Processing Left Extraposition in a Bottom-Up
Parsing System

Satoshi Kinoshita Hozumi Tanaka

Summary. In English, relative clauses and Wh-questions are con-
structed by left extraposition. In trace theory, we consider the phrase
structure of the embedded sentence to be invariant, since an empty
constituent called trace is supposed to occupy the gap made by this
extraposition. In this paper, we propose a grammar formalism for deal-
ing with left extraposition in a clear and concise manner. In addition,
we describe an efficient bottom-up parsing system that uses a grammar
written in the suggested formalism.

1 Introduction

A definite clause grammar (DCG) is a grammar formalism for natural language,
which is implemented, for example, in DEC-10 Prolog and C-Prolog [5]. The DCG
is an extension of a context free grammar (CFG), and a DCG can be transformed
directly into a Prolog program which works as a top-down parsing system. However,
the derived program cannot deal with left recursive rules, since they may cause an
infinite loop. To solve this problem, a parsing system called a bottom-up parser
(BUP), embedded in Prolog, was developed by Matsumoto et al. [2,3].

Using BUP, we have been developing a middle scale English grammar which
consists of about 400 DCG rules [8]. However, as the number of rules increased, the
grammar gradually lost its readability, and the management became very difficult.
This led us to develop a grammar formalism, an extension of DCG.

There is an important linguistic phenomenon called left extraposition which has
been investigated in transformational grammars. Roughly speaking, left extrapo-
sition occurs when a sub-constituent of some constituent in a sentence moves to
its left. This movement can been seen in constructions such as relative clauses
and Wh-questions in English and other Indo-European languages. In the trace
theory, an empty constituent called irace is proposed to occupy the gap made by
the movement.

If one writes a grammar in DCG, one must write rules for every possible phrase
structure. However, if a parsing system can search for a trace made by left extra-
position, the number of syntactic categories and grammar rules are significantly
reduced, compared to the equivalent grammar in the DCG form, and the readabil-
ity of the grammar is also improved. Hereafter, we call this framework for writing
grammar the trace searching approach, and syntactic analysis using a grammar in
the framework syntactic analysis with left extraposition.

Copyright © 1990 by Academic Press, Inc. and

61 Iwanami Shoten, Publishers.
All rights of reproduction in any form reserved.

ISBN 0-12-037102-2




62 Advances in Software Science and Technology 2, 1990

np np
det noun srel det noun srel
relpro s’ relpro s
np \,m' np vp
pron v pron v np
the man that she loves the san that  she loves [tracel

(a) The structure when we do not considera trace  (b) The structure when we take a trace into acount

Fig. 1 Phrase structure trees of a noun phrase.

This paper presents a new grammar formalism for the trace searching approach
called extraposition grammar with slash category (XGS) that enables us to write
a grammar more clearly than DCG. In this framework, since the parsing system
searches a trace automatically, users need not write any rule for a structure made
by the extraposition. Moreover, we discuss the problem of bottom-up parsing using
an XGS, and propose an efficient bottom-up parsing system for it.

2 Left Extraposition and Grammar Formalisms

2.1 Left Extraposition

In English, left extraposition occurs in constructions such as relative clauses and
Wh-questions. In the case of relative clauses, a noun phrase is moved from inside
the embedded sentence to the position preceeding it, and usually appears as a
relative pronoun at that position. So, compared to a complete declarative sentence,
the structure of the embedded sentence of a relative clause lacks one noun phrase.

For example, consider the phrase structure of the noun phrase “the man that she
loves.” Without taking a trace into account, its phrase structure could be described
as in Fig. 1(a), since the embedded sentence “she loves” and its verb phrase “loves”
lack one noun phrase, the categories are named s’ and vp' to distinguish them from
a complete sentence and a verb phrase. However, assuming a trace, it could be
described as in Fig. 1(b), the structure of the embedded sentence does not change
because the trace is in the position of the extraposed noun phrase. So, the category
s can be used not only for a complete declarative sentence but also for the embedded
sentence of a relative clause. This means that no additional rule is necessary for
parsing the embedded sentence. As a result, we could keep the grammar clear and
readable.




