by applying the rule ‘x’.

Let us see what will happen if we form the items starting from position number
6 and ending with 3 in the reverse order using the rule 'x’.

(c) drits:

Is3[A—>B-C,6] I,3[A—-BC, 6
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In the case of (c), the number 6 inside the item is the position number appeared in
the top node of the stack (a)'. These items are formed by considering the dot
positions from right to left which is in a direction opposile to that of Earley's items.
Hence we call them dot reverse items (drits), which will be defined at the end of
this section. Here, in the first drit, a part of the input sentence from position number
6 down 1o 5 (wg) has been recognized as “C™ and a part of the input sentence from
position 6 down t0 3 (wawswg) in the second drit has been recognized as “BC” and
combined as “A" by applying the rule ‘x’.
Now let us think the following case of the stack in (d) having two top nodes.

@ ..:—(3), S3——((5), S2——1(6}, S1] Top (re, x)
1 —{(2), SAl———1((4), S2———1(6), S1] Top (re, x)

Using the same rule ‘x’, through the reduce actions on stack (d), Earley's items
and drits are formed as shown in (e) and (f) respectively.
(e) Earley's Items:

Is3[A-B-C,3]
I¢3[A—>BC-,3)
I43[A-B-C,2)
I¢3[A—-BC-,2]
(f) drits:
Is3[A->B-C,6)
Is;3(A - -BC,6)
I43[A—>B-C,6)
I,3[A > -BC,6]

Since both top nodes of (d) are exacty the same, let us merge the stack (d) one
node left to get the stack in (g). ‘

€9 ...—[(3}, §3] ((5),82) {(6), 1] Top (rex)
Do —[(2), §4) ({4), 82

Performing the reduce action ‘re, x' on (g), the two nodes are popped from the
top. The same items as those in (e) and (f) are created from (g).

Since the state S2 of two nodes immediately left of the top node [(6}, $1] in (g)
are the same, now let us see what will happen if we proceed the merge of stack (g)
onc more node to the left as shown in (h).

(h) ... —([(3),83] ((4,5), 82}
0 [{(2), $4

In (h) we merged the nodes of state §2 with the union of position numbers. On
carrying out the reduce action ‘re, x' on (h) the two nodes [(4, 5}, $2] and ({6}, S1]

[{6), §1] Top (re, x)

'This position number 6 will remain the same until the next shift action.
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are popped. In addition to Earley's items shown in (e), the following two Earley's
items are also created which we do not want to have.

I43[A—=B-C,3] " Is3[A->B-C,2)

However, if we form drits for the above merged stack (h) it is again the same as in
(f). This means that the creation of proper drits is possible from much deeper
merged trss than (g). In other words, creation of drits enables us to do a deeper
merge of TRSS, which is one of the important advantages of creating drits instead
of Earley’'s items. In case we create Earley's items, the deep merge is not possible
and we have 1o restrict only to the merge of top nodes, and if we do a deep merge
then it leads to the creation of improper and needless items. The reason why the
creation of proper drits is possible comes from the fact that LR parsing is based on
the right-most derivation and drits reflects this right-most derivation.

- Another important fact in using drits is the localization of duplication checks.
The position number inside Earley's items will change within the processing of a
single input word (say w,); as we see in (). On the other hand, the position number
inside drits will remain the same throughout the processing of a single input word,
w;, as shown in (f) (k = 6 in this case). This enables us to limit the duplication
check of drits within the processing of a single input word. In case Earley’s items
arc crealed, localization of the duplication check is not possible because k is not a
constant. Thercfore we can localize the range of duplication check of drits.

The following is a formal definition of a drit.

LetG=(N,T,P,S)beaCFG and let w = wyw, ... w, € T* be an input sentence
in T* which is a sct of a sequence of terminal symbols. Fora CFGrule A = X, ...
Xnand0<j<Sn, [A—> X Xy... Xy - Xpay -.. X, J] is called a drit for w. The dot
between X and X, is a metasymbol not in N and T. The position number i is the
location between w; and w;,,. The special position number ‘0’ represents the left-
hand-side position of w;.

I;, a set of drits, is defined as follows. Foriand j(0<i<j<n), (A - a- §,]]
€ Liff Sy A8 f=wiWisz...wj, and §= wj, wjsa ... w, where the dot
position is a suffix i of an item set /;.

The difference of a drit with an Earley’s item lies in the interpretation of j. It is
cvident from the above definition that, in the drit, the analysis has been completed
for B which is on the right-hand side of the dot symbol. On the contrary, in case of
Earley’s item, the analysis has been completed for a which is on the lefi-hand side
of the dot symbol.

4 An Implementation of the YAGLR Algorithm

In this section we will give the structure of a TRSS along with shift and reduce actions
on TRSS followed by merge operations. In our implementation, cach entry in an
LR parsing table is regarded as a process which will handle shift, reduce, accept
and error actions.
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4.1 Structure of TRSS

In parsing, the basic parsing processes are determined by a sequence of state numbers
in the stack. Whether or not we use grammatical symbols (as in generalized LR
parsing), a packed forest (as in Tomita's method) or position numbers (as in our
method) along with a state in the stack, they do not affect the basic parsing process.
Each node of a trss used in YAGLR has the following structure:

[ < a set of position numbers >, < state > ].

The set of position numbers is used to create drits during reduce actions. In general,
there will be several top nodes in TRSS, but after merging, the remaining top nodes
can never be more than the number of distinct states. Even though we use trss in
our implementation, because of our merge operations we retain the packed nature
of GSS. An example of uss and its list structure are shown in Fig 4. In the trss in
Fig. 4, (5], 6] is the top node and other nodes below top nodes such as [{4), 12],
({3), 8}, [(2). 73, ({1}, 2] and [{0}, O] are ali called parent nodes of the top node.

({0}, 0} i 2) {{2}. 7} {{4), 12)
[{0}. O} {(1). 2} {(3). 8]

(({0).0, {1}.2, {2).7. {4}.12). [{0},0, {1}.2, (3}.8]). {5).6] Top
Flg. 4 An example of TRSS and its list structure

(5}, 6] fOP

4.2 Shift Action

Let us consider a shift action ‘sh, u’ 1o a TRSS as shown in (a). It shifts (pushes) a
new node onto the top of the TRSS getting (b) and creating a drit in /; as shown in
(c). The position number of the shifted node in (b) is increased by one.

(@ .. .—[(M),s] ({i),1 Top (sh, u)
®) .. —{(M), s——[(i}, (i + 1)}, 4] Top

© Ii3[X = wyy,i+l]

4.3 Reduce Action

Let us consider a reduce action for a TRSS using a CFG rule A = XX, ... X, having
m nonterminal and terminal symbols on.its RHS. Applying this rule for the reduce
action on (d), the stack (e) is obtained-along with the creation of a set of drits as
shown in (f). .

@ ... =[Py, siF—{Pri1, St }— . .
© . ..—lPy, s———IP{sm. 1] Top |
where Pl = (at b, "'}lPl+l = (C' d: "']v seey Pkwn-l = {e'f' se0 g)-Pk+m= (D Pk’i’m
= (). :
The state ‘¢’ in (¢) is a new state determined by GOTO field of both 55 and A. Note
that a set of position numbers, namely Py, at the op node of (d) is (i) which includes

(Pisms Stem)  TOp
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only one position number of the last input word shifted so far. A set of position
number P/, , remains the same as (i) after the reduce action.
(f) Creation of drits:

Ia 3 [A - 'X1X2 ...Xm, 1]

...........................................

ay[A-> XXy ... X i] 13[AXXy... - X, 1)

Ir3[A - XXy ... X, 1]
I.3[A 92X - X2 ct. X 1] ettt
Ig3[A5 X, Xy ... X il [;3[A XXy ... - Xy, 1]

The position number i inside a drit is a position number of the top node in the stack
and remains unchanged until the next shift action occurs. Note that a drit such as

[A - X|, ... Xm -, 0] € I) is not created because it does not contribute to the
formation of trees. ‘

4.4 Merge of Nodes

In our merge operation, the nodes which have the same states can only be merged.
Our mcrge opcration begins from the top nodes with the same staie and then
proceeds one level down towards the parent nodes. To merge two nodes with the
same state, we apply the following operations (M1) and (M2).

(M1) The two top nodes [(i}, 5] and [{i}, s) are merged into one node as [{i}, s)
which inherits all the parent nodes of the two top nodes before the merge operation.

For example, by applying (M1) to the TRSS as shown in (g), we get the TRSS as
shown in (h).

—_ .. ..

@) ———I((2,3),8 ((2,4,5),9]
===((2,3,4},8] ((3,5}).9]
— .. ..

(h) ———((2,3), 8]

===((2,3,4),8] ((6},1] Top

(M2) For the two parent nodes {M, 5] and [V, 5] of X (X is a merged node), apply
either (M21) or (M22). .

(M21) If M is neither a subset nor a superset of N, a new merged node (M U
N, 5] is formed as a new parent node of X and all the parent nodes of [M, 5] and [N,
s] will become the parent nodes of the new merged node (M U N, s].

For example, in case of (h), X is [{6}, 1] and its parent nodes to be merged are
({2,4,5),9)and [{3,5),9). The resultant TRSS after applying (M21) to (k) is shown
in ().
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_

O ——

..
' ((2,3,4,5),9]

(6}, 1] Top

(M22) 1f M is a subset of N, then simply take [N, s] as a merged node and merge
is not necessary beyond this level. The parent nodes of X from [M, s) arc removed.
If M is a superset of N, then take [M, s] as a merged node, and the parent nodes
from X 10 [N, s] are removed. Merge is not necessary beyond this level.

For example, in the case of (i), X is ({2, 3, 4, 5}, 9] and the parent nodes to be
merged are [(2, 3}, 8] and ((2, 3, 4), 8]. We now apply (M22) to the above TRSS
() and get the TRSS as shown in ().

——— ..

V) ((2,3,4,5),9]
===[(2,3,4),8

((6},1] Top

4.5 Merge Algorithm of TRSS

Since we defined the merge operations considering two nodes, we now give the
merge algorithm of TRSS as follows. Our merge is performed in depth-first method
by considering two trss at a time.

procedure merge (TRSS);
begin
Initialize TmpStk to [ ;
while TRSS # empty do
repeat
pickup and retract a trss (call target_trss) from TRSS;
if at least one trss with target_trss’s same top node exits in TRSS
then
begin
repeat
pickup and retract a trss (call s_trss) from TRSS
having same top node of target_trss;
apply (M1) to target_trss and s_trss to get a merged top node;
for the parent nodes of merged top node apply (M2)
name the resultant of the merges of target_trss and s_trss as m_trss;
larget_trss := m_Lrss;
until no more trss with same top nodes as target_trss in TRSS exist;
end
put the target_trss into the TmpStk;
until TRSS becomes empty;
TRSS := TmpSik; ~
end
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In applying (M2), if (M21) is applied then our merge proceeds one level down
towards the parent nodes by calling (M2) recursively. However in casc of applying
(M22), we do not need to proceed our merge further.

4.6 Procedure of YAGLR \

Let us give a complete algorithm of YAGLR.

1. Set the initial state of a set of wrsses (TRSS) as: (Bottom)" ({0}, 0] (Top)
2. Initialize the TempStack to [ ]
3. If TRSS is empty then goto 5;

Pick up and retract one trss from TRSS (TRSS := TRSS - irss);

for this trss :
Assign the actions determined by LR table;
case actions of ,
‘accept’: end with “success” for the trss and goto 3;
‘error’: end with “failure” for the trss and goto 3;
‘shift’: push the trss into TempStack and goto 3;
‘reduce’: goto 4;
‘shift/reduce”:
push the trss with the shift action into TempStack and

goto 4 carrying the trss with the reduce action(s)
end;

4. do the reduce action(s) and push the newly formed TRSS(es) into TRSS and
merge the TRSS;

goto 3.
S. If TempStack := [ ] then return;
Perform shift action for every trss in TempStack and
push the resultant into TRSS;
merge the TRSS
goto 2

5 Evaluation of YAGLR
In this section we present the cvaluation of YAGLR based on the preliminary
cxperimental results involving comparison with SAX [6] and SGLR [8]. SAX is

based on the bottom up version of the chart algorithm and SGLR is based on
Tomita's algorithm using tree-structured stacks.

5.1 Experimental Environment

The experiments were performed on the Sun 3/260 machine and using Quintus
Prolog. We used different sets of grammar in our experiment ranging from grammars
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with 3 rules to 550 rules to study the parsing efficiency of our algorithm. In this -
paper we concentrate on four different types of grammar. Gram-1 is a grammar in
[3] which is a highly densely ambiguous grammar. For this grammar and its input
pattern, readers are requested to refer [3). Gram-2 is a.grammar 44 rules, gram-3
with 123 rules and gram-4 with 400 rules. Gram-2 and gram-4 are taken from [13],
and gram-3 from our laboratory in Tokyo Institute of Technology. Gram-4 becomes
highly ambiguous and could therefore be considered as one of the toughest natural
language grammars in practice. So we centre all our experimental results mainly
around gram-4. The results of gram-1 and gram-3 are given in [11].

The inputs for grammars 2, 3 and 4 arc made more systematically. The ath sent-
ence in the set is obtained by the schema, noun verb det noun (prep det noun)™
- [13]. The example sentence with this structure is: / saw a girl on the bed in the
apartment with a telescope. The ambiguity of such senlences grows enormously.
Sentences of this type are necessary (o find the parsing efficiency against sentence .
ambiguity. ' :

All our programs are wrillen in Prolog and are complied using Quintus Prolog.
Since we are interested in the ratio of parsing time, it will be the same either
interpreted or compiled. The parsing time is determined by CPU time minus the
time consumed for garbage collection (gc). We find that the gc consumed during
the execution of our algorithm is very little (even though we usc trss). If we include
the gc time, then the ratio beiween YAGLR and other parsers will vary (o a large
extent in a positive way (o YAGLR. The parsing times in our implementations are
without forming trees for SAX, SGLR parsing while YAGLR parsing creates drits.

5.2 Experimental Evaluation of YAGLR

Here, we give our preliminary results on the implementation of YAGLR. Figures
S(a) and (b) show the parsing time of YAGLR for gram-4 against length of the
input sentence and against sentence ambiguity respectively. We find that YAGLR
parses the sentence faster, as the ambiguity of the sentence increases. In other
words, as the ambiguity increascs, the parsing time of YAGLR dccreascs rapidly
regardless 1o the size of the grammar or length of the input sentence.

Figure 5(c) shows the number of drits created by YAGLR against ambiguity.
Here, all the drits created during parsing are indicated by a dashed curve, which
includes duplicated drits. After the shift of an input word w;, our parser makes
duplication checks of the drits created in between w;_) and w;. The other curve shows
the number of non-duplicated itcms created among the duplicated items. Qur parsing
time shown in Figs. 5(a) and (b) includes the time consumed for removing the
duplicated items. If the sentence is ambiguous, the creation of duplicated drits is
unavoidable. It should be noted that, if we do not do the duplication check, the
Y AGLR parser will run faster. : ‘

5.3 Comparison with Other Methods

In this subsection, we would like to compare the performance of YAGLR with that
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of other parsers. In Figs. 6(2) and (b), we give the ratio of parsing time of SGLR/
YAGLR and SAX/YAGLR against sentence length and sentence ambiguity
respectively for gram-4. The ratio will be the same, be it taken against scnience
length or ambiguity. The higher the ratio of parsing time of SGLR/YAGLR or
SAX/YAGLR, the lower is the parsing time of YAGLR. Here we sce that SGLR/
" YAGLR ratio and SAX/YAGLR ratio are high for a sentence with considerable
length, as the ambiguity increases.

Figure 6(c) shows a comparison of Earlcy's items created using Earley’s algoruhm
and drits created by YAGLR for gram-4. All the duplicated items are removed
during parsing and Fig. 6(c) showa the graph of non-duplicated items. From this
figure, we can realize the advantages of creating drits rather than Earley’s items.

Therc are some grammars for which the number of non-duplicate Earley's items
created using the YAGLR algorithm is less than that of drits. But the total number
of ilems created including duplicated items is far less in the case of drits. The
parsing time includes the creation of the total number of items which includes
duplicated items. The more the duplicated items, the greater is the time consumed
for creating and removing. Also, as we discussed briefly in Section 3, creating
Earley’s items using our algorithm leads to the creation of unwanted items. Hence,
it is safe to conclude that drits are better than Earley’s items.

Some raw cmpirical data obtained from experimental results using gram-1 and
gram-4 are given in the table in Fig. 6(d). In the table, I/P denotes length of the
input sentence, n denotes sentence number according to the schema described in
subsection 5.1 and Trees denotes the number of ambiguities. These data entirely
depend on the machine system and the programming language used. But we hope
that the ratio of parsing time will be lhc same for any sysiem under a particular
programming environment.

Figures 6(e) and (f) show results of memory space consumed by YAGLR for the
parsing of gram-2 and gram-4 respectively. YAGLR consumes very little memory
space due o its effective merge operations. Note that in YAGLR we create drits,
whereas in our experiments SAX and SGLR do not generatc partially parsed
information in any form. This is the rcason why YAGLR nceds more space up to a
sentence of length 18 for gram-4. The amount of memory space needed depends on
the size and ambiguity of the grammar we use. In case of gram-2, which has only
44 rules, the memory space consumed by the sentence of length up to 18 is
" comparable. However, when the length of the input sentence increases, the reduction
in memory space is remarkable regardless of the size and ambiguity of the grammar.

5.4 Experimental Computational Complexity of YAGLR

For gram-1, we have theoretically proved the complexity of YAGLR to be of the
order of n® [12). But we are yet to prove this in the case of general CFG. In this
subsection we give our experimental proof for the complexity of YAGLR. Figure 7
shows the order of parsing time of YAGLR for gram-1 and gram-4. On taking log
scale for both X and Y axes we find that for the parsing time 1o be in the order of n,
the slope of the time curve must be < 3. Thus the line passing through the X and Y
axes in Fig. 5.4 shows the sample line with slope 3. In Fig. 5.4 we find that the ime
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Gram-1
VP TIME (ms) : Trees
SAX SGLR YAGLR
5 34 50 67 20
6 67 83 117 70
7 233 250 183 256
8 800 833 367 969
9 2,867 3,117 517 3,762
10 10,750 12,650 866 14,894
11 41,616 49,716 1,383 59,904
12 262,250 222,235 2,017 24,4088
Gram-4 ’
n TIME (ms) Trees
SAX SGLR YAGLR
1 50 17 67 , 1
2 117 84 167 2
3 267 150 400 ' 5
4 - 967 350 600 14
5 3,067 1,000 934 42
6 9,700 3,200 1,417 132
7 32,217 10,683 1,917 429
8 113,135 37,800 2,700 1,430
9 398,832 137,000 3,667 4,862
10 — 498,731 4,750 16,796

Fig. 6(d) Comparison of empirical result
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curve of gram-4 is parallcl 1o the sample line and so the time complexity of gram-4

is in the order of %, In casc of the lime curve of gram-1, we find that it is not
parallel to the sample line and that it is nearly of the order of n%. However, as already
stated, we have proved theoretically that the complexity of YAGLR for gram-1 is’
of the order of n°. From the curve of YAGLR in Figs 5.3(e) and (f) we can conclude
that the space complexity of YAGLR is of the order of .

6 Conclusion

We have illustrated the basic idea of the YAGLR parsing algorithm and its
implementation, and have also provided an evaluation. It should be noted that, after
completing the parsing operation, the syntaclic trees are formed from dan obtained
during the parsing process. Even though we used TRSS in our 1mplememauon we

find that the parsing time and the memory space consumed by YAGLR are very
lide.

We experimentally proved that our YAGLR parsing algorithm parses a given
input sentence much faster. The more the ambiguities in the input sentence and in
the grammar, the greater is the parsing speed of YAGLR. We practically proved
that, for optionally chosen CFGs with reasonable size and complexity, the time and
space complexity of YAGLR are of the order of #° and n? respectively.

3 T

o
!

Parsing time in log_10

Length of sentence in log_10°
Fig. 7

Since YAGLR is based on the LR parsing algorithm, it is not needed to add the
predictor items of Earley’s. This reduces the total number of drits created. We also

used uss effectively through our merge actions. Even using trss we find that the
space consumed by YAGLR is less.
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Our future work includes a theoretical proof for the time and space complexity
of YAGLR for general CFG, and developing a parallel algorithm for YAGLR
method and also for tree generation from drits.
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