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Abstract

The Tomita’s parsing algorithm{Tomita 36] which adapted LR parsing algorithm to context free
grammars makes use of a breadth first strategy to handle conflicts occured in a LR parsing table.
As the breadth first strategy has a good compatibility with parallel processing, we have developed
a parallel generalized LR parser PGLR that has been implemented in GHC. GHC is a concurrent
logic programming language developed by Japanese 5th generation computer project. As PGLR uses
Tomita's Graph Structured Stack (GSS), the stack top elements with the same states have to be
merged. The simplest way to implement GSS is to use side effects, but side effects are not desirable
for us to simulate GSS. The reason is that we are going to implement GSS in a framework of a logic
programming language, GHC. The details of our implementation of GSS, which does not make use
of side effects, will be shown in section 3.

1 Introduction

As the length of a sentence becomes longer, the number of parsing trees increases and it will take a lot
of time to parse a sentence. In order to achieve fast parsing, we should look for a parallel parsing system
based on the most efficient and general parsing algorithms. It is well known that LR parser is the most
efficient parser, because it runs deterministicly for any LR grammar which is a subset of context free
grammars. Unfortunately, LR grammar is too weak to parse most sentences of natural languages. When
we apply LR parsing algorithm to a context {ree grammar, it is a usual case of having conflicts in a LR
parsing table. So we need to generalize the LR parsing algorithm which can handle these conflicts. To
resolve such conflicts, there are two kinds of strategies: (1) a depth first strategy, and (2) a breadth first
strategy. Nilsson[Nilsson 86] has adopted a depth first strategy and Tomita[Tomita 86| a breadth first
strategy. Using these strategies, we will be able to handle a context free grammar in the framework of the
LR parsing algorithm. Such a parser is called a generalized LR parser. It is easy for us to simulate the
breadth first strategy through parallel processing technique, and we have developed a parallel generalized
LR parser PGLR: based on a breadth first strategy.

To avoid recomputations, Tomita has devised a Graph Structured Stack (GSS) in which stack top
elements with the same states will be merged. The simplest way to implement GSS is to use side effects,
but side effects are not desirable for us to simulate GSS. The reason is that we are going to implement GSS
in a logic programming langnage called GHC that has developed by Japanese 5th generation computer
project. .

After we will give a brief introduction of LR parsing algorithm in section 2, we will describe PGLR
parser in section 3. One of the most significant feature of PGLR is to regard each entry of a LR parsing
table as a process. The process keeps a stack on which shift and reduce operations are conducted. If
the process discovers a conflict in a LR parsing table, the process copies its own stack and sends it to
subprocesses which will perform reduce operations in the conflict. After finishing the reduce operations,
a merge process will be activated if necessary. In order to understand PGLR parser, we will give an
example of a trace of parsing in subsection 3.6. In section 4, we will explain some results of experiments.



(1) S — NP.VP.

() S — S. PP

(3) NP — NP, RELC.
(4) NP — NP, PP.
(5) NP — det, noun.
(6) NP — noun.

(7) NP — pron.

(8) VP — v, NP.

(9) RELC — relp, VP.
(10) PP — p. NP

fig.1: Ambiguous English grammar

2 Generalized LR Parsing algorithm

The execution of a generalized LR parser is controled by a LR parsing table which is generated from
grammar rules given in advance. Fig.l shows an ambiguous English grammar and fig.2 a LR parsing
table generated from fig.1. The LR parsing table is divided into two.parts, an action table and a goto
table.

The left-hand side of the table is called ’action table', the entry of which is determined by a pair
of generalized LR parser’s state (the row of the table) and a look-ahead preterminal(the column of the
table) of an input sentence. There are two kinds of operations, a shift and a reduce operations. Some
entries of the LR table contains more than two operations and thus have conflicts. In such a case. a
parser should conduct more than two operations simultaneously.

The symbol 'sh N’ in some entries means that generalized LR parser has to push a look-ahead prater-
minal on the LR stack and go to 'state N'. The symbol 're N’ means that generalized LR parser las to
reduce several topmost elements on the stack using a rule numbered 'N'. The symbol 'acc’ means that
generalized LR parser ends with success of parsing. If an entry doesn't contain any operation. generalized
LR parser recognizes an error. ’

The right-hand side of the table is called a 'goto table’ which decides a state that the parser should
enter after every reduce operation. The LR table shown in fig.2 has 4 conflicts at the state 14 {row
number 14) and state 16 for the column of 'p’ and 'relp’. Each of four entries, which have a conHict.
contains two operations, a shift and a reduce operation. Such a conflict is called a 'shift-reduce conflict".
When a parser encounters a conflict, it cannot determine which operation should be carried out first. {n
PGLR explained in the next section, conflicts will be resolved using parallel processing technique and we
do not care the order of the operations in a conflict.

3 Implementation of PGLR

PGLR is implemented in GHC that is a concurrent logic programming language developed by Japanese
5th generation computer project. In our system, each entry in a LR parsing table is regarded as a proceass
which will handle shift and reduce operations. If the process discovers a conflict in a LR parsing table.
the process copies its own stack and sends it to subprocesses which conduct reduce operations. Alter
finishing the reduce operations, a merge process will be activated if necessary. The details of handling a
conflict will be explained later.

To avoid recomputations, Tomita has devised a Graph Structured Stack (GSS) in which stack top
elements with the same states will be merged. However, GSS is not so a simple data structure that the
simplest way to implement GSS is to use side effects. But side effects are not desirable for us to simulate
GSS, because we are going to implement GSS in the framework of a logic programming language. GHC'.

In our implementation of PGLR, in order to simulate GSS, we use a Tree Structured Stack(TS3).
Consider the following two stacks:

"In the paper {Tanaka 89), we have shown a generalized LR pacser without using GSS.
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p—— ]

det noun pron v P relp b NP PP VP RELC S
0 | shl sh2 sh3 5 4
l sh6é
2 re6 reb reb re6
3 re? re? re7 re7
4 sh7 acc 8
5 shl0 sh7 sh9 12 1l 13
6 red re3 red red
7 | shl  sh2 sh3 14
8 re2 re2
9 shl0 13
10 { sh1  sh2 sh3 16
11 rel rel
12 re4 red red re4
13 red red red red
14 rel0 sh7/rel0 sh9/rel0 rel0 12 13
15 re9 re9 re9 re9
16 te8  sh7/re8 sh9/re8  re8 12 13

fig.2: LR parsing table obtained from fig.1 grammar

(top) [7. P, 4, 5,0} (bottom)

(top) (7. P, 16, NP, 10, V,5 NP, 0] (bottom)
The top element of two stacks being the same, '7,P’, we will be able to merge these top two elements and
will get the following TSS.

(7, P,{4,5,0],[16, NP, 10, V,5 N P, 0]}

3.1 Brief Introduction of GHC

Before explaining the details of PGLR algorithm, we will give a brief introduction of GHC. Typical ¢:1{C
statements are given in fig.3. Roughly speaking, the vertical bar in a GHC statement of fig.3 works .» a
cut symbol of Prolog. When a goal "a’ is executed, a process of the statement (1) is activated and the .|y
becomes a new goal in which 'b(X)" and 'c(X)’ are executed simultaneously. This is called AND-par.llel
execution in GHC. In other word, subprocesses 'b(X)’ and '¢(X)’ are created by a parent process .1+ .l
they run in parallel. Note that the definition of process 'c’ in the statement (3) is going to instautite
the variable 'X' in '¢(X)’ with 'a’. In such a case the execution of the process 'c’ will be suspended wnail
'X" is instantiated by the process 'b(X)'".

(1) a:- true] b(X),c(X).
(2) b(X):- true|] X=a
(3) c(a):- true| true.

fig.3: Typical Statement of GHC

3.2 Description of PGLR Algorithm

Consider that an input sentence is consisted of a sequence of preterminals, 'p1 p2 ...pn". PGLR begins
activating a sequence of action processes, 'pl,p2,....pn,p$’ for each preterminals of an input sentence.
Here, the process 'p$’ corresponds to the end of the input sentence. At first, only an action process pl°
becomes active, and all the other processes are suspended until stack information is sent by an active
process. The action process 'pl’ is initially given a stack with state '0". It carries out a shift operation
specified by a LR table, sends the new stack information to 'p2’, and then terminates. The activated
action process 'pi' performs shift or reduce operations and sends new stack information to the process
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‘pi+1" which will be newly activated. If the rightmost action process 'p$’' is activated and finds out an
‘acc’ entry in the LR table, PGLR ends with success. If we have a conflict during parsing, more than

two subprocesses will be activated simultaneously and runr in parallel. There are four kinds of processes
which are activated during parsing.

1. action process:

Action processes perform the operations specified by an entry of the ‘action table'. The details of
action processes will be explained later with sample definitions.

o

. reduce process:
A reduce process pops the appropriate portion of the stack and creates a partially parsed tree by
applying a grammar rule specified in a reduce entry. And then the reduce process activates a goto
process to shift a new state. Suppose, in the course of a reduce operation, the reduce process finds
out many branches on a stack, the reduce operation for every branch should be carried out. In
order to do so, the reduce process creates a subprocess for the reduce operation.

3. goto process:

A goto process performs a shift operation specified in the entry of a 'goto table’. The goto process
is activated after the reduce operation.

4. merge_stack process
A merge._stack process receives a number of stacks from both action processes and goto processes.

In case of having many stacks whose top elements are same, the merge_stack process merges them’
into a tree structured stack. The definition of 'merge stack’ will be shown in appendix A.

3.3 Definition of Action Process

Followings are examples of definitions of action processes which carry out a shift, a reduce,an accept, and
an error operation.

¢ activating action processes

In order to parse a sentence, PGLR begins activating AND-parallel action processes which corre-
sponds to a sequence of preterminals in an input sentence. I the input sentence is "Doors open’.
the initial goal becomes as following :

" ?- noun_0(([0]], [roun,doors), Stacksl),
v.0(Stacksl,[v,opens|, Stacks2),
§.0(Stacks2,[ |,Result).

The first argument of an action process is a set of stacks sent by the preceding action processes.
The second argument is a pair of a preterminal and a word which will be an element pushed on
the stack by shift operations. The third argument is a new stack calculated by this action process.
The following is a definition of the first process 'noun.0' in the initial goal.

noun_0({ ], _, Out):- true |
Out =[]

noun_0([[No | Stack] | Rest], T, Out):- true |
noun(No, [No | Stack], T, Stacks1),
noun.O(Rest, T, Stacks2),
merge.stacks(Stacksl, Stacks2?, Out).

In the body of the second clause, a process 'noun’, 'noun_0', and 'merge_stacks’ are activated in
parallel. Depending on the value of 'No', the process 'noun' performs a shift or reduce operation.
The reason why the process 'noun_0’ is called recursively is that every stack in the first argument

should be examined. The process 'merge stacks’ merges all stacks calculated by the process ‘noun’
and 'noun_0’.
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s shilt operation
An action process creates a pair of a look-ahead preterminal and a new state specified by a shift
entry, pushes it on a stack, and finally terminates by itself. Suppose an entry of the 'action table’
in fig.2 , namely the colurn 'noun’ and the row '0". As the entry contains 'sh 2’, an action process
has to perform a shift '2’ operation. The definition of the action process is :

noun(0. Stack. T, NStacks) :- true |
NStacks={[(2,T| Stack]].

In the above process definition. the first argument of ‘noun’ is a state of the top element of Stack’.
The third argument "T" is a leaf of parsing tree. namely a pair of a preterminal and a terminal
symbol of the input sentence. The fourth argument "N3tacks™ is a set of stacks calculated by this
action process. In the body of this definition, a pair of state 2 and 'T" is pushed onto 'Stack'.

¢ reduce operation
An action process activates a reduce process which is given a copy of stack information by the
action process. The reduce process returns a reduced stack to the action process. After getting
a reduced stack, the action process activates the same action process recursively which looks for
another actions. Consider the entry of state '2' and a look-ahead preterminal 'v’ in fig.2. The
delinition of an action process 'v'is:

v(2, [--T1| Stack], T, NStacks) :- true |
reduce(1, 6, Stack, [T1], NStacksl),
v_0(NStacksl, T, NStacks).

In the body of an action process 'v', two processes, 'reduce’ and 'v_0' are activated simultaneously.
The process 'reduce’ conducts a reduce and goto operation by which the action process moves to a
new state. The reason why the action process 'v.0' is activated recursively is that any look-ahead
preterminal remains the same (namely 'v') after a reduce process runs.

¢ shift/reduce operation

At first, a shift operation and reduce operations are carried out, and then the action process

activates a merge process which is going to merge two stacks, each of which is obtained by the shift
and reduce operations.

Consider an entry of state '14' and a look-ahead preterminal 'p' in fig.2. We will find out a shift-
reduce conflict, 'sh 7/re 10’. The definition of an action process 'p' is :

p(14, (14, T1| Stack], T, NStacks):- true |
reduce(l, 10, Stack, [T1], Stacksl),
p.0(Stacksl, T, Stacks2),
merge.stack([7,T,14,T1|Stack],Stacks2,NStacks).

In the body of the process 'p’, subprocesses 'reduce’, 'p.0’', and 'merge stack’ are activated simul-
taneously. The definition of 'merge stack' will be shown in appendix A.

o reduce/reduce operation An action process activates reduce processes and sends them stack infor-
mation, each of which is a copy of the stack kept by the action process. After finishing reduce
processes, the action process will activate a merge process to merge several stacks sent by reduce
processes. Finally, in order to look for another actions, the action process activates the same action
process recursively.

¢ accept operation
After an action process gets a result of parsing, it ends with success.

Consider an entry of state '¢' and a look-ahead preterminal '$’ in fig.2, we will find out "acc’ which
indicates a success of parsing. The definition of the action process '$’ is :

$(4. .- Tree|.]., .., Result):- true |
Result=Tree.
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"Tree’ becomes the final output ('Result’) of parsing.

e error operation

If no operation is specified in an entry, an error handling process will be activated. \We have to
define an error handling process in some states il necessary. The following is a definition of an error

process f{or a look-ahead preterminal 'noun’. The following definition has to be placed at the end
of 'noun’ processes.

otherwise.
det(S, Stack. .., NStacks):- true |
NStacks=( ].

GHC statements below 'otherwise' will be executed if all GHC statements above ‘otherwise’ fails.

3.4 Definition of Reduce Process

The definition of a reduce process is as follows:

reduce(0, N, Stacks, T, NStacks):- true|
re(N, Stacks, T, NStacks).
reduce(M, N,(S,T1|Stack], T, NStacks, Tail):- integer(S)|

M1 := M-1,
reduce(M1, N, Stl, (T1|T), NStacks).
otherwise.
reduce(,, _, [], ., NStacks):- true|
NStacks = [].
reduce(M, N, ([, T1|Stack]|Rest], T, NStacks):- true|
M1 := M-1,

reduce(M1, N, Stack, [T1|T), NStacksl),
reduce(M, N, Rest, T, NStacks2),
merge(NStacks1, NStacks2, NStacks).

In the body of the first reduce process, a subprocesses 're’ is activated. In the body of the second
reduce process, a subprocess 'reduce’ is activated recursively to get a reduced stack. The fourth
reduce process deals with a Tree Structured Stack which has many branches. In the body of the
process, every branch is brought one by one and is sent to a subprocess 'reduce’. The first argument

of reduce processes is the number of elements to be reduced. The second argument is a rule number
which is used for the reduce operation.

After finishing all reduce operations, a process 're’ is activated to create a partially parsed tree
using a rule for the reduce operation. Following is a sample definition of the process 're'.

re(1,{S |Stack],T,NStacks):- true |

s(S,(S |Stack],[sentence | T],NStacks).. -
re(2,{S |Stack],T,S,NStack):- true |

s(S,(S |Stack],[sentence | T|,NStacks).
re(3,(S [Stack],T,NStacks):- true |

np(S.[S |Stack],[np |T],NStacks).
re(4,[S |Stack],T,NStacks):- true |

The number in the first argument is a rule number that is used by the reduce operation. In the
body, a goto process is activated to shift a new state.
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3.5 Definition of Goto Process

After a reduce operation is finished, a goto process is activated to push a new element on the stack.

The element is a pair of a partially parsed tree and a new state specified by a goto table. We will
give a sample definition of goto processes.

np(0,Stack. T .NStacks):- true|
NStacks = [[5,T|Stack]).

np(7,Stack,T,NStacks):- true|
NStacks = [[14,T|Stack]].

np(10,Stack,T,NStacks):- true|
NStacks = {[16,T|Stack]].

otherwise.
np(-.. [], --NStacks):- true |
NStacks = []

np(--. [S|Stack| | Rest], T, NStacks):- true |
np(S. [S|Stack], T ,Stacksl),
np([ ], Rest, T, Stacks2),
merge.stack(Stacksl, Stacks2, NStacks).

3.6 An Example of PGLR Parsing

Following is a trace of parsing by PGLR parser.

input sentence : i open the door with a key .

Parsing begins with activating AND-parallel action processes each of which corresponds to a preter-
minal of the input sentence. However, only the first action process 'pron_0' will be executed and the
other processes will be suspended until 'Stackl’,'Stack?2',...,'Stack8’ are instantiated one by one.

?- pron_0([[0)], [pron,i],Stackl), v_0(Stacki,[v,open],Stack2),
det_0(Stack2,[det,the) ,Stack3), noun_0(Stack3,[noun,door],Stack4),
p-O(Stack4, [p,with],Stack5), det_0(Stacks, (det,a],Stacks),
noun_0(Stack7, [noun,kay],Stack8), $_0(Stacks, [],Result).

Following is the actual output of tracing.

CALL prox_0C({0])],(pron,i],Stackl)

CiLL proa(0, (0}, [pron,i] ,Stack1l) )
EXIT pron(0,(0],{prox,il,((3,(pror,il,0)])

CiLL prox_0C(),[proa,i] ,Stack12)

E1IT pron_0((),{prox,il, (D

CALL merge _stacks(({3,(pron,1),0]],[],Stackl) s

EXIT merge _stacks({([3,(pros,i],01],(1,0(3,(prea,i},0]l1)

EIIT proa.0CL[01],(pron,i],[(3,(pron,il,0]1)

CcaLL v 0(([3,(pron,il,0]],(v,0pes), Stack2)

CiLL v({3,[(pron,il ,0],[v,opea] Stack21)

CiALL reduce(0,7,[0],[{pron,i)] ,Stack22)
CALL re(7,(0],{(prox,il] ,Stack22)
CilL ap€0,(0),(xp,(pros,il),Stack22)
- E1IT ap(0, 0], (ap,(pron,i)],((5,(sp,[pron,il],01])
EXIT re(7,(01,((pron,il},((6,(ap,(proa,i)],01])
EXIT reduce(0,7,(0],((prox,i]1,((5,(sp,(pron,i}],01))
caLL v.0C((5,(ap, (pron,i)],0]),(v,0pen) ,Stack21) : skip
EXIT v.0C((5,(ap,(prox,i}),0]],(...),([10,(v ,0penl,5,(np,...3,0)])

.............................

EXIT v_0C([3,(pron,i},0)],.(...],0[10,{v,0pea),5...1])

CALL det_0C([10,(v,opea),6...]],(det the] Stackd) : skip

EXIT det_0C((10,(v,0pes),5...1),(det, the),([1,(det, the],10,(v,0pen)...]])
CALL nouwa_OC[(1,(det,tde],10,(v,0pen)...]],(noux,dcor),Stackd) : skip
EXIT =002 0C((1,(det, the)...)),(...],((8,(n0ux,door],1,(det, thel...]])

00 207




CaLL p_oC{(6,{c0un,door},1...]),(p,with] ,Stacks)
CiLL pC6,(6,(n0ua,door),1...),{p,vith], Stacksl)

CiLL reduce(1,8,(1,(det,the},10...],([ncan,door)] ,Stackb2) : sxip
EXIT reduce(1,8,(1...3,(...),((28,(np,[det,the], [n0un,door)],10...]])
CAlL p.0C({16,{ap...3,10,(v...0...1),(p,vith]}, Stacksl)
CiLL p(16,(16,(ap...3,10,(r...7...],(p,with] ,Stack62)
Cill reduce(1,8,(10,(v...]...],{(ap,(det...]), {noun...]],Stacks3) : skip
EXIT reduce(1,8,(10...),(...7,0(t2,(vp,(v,0pen),(ap...11,6...1])
CaLL p-0C({t1,lvp...],6,(np...],0)),(p,vith]) ,Stacks4)
caLL pC1y,012,(0vp...],5,02p...,0) ,{p.vith] ,Stackss)
CiLL reduce(1,1,(6,(rp...],0),0lrp,Cv...),(ap...))] ,Stack66) : skip
EXIT reduce(1,1,(6...7,(...),((4,(seatence,(np...),(vp...0},000)
calt p-0C{(4,(sentence,(2p...],(vp...)),0)],(p,with], Stackb6)
CiLL pC4,[4,(sentence,(ap...],(vp...]1],0],(p,vit2],Stack6?)
EIIT pCa.(4...,0...0, 007, (p.with] 4, (sentence...],00])
EXIT p.oCll4...3),0...1,0(7,[p,witk] ,4,(sentance...],0]])
EXIT pC12,013...0},0...0,0(7.(p.witk] 4, ,(sentence...]),0]])
EIIT p.0CCCt2...1),C...},C(7,(p,vith]}, 4, (sentence...],0)])
CALL merge_stack((7,(p,vith], 16,(2p...]1...1,
({7,{p,with] 4, (sentencs...),0)),5tack62)
EXIIT merge _stack([7,{p,vitd], 16...3,0(7,(p,vit2),4...]],
({7, {p,witr), [16...],0¢...11)
EXIT pQ16,(16...3,0...],007,(p,witx),(16...),04...01])
EIIT p.oCll18...2),L...3,0L7,(p,witn) , (16...],04...10D)

EXIT p(6,(6,{a0na,door),1...),0...3,0C7,(p,vith), (26...0,(s...22])
EXIT p.0C((8,(noua,door].1...1,C...0,C07, Cp.with], (16...1,C4...10])
CALL s_oc[[cruux.y].xtd.z.lrcp] :m. -.1,04...11),0) ,Stacks)
CiALL $C6,(6,{n0un,key),1...),0],5tackst)

CiLL reduca(1,5,(1,(det,a),7...],({a0an,door]}]),Stack82)

EIIT reduce(1,5,{1...3,(...),((14,(02p,(det,a),[...17,7,(p,¥ith]...1])

CiLL $.0C((14,(np,(det,a],(...1),7,(p,with)...1],(),Stackst)

CiLL $(14,014,op...),7,(p,with], (16...],04...3),(],Stacks3)

CALL reduce(1,10,[7,(p,wita],(16...],{4...1),(np...]],S5tacksd)

CiLL reduce(0,50,({16...],04...]],C{p,with),{zp...)],5tacksd)

CiLL re(10,([18...],[4...73,{[p,with]),[np...]], ,Stackeq)

CALL ppClie...3,((16...1,04...1), Cpp.[p...), (ap...1],Stackae)

CiLL pp€16,(16...],(pp...] ,Stack8s)

EIIT pp€i6,018...],(pp...),([12,(pp...],16...3DD

CiLL ppC¢{],[(4...1],(pp...],5tackss)

CiLL pple,(4...),(pp...).Stacks?)

EIIT ppCe,(s..., (pp... 0. 008, (pp...].,4...0])

EIIT . ppel...],CC16...7,(4...03,0...0,(022...0,(8...]D)

EXIT reduce(1,10,(7...1,0...],0{12...]1,(8...1D)

CALL $.0C((12...1,08...3),(),Stacxs® o

CiLL $€12,(12,{pp...],16...), () ,Stacks8) : sxip

EXIT $(12,0122...1,(...1,
((seatence,(ap...],(vp,(v...],(ap,{ap...],Cpp... 10D

CiLL $(8,(8,0pp...7.4...].0.5tack89) : skip

EXIT $¢s,08,0pp...1,4...1,00,

((sextexce,(sentence,(ap...],(vp...]],(pp...01])

4 The Results of an Experiment

We used a Sun-3/260 workstation and GHC. The CFG grammar rules are shown in appendix B.
Sample sentences to be parsed are:

1. I open the window.

2. Diagram is an augmented grammar.
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3. The structural relations are holding among constituents.
4. It is not tied to a particular domain of applications.
5. Diagram analyzes all of the basic kinds of phrases and sentences.

6. This paper presents an explanatory overview of a large and complex grammar that is used in
a sentence.

7. The annotations provide important information for other parts of the system that interpret
the expression in the context of a dialogue.

8. For every expression it analyzes, diagram provides an annotated description of the structural
relations holding among its constituents.

9. Procedures can also assign scores to an analysis, rating some applications of a rule as probable

or as unlikely.

The elapsed time of parsing is shown in fig.4.

Sentence No. | Time (ms) | Number of Tree

1 280 2

2 180 1

3 680 15
4 940 14
5 2600 30
6 4420 56
7 27340 192
8 40760 200
9 5600 186

fig.4 : elapsed time of parsing

5 Conclusion

It is a straightforward task for us to implement PGLR parser in GHC. The reason is that GHC has
a very good mechanism for synchronization of processes. The significant feature of PGLR is that
each entry of LR table is regarded as a process which handles shift and reduce operations. When
a conflict occurs in an entry of LR table, the corresponding parsing process activates two or more
subprocesses which run in parallel and simulate breadth first strategy. Each subprocess is given a
stack information by the parent process.

The experiment has revealed that PGLR runs so fast that it will be a promising parser for processing
many complex natural language sentences.

However, PGLR has many problems to be solved. For example, (1) How to handle gaps and idioms?
(2) How to integrate syntactic and semantic processing? (3) Is there a good algorithm to distribute
many processes among limited number of processors?

As the PGLR explained in this paper strictly scans input words from left to right, the number of
processes which run in parallel will be limited in nature. It is valuable for us to look for better
algorithm which enables us to extract more parallelism.
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Appendix A : Definition of merge_stack Process

meergestacks([ ].Stacks NStacks):- true |
NStacks = Stacks.
merge stacks(Stacks,[ | NStacks):. true |
NStacks = Stacks.
merge stacks([Stack|Rest],Stacks, NStacks):- trye |
merge.stack(Stack,Stacks NStacksl),
merge.stacks(Rest,NStacksl NStacks).
merge stack(Stack,[ ] NStacks):- true |

NStacks

= [Stack).

merge stack((S,T,St|Stackl)[[S,T.52|Stack?2]|Rest].NStacks): integer(S1) |
merge.stackl([S1|Stackl]),(S2{Stack?2).Stack3),
NStacks = {{S,T|Stack3}|Rest].

otherwise.
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merge . stack([S,T,S1|Stackl],[[S.T.52|Stack?2]|Rest] NStacks): true |
merge.stack2([S1|Stackl],[S2]Stack2],5tack3).
NStacks = [[S.T|Stack3]|Rest].

merge stack{Stack,[Stackl|Rest],NStacks):- true |
merge.stack({ Stack,Rest NStackst).
NStack = [Stackl | NStacksl].

merge stackl(Stackl, [S2|Stack2],Stackd): integer(S2) |
Stackd=[Stackl.[S2|Stack2]].

otherwise.

merge stackl{Stackl, Stack2,5tack3):- true |

Stack3=(Stackl |Stack2].

merge stack2(Stackl,[S2|Stack2),Stackd ) integer(S2) |
Stack3={[S2|Stack?]|Stackl].

otherwise.

merge stack2(Stackl,Stack2,Stack3d):- true |
merge(Stackl, Stack2, Stackd).

Appendix B : Grammar Rules

advp — adv.

advp — p,sdec.

ncomp — vp2.

necomp == ncomp,pp.
modalp — modal,nt.

vpd — nt,vpd.

vp2 — v.

vp2 — vp2,advp.

gerund — nt,vp.

PP — P.np.parscon;),np.
anx — bep.

adjp — adj.

adjp — adjp.paraconj.adjp.
pred — np.

pred — pred,pp.

nomhd — v,nomhd.

ddet — nt,all.

ddet — nt,all.det.

vp — v,p,advp.

vp — v,adjp.

vp — v,sdec.

vp — v,0bj,adjp.

vp — v,0bj,advp.

vp — vp,advp.

sdec — subj,adv,vp.

sdec — subj,adv.auxd,vp.
sdec — subj,bep,adv,pred.
sdec — subj,aux,bep,pred.

sdec — subj,aux,adv,bep,adv,pred.

sdec — subj,adv, be.

sdec — sdec,comma,vp3.

np — nomhd.

np — a,nomhd,ncomp.

np — a,ncomp.

np — pron.

np — ddet,adjp,nomhd,ncomp.
np — gerund.

np — relpro,sdec.

sentence — sdec.

sentence — pp,camma,sentence.

stel — relpro.bep,pred.

advp — as.advp,ascomp.
ncomp — pp.

ncomp == srel.

ncomp — infinitrel.

vpd = vp.

infiniteel — vp.

vp2 = v,advp.

vp2 — vp2,pp.

pp — p,obj.

bep — be.

aux — modalp.

adjp — ddet,adj.

adjp = adv,adjp.

pred — pp.

nomhd — n.

ddet — det.

ddet — all det.

obj — np.

vp — v.advp.

vp — Vv,vp.

vp — v,np,relpro,sdec.

vp — v,obj,vp.

vp — v.obj,be,pred.

vp — vp,paracon],adjp.
sdec — subj,auxd,vp.
sdec — subj,adv,auxd,adv,vp.
sdec — subj,adv,bep,pred.
sdec — subj,aux,bep,adv,pred.
sdec — subj,adv,aux,be.
sdec — subj,be.

sdec — sdec,advp.

np — nomhd,ncomp.

np — ddet,nomhd.

np — ddet.

np — pron,ncomp.

np — ddet,adjp,ncomp.
np — as.adj.of.np.

np — np,paracon},np.
sentence — sdec,paraconj,sdec.
sentence — sdvp,comma, sentence.
scel — subj,vp2.
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advp — as,advp.

ncomp — of.np.

ncomp — adjp.

modalp = modal.

vpd — pred.

infinitrel — be,vp.

vp2 — v,adjp.

gerund — vp.

pp — p.np.ofinp.

bep — be.nt.

auxd — aux.

adjp — as.adjp.

pred — adjp.

pred — vp2.

nomhd — adjp,nomhd.
ddet — all.

ddet — all,of det.

vp = V.

vp — v.np.

vp — v,0bj.

vp — v,relpro,sdec.

vp — v,advp,obj.

vp — VP,pp.

sdec — subj,vp.

sdec — subj,auxd.adv.vp.
sdec — subj,bep,pred.
sdec — subj.adv.,bep.adv,pred.
sdec — subj,aux,adv,bep.pred.
sdec — subj,aux,be.

sdec — vpd,comma.sdec.
sdec — sdec,comma.advp.
np — a,nomhd.

np — ddet,nomhd,ncomp.
np — ddet,ncomp.

np — ddet,adjp,nomhd.
np — det,gerund.

np — as,adj,np.

np — np,comma,np.

sentence — sdec,comma,paraconj,sdec.

stel — relpro,vp.
subj — np.