Processing Left Extraposition 63

——> np, vp. s —=> np, vp'.
——> np, modalp, vp. s —-> np, modalp, vp'.
s —-> np, bep, adjp. :
: vp! ——> vt.
np —-—> pron. vp! ——> vt, np.
np —-—> det, noun. vp/ ——> vi, p.
vp —-—> vt,np. (o)
vp —-> vt, np, np.
vp ——> Vi, p, np.
(a)
np —-—> det, noun, srel. (1) s —=> vp.
srel —-—> relpro, s’ (2) s~ modalp, vp.
s —-—> bep, adjp.

(b)
(d)

L
4

Fig. 2 Sample grammar description using a DCG.

&

2.2 Limitation of DCG

Before proposing the new grammar formalism, we point out the problem of the
grammar description in a DCG. DCG lacks a meclfanism to treat left extraposition
generally. For example, suppose there is a DCG, shown in Fig. 2(a), for parsing a
basic declarative sentence, and extend the grammar for parsing a relative clause.

At first, rules (1), (2) and so on, are added to the grammar as described in
Fig. 2(b): rule (1) is for a noun phrase with a relative clause, and rule (2) for the
relative clause. Note that the category s’ is introduced for the embedded sentences
to capture the fact that they lack one noun phrase compared to the declarative
sentences. As a next step, rules for the category s' are added. If the noun phrase
at the object position is extraposed, a new category vp' is added for an incomplete
transitive verb phrase, and grammar rules for s’ and vp' in Fig. 2(c) are described
by refering to the rules for s and vp respectively. Furthermore, if the noun phrase
at the subject position is extraposed, the rules in Fig. 2(d) are added.

Thus, it is necessary to introduce additional categories such as s’ and vp' and to
write rules, because DCG lacks a mechanism to treat left extraposition generally.
This generalization is important for maintaining the clarity and readability of a
grammar. That is, if a grammar formalism -has this mechanism, those additional
categories and rules are not necessary. '




64 Advances in Software Science and Technology 2, 1990

2.3 XGS (Extraposition Grammar with Slash Category)

As shown in Fig. 1(b), taking a trace into account, one could assign the category s
to the embedded sentence of a relative clause, because left extraposition does not
change the phrase structure. That is, if a parsing system can search for a trace
and find one, one need not introduce additional grammatical categories nor write
grammar rules for them. For this reason, we call this type of grammar description
the trace searching approach.

Recently, some grammar formalisms based on this approach have been investi-
gated. An extraposition grammar (XG) [6,7] is an extension of the DCG formalism
in which one can write a grammar for treating left extraposition with fewer rules
than in DCG. However, since some XG rules have 2 non-terminals on their left-
hand side, the grammar is difficult to read. Solving this problem is one of our main
objectives in designing a new formalism. A generalized phrase structure grammar
(GPSG) is also a grammar that falls into the trace searching type [1]. In GPSG, a
grammatical category is defined as a feature set, and a special feature called slash
denotes a category that involves a trace. Also, a grammar is defined as a set of var-
ious kinds of rules. The most interesting point is that the rules for relative clauses
and interrogative sentences are generated from the rules for a basic declarative
sentence by using the rules called meta-rules.

Here we propose a new grammar formalism, called extraposition grammar with
slash category (XGS), which is an extension of the DCG; it maintains the readabil-
ity of a CFG, and enables us to write grammar rules elegantly for left extraposition.

Recall the example in the previous section, in which a grammar fragment shown
in Fig. 2(a) is given for analyzing a declarative sentence. In DCG, it is necessary
to add rules which are shown in Figs. 2(b), 2(c) and 2(d), to analyze a relative
clause. In XGS, however, one has only to add the following rules:

np ——> det, noun, srel../np. (3)
srel ——> relpro, s. (4)

The symbol “../” (called slash) in rule (3) is “syntactic sugar” which is added to
a DCG, and the category following the slash is called a slash category. A compound
non-terminal “a../b” denotes a trace in the phrase structure of the category a,
which is of the slash category b. For example, “srel../np” in rule (3) means that
there is a category np in the relative sentence srel that dominates a trace. Figure 3
illustrates an expected parse tree using rules (3) and (4): the compound non-
terminal “srel. ./np” and the slash category that dominates the trace are connected
by an arrow. This connection is called the correspondence between a slash category
and a trace. Note that by taking a trace into account, the category of the embedded
sentence of a relative clause can be regarded as s.

There is a constraint in making a correspondence between a slash category and
a trace. For example, the following sentence is ungrammatical [6].

*The mouse that the cat that chased likes fish squeaks. (5)

In a transformational grammar, this ungrammaticality is explained by the
ROSS’s complex-NP constraint that forbids a noun phrase, say NP1, to be ex-




Processing Left Extraposition 65

np

M\
det noun srel../np
relpro s
/\
np vp :
, /N
pron v np
the Ban that  she loves [trace]

Fig. 3 Correspondence between a slash category and a trace.

traposed from a relative clause that dominates NP1 to the outside' of the noun
phrase that dominates the relative clause.

However, by making the correspondence shown in Fig. 4, it is possible to parse
the sentence without any problem. This is because the grammar cannot designate
a region where the parsing system searches for a trace. To make an appropriate
correspondence, 2 symbols “(” and “)” are introduced. They are called open and
close respectively, following (7).} Then, rule (3) could be rewritten as:

np ——> det, noun, (srel."./np). (6)

With this modification, parsing a sentence that violates the complex-NP con-
straint is prohibited, because a trace in the structure of srel can only correspond
to the slash category np.

3 BUP-XG — Bottom-Up Parser for an XGS

This section presents an efficient bottom-up parser for an XGS, called BUP-XG, an
extension of the BUP. Before its explanation, we will briefly describe the top-down
parsing for an XGS.

! In XG, the complex-NP constraint is described as the following:

np ——> det, noun, srel.

srel ——> open, rel.marker, s, close.
open ... close ——> [].

rel_marker ... trace ——> rel_pronoun.




66 Advances in Software Science and Technology 2, 1990

np
dgt noun

relpro

det  noun srel../np

relpro s

-- that the cat that ([trace] chased [trace]l likes --

Fig. 4 [Illegal sentence that violates the complex-NP constraint.

np ——> det, noun, srel../np. (7)
np ——> pronoun.

srel ——> relpro, s.

s ——> np, vp.

vp ——> vt, np.

Fig. 5 A sample XGS.

3.1 Top-Down Parsing for an XGS

Given a grammar in a “trace searching approach”, the parser must search for a trace
and find one if it exists. What mechanism is necessary to realize this function?

In an X@G, a stack is used for the trace search control. This could be applicable
to a top-down parser for an XGS: pushing a slash category onto the stack triggers
the search for a trace, and it is popped from the stack when the corresponding
trace is found.

For example, let us analyze the noun phrase “the man that she loves” using the
XGS fragment shown in Fig. 5.

First, using rule (7), the first two words of the phrase (“the” and “man”) are
recognized as a determiner and a noun, respectively, and then the next sub-goal
is srel../np. At this point, the category np that should directly dominate a trace
in srel is pushed onto the stack, and top-down analysis for srel is activated. This
operation is illustrated in Fig. 6(a). During the analysis of srel, the system fails to
find a noun phrase for the object. So, it pops the pushed category from the stack,
realizes that a trace has been found, and terminates the analysis for np (Fig. 6(b)).

This process of the analysis corresponds to the one realized by the “Hold-
Unhold” mechanism for the Hold register that is used in an ATN for the analysis of
relative clauses [10]. That is, pushing a slash category np onto a stack corresponds




Processing Left Extraposition 67

np np
-"‘_\ M\
A\) »
det noun srel det noun /srel\
relpro S
"" /“\
pron v np
\ [ ] - [
the 0an that  she Toves the aan that  she loves (trace)
(a) np is pushed onto the stack, (b) np is popped from the stack,
and the analysis of srel starts. and the analysis of np succeeds.

Fig. 6 The expected analysis by the top-down approach.

to setting information of a noun phrase to the Hold register. Also, popping the
data and terminating the analysis successfully corresponds to resetting the register.

In top-down analysis, the system can predict the position of a trace fairly well
because:

1. The trace search is activated by pushing a slash category onto the stack.
Therefore, searching is executed during the analysis for a category that should
have a trace.

2. It is obvious when the system pops a category that dominates a trace from
the stack: i.e., a slash category, say X, can only be popped when the system
fails to find the constituent for the category X.

Thus, the top-down analysis seems more efficient than the naive bottom-up
analysis. However, there are still essential problems with the top-down approach,
such as left recursive rules.

3.2 A Problem of Bottom-Up Parsing for an XGS

One problem that occurs when using naive bottom-up parsing employing an XGS
is that it is not obvious when the parser should pop the category from the stack.
Since the parser cannot see a trace in the object string, it must predict the existence
of a trace at every point between words whenever the stack holds a slash category.
Since the analysis based on this prediction fails in most cases, the parsing is very
inefficient. This is because the bottom-up parser does not predict any category to
analyze next.




68 Advances in Software Science and Technology 2, 1990

3.3 BUP-XG

A bottom-up parser embedded in Prolog (BUP) utilizes a bottom-up parsing algo-
rithm with top-down prediction. Utilizing this prediction, the problem that occurs
in naive bottom-up parsing in XGS is resolved.

3.3.1 Brief Introduction of BUP

In the BUP system, grammar rules and a lexicon are described in the form of DCG.
The BUP translator transforms them into Prolog clauses, called BUP clauses.

For example, the grammar fragment in Fig. 7(a) is transformed into the Prolog
clauses in Fig. 7(b): clause (gl) is the BUP clause for rule (G1), and clauses (d1)
and (d2) are for lexical entries (D1) and (D2). Furthermore, some Prolog clauses
called link clauses and termination clauses are generated as a result of this trans-
formation. These Prolog clauses work as a bottom-up and depth-first parser.

The predicate goal which appears in clause (gl) is defined as in Fig. 8. This
predicate mainly controls the bottom-up parsing. When it is activated with an
input string SO and a goal (an expected category for the string) G, the system first
consults the dictionary and obtains a non-terminal symbol of the first word in the
input string. Next it checks the “reachability” from the obtained category C to the
current goal G using a link clause, and finally calls the goal whose predicate name
is the obtained category. If the obtained category C is identical with the goal G,
the termination clause terminates the process for the goal.

For example, parsing the input string “john walks” as a sentence is activated
by a Prolog goal:

?— goal(s, -, [john,walks], [ ]).

Then the non-terminal np is obtained as a category for “john.” After the

s ——> np, Vp. (G1)
np ——> [john). (D1)
vp ——> [walks]. (D2)

(a) A sample DCG
np(G,[ |,I) ——> {link(s,G)},

goal(vp, ),
Gyl ). (e1)

dict(np,[ ]) ——> [john]. (d1)

dict(vp,| ]) ——> [walks]. (d2)

link(np,s).

link(X,X).

s(s,A,A,S,S).

np(np,A,A,S,S).

vp(vp,A,A,S,S).

(b) BUP clauses

Fig. 7 A sample transformation by the BUP translator.




Processing Left Extraposition 69

goal(G,A,S0,S) :-
dict(C,CARG,S0,S1),
link(C,G),
P =.. [C,G,CARG,A,S1,S],
call(P).

Fig. 8 Definition of goal clause (partial).

reachability test, the BUP clause (gl) is invoked. After another reachability test,
the new sub-goal to analyze the rest of the input string as vp is invoked. This
is a top-down expectation, meaning that if the system finds the left-most non-
termninal of the right-hand side of a DCG rule, the rest of the string is expected
to be recognized as a sequence of other non-terminals of the rule. Thus, BUP
parses an input string in a bottom-up and depth-first manner with the top-down
expectation.

3.3.2 The Parsing Mechanism of BUP-XG
(A) Pushing a Slash Category onto the Stack

Utilizing the top-down expectation of BUP, BUP-XG pushes a slash category onto
the stack: when a non-terminal, say a../b, is expected as a sub-goal, the slash
category b is pushed onto the stack. However, there is one difference from the top-
down approach. In BUP, since the left-most non-terminal of the right-hand side of
a DCG rule is used as a key for bottom-up parsing, the top-down expectation is not
carried out for the non-terminal. So, even if the left-most non-terminal has a slash
category, the BUP-XG parser cannot push it onto the stack. This is a limitation
of BUP-XG.

(B) Removing a Slash Category from the Stack

As described in Section 3.2, no useful information for the pop operation is given in
naive bottom-up parsing. So, whenever the stack holds a slash category, the parser
executes a pop operation, but the analysis, in most cases, ends in vain. However,
in BUP-XG, since the top-down expectations are available, the prediction of the
trace position is more accurate, and the number of unsuccessful analyses decreases.

In BUP-XG, there are two cases in which the parser removes a slash'category
from the stack. The first is when the category which is expected as the current
sub-goal is on the stack top. In this case, the parser pops it up from the stack and
terminates the analysis of the sub-goal immediately; this is just the same as in the
top-down approach. The second is when the reachability between the category of
the stack top and the current goal of analysis is attained. In this case, the parser
pops the slash category, and activates a BUP clause whose predicate name is the
category. These stack operations are implemented with a slight extension of BUP.
This will be described in Section 4.3.




70 Advances in Software Science and Technology 2, 1990

(C) Parsing Example of BUP-XG

We briefly explain here the parsing process of BUP-XG by tracing the analysis of
the noun phrase “the man that loves her.” We use the grammar shown in Fig. 5
(assuming that the stack is already implemented).

1. The analysis is activated by a Prolog call:
?7- goal(np, X, [the,man,that,loves,her],[ ]).

According to its definition, the system first uses dict clauses, and gets the cat-
egory det for the first word “the,” and then the BUP clause that corresponds
to rule (7) is activated.

2. A moun is expected as the next category, and the goal is satisfied by finding
the word “man.” The slash category np is pushed onto the stack, and the
analysis for the relative clause begins.

3. By consulting the dictionary, the parser gets the category relpro for “that,”
and, using rule (8), the analysis for a sentence is activated.

4. By consulting the dictionary again, the category for “loves” is found to be vt.
Since no sentence which begins with a verb can be derived, the reachability
test fails, and the parser gives up the analysis of the sentence (Fig. 9(a)).
However, since the reachability holds between the category np, which is at
the stack top, and the current goal s, the parser pops the category from the
stack, and, at this moment, supposes the existence of a trace and a noun
phrase that dominates it (Fig. 9(b)). Then the BUP clause whose head is np
is selected for the next execution.

5. The rest of the input string “loves her” is analyzed normally as a verb phrase
(vp), and the analyses of s, srel, and np terminate successfully.

/Inp\ " /lip\ LJ

det noun srel det noun srel
relpro s relpro S
vt np
the san that  loves her the aan that {tracel loves her
(a) No reachability found from vtto s (b) Pops np from the stack

Fig. 9 The expected analysis by BUP-XG.




Processing Left Extraposition 71

4 Implementation

4.1 Stack
In BUP-XG, the stack is represented as the following structure:

x( category, argument, xlist ).

where category is a slash category of the stack top; argumentis the list of arguments
that are attached to the category; zlist is the remainder of the stack. Also, an empty
stack is represented by [ ]. If the current stack is bound to a variable X, the result
of pushing the slash category np onto the stack is represented by “x(np,| ],X).”

Furthermore, the parser must be able to check and modify the state of the
stack throughout the parsing process. This is realized in just the same way as the
differential list of a DCG: 2 variables, called stack variables, are added to every
non-terminal of an XGS rule for passing the state of the stack.

For example, the XGS rule

s——>np, vp, pp. (8)
is transformed into the DCG rule
s(X0,X3)——>np(X0,X1), vp(X1,X2), pp(X2,X3). (9)

by the BUP-XG translator, where the first argument of every non-terminal (e.g., X0
for s) represents the stack’s state before the analysis and the second one represents
the stack after the analysis.

4.2 BUP-XG Translator

As described in Section 3.3, the BUP translator transforms the DCG rules into
Prolog clauses, called BUP clauses. In addition to that, the BUP-XG translator

adds the stack variables to every non-terminal, as described above. For example,
the XGS rule

S'—"—>npa vp, Pp.
is transformed into

np(G,[ ],I,X0,X1,XR) ——> {link(s,G)},
goal x(vp,[ ],X1,X2),
goal x(pp,[ ],X2,X3),
s(G,[ ],1,X0,X3,XR).
which is called BUP-XG clause. Note that the variables X0, X1, X2 and X3
correspond to the ones which appear in rule (9).> Also, the newly introduced

variable XR holds the final condition of the stack, which is usually given at the
beginning of parsing.

? Some readers may wonder whether the initial stack, which is bound to the variable X0, is
neccessary in bottom-up parsing. This variable appears in the head and the final predicate of
a BUP-XG clause. This is necessary for analyzing a coordinate structure which is described by
a CFG rule like “vp ——> vp, conj, vp.” See Section 5.1 for details.




72 Advances in Software Science and Technology 2, 1990

In transformation of an XGS rule with a slash category, the translator embeds
the stack operation into its BUP-XG clause. For example, the XGS rule

np—-—>det, noun, srel../np.

is transformed into

det(G,[ ],1,X0,X1,XR) ——> {link(np,G)},
goal x(noun,| ],X1,X2),
goal x(srel,[ |,x(np,[ ],X2),X3),
{depth_check(X2,X3)},
np(G,[ ],1,X0,X3,XR).

where the underlined part denotes the operation of pushing the slash category np to
the stack. Note that the translator also added the Prolog literal “depth_check(X2,
X3).” This predicate checks whether the pushed category np is used during the
analysis of srel by comparing the depth of the stacks before and after its analysis.

Furthermore, the translator has to treat an XGS rule with open and close
symbols. The following is an example of such an XGS rule:

np——>det, noun, (srel../np).

To satisfy the complex-NP constraint, the parser should not make a correspondence
between a trace which appears inside srel and another slash category. Here is the
result of this transformation:

det(G,[ ],1,X0,X1,XR) ——> {link(np,G)},
goal_x(noun,[ |,X1,X2),

goal x(srel,| ],X(Ilp,[ LLD.LD,
np(G,[ ],1,X0,X2,XR).

To prevent an illegal correspondence, the parser has to clear the stack for an oper-
ation of open, push the slash category, and start the analysis of srel. These stack
operations are embedded as the underlined zlist. Note also that the returning stack
must be empty, and, in this case, we need not to add the Prolog literal depth_check.
Finally, if the analysis of srel succeeds, the parser restores its previous state to the
stack.

4.3 Modification of Predicate goal

Figure 10 shows a part of the definition of the predicate goal.z. This predicate
mainly controls the bottom-up parsing, like the predicate goalin the BUP system.
Since this first argument G is a goal category, clause (10) succeeds if the goal
category and the stack top are the same. Its fourth argument X0 denotes that
the stack top is removed from the stack. In the case of clause (11), the system
checks the reachability from the stack top category C to the current goal G, and,
if it succeeds, it removes the category from the stack, and calls the goal whose
predicate name is C.




Processing Left Extraposition 73

goal x(G,GARG,x(G,GARG,X0),X0,A,S,S). (10)
goal x(G,A,X0,X,S0,5) :-

X0 = x(C,CARGX1),

C\== G,

link(C,G),

P =.. [C,G,CARG,A,X0,X1,X,S0,9],

call(P). (11)

Fig. 10 Definition of goal_x clause (partial).

5 Appraisal of the BUP-XG System

5.1 Description of an English Grammar in XGS

We have developed an English grammar in XGS, which is equivalent to an English
grammar consisting of about 400 DCG rules. Table 1 shows the numbers of the
grammar rules in DCG and XGS. The number of the XGS rules is about 30% less:
a sharp drop in the number of the rules for Yes-No questions contributed to this.

Using XGS, the rules for Wh-questions and passive sentences can be described
in the following ways.

swhq ——> whnq, sq../obj.
sdec ——> subj, bep, vp../obj.

Furthermore, some Yes-No questions which begin with a modal auxiliary, a tense
auxiliary, or “to be” can be described as follows.

sq ——> mopdalp, sdec. ./modalp.
sq ——> bep, sdec. ./bep.

Here, let us discuss the problem of analyzing a coordinate structure in a relative
clause. For example, the sentence

She is the girl that I love but you dislike.
has the coordinate structure of the embedded sentences. Even if the XGS rule

srel——>relpro, sdec, conj, sdec. ~ (12)

Tbale 1 Comparison of the grammar size.

Purpose of rules | (1) DCG | (2) XGS [ difference

(1)-(2)
yes-no questions 72 7 65
verb phrases 54 46 8

relative clauses 15 7 8

Total 383 268 115




74 Advances in Software Science and Technology 2, 1990

is applied, the parser cannot analyze the sentence properly, because the slash cat-
egory, which is pushed before the analysis of srel, is popped during the analysis of
the first embeded sentence “I love,” and the analysis of the second fails.

To solve this problem, the stack must be reset to the previous state before
the parser begins to analyze the second embeded sentence. That is, the BUP-XG
clause for rule (12) must be as follows:

relpro(G,| ],[,X0,X1,XR) ——> {link(srel,G)},
goal x(sdec,| ],X1,X2),
goal x(conj,[ ],X2,X3),
goal x(sdec,| ],X1,X2),
srel(G,[ ],1,X0,X3,XR).

Currently, special notation is introduced to describe the stack variables explicitly,
and the XGS rule can be described as

srel[X0,X3] = relpo[X0,X1], sdec(X1,X2], conj[X2,X3], sdec[X1,X2].

5.2 Experiment of Syntactic Analysis

Currently, the BUP-XG system is integrated into LangLAB (A Natural Language
Analysis System) [9], and the optimization for the BUP-XG clauses realized more
efficient parsing than the original version. Figure 11 shows an example of syntactic
analysis by the BUP-XG system. In the parse tree, you can find the symbol “t”
circled, denoting a trace.

Here we discuss the parsing time of BUP and BUP-XG. Table 2 shows the result
of the analysis by both systems (See Appendix for sample sentences). Because it
searches for a trace during parsing, BUP-XG is expected to need more parsing time
than BUP. But the result shows that the BUP-XG is as fast as BUP, and up to 6
times faster. The result also shows that, the longer the input sentence is and the
more syntactic ambiguity there is, the larger the difference between parse times
becomes.

Table 2 Comparison of parse time.

BUP BUP-XG
Sentence | Number | Number of | Parse time | Number of | Parse time
number | of words | parse trees (sec) parse trees (sec)
1 4 1 1.29 1 1.24
2 ) 1 0.69 1 0.80
3 7 2 3.13 2 2.66
4 10 1 4.97 1 4.13
5 11 2 11.86 2 5.63
6 18 1 18.21 2 8.92
7 21 5 112.50 5 27.07
8 19 1 23.49 1 11.61
9 20 6 61.49 2 11.09




Processing Left Extraposition 75

Input sentences
this is the man that she loves .

No. 1 time : 267 msec
|-sentence

| -sdec
| |-sd
I |=np
| I l-detp
| | | -det
| | | -demo
| | |-this
| | -bp
| |-tensed_be
| | -be_comp
| | -bep
| | I-be
| | |~1is
| I~pred
| |~np
| |-detp
| I I-det
| | |-art
| I |-the
1 | ~nomhd
| I I-n
| | | -man
| | -ncomp_t
| |~srel
| |-relpro
| I I-that
| |-sd
| [-np
| | I-ppron
| | | -she
| | -vp
] |-tensed_v
| | -v_comp
| |=v
I 1 I=~love
| | |-suffix -- es
| e
| -period
I-.
> total time : 617 msec
> tree : 1
> wf_goal : 17
> wf_dict : 10
> fail goal : 61

Fig. 11 A sample parsing tree.

6 Conclusions

In this paper, we proposed a new grammar formalism called XGS, an extension
of DCG. This formalism enables us to describe a grammar rule for dealing with
left extraposition in a very natural and clear manner. Using XGS, we developed
an English grammar with about 30% fewer rules than the equivalent grammar in
the DCG formalism. Next, we proposed an efficient bottom-up parser for XGS.
Although the bottom-up parsing with a trace search has been considered to be in-
efficient, this problem is resolved by utilizing the top-down expectation mechanism
of BUP.

Finally, the trace search mechanism of BUP-XG provides a device for referring




76 Advances in Software Science and Technology 2, 1990

the information of a noun preceeding the relative clause in the analysis of the
embedded sentence. This idea is applied to the semantic analysis of Japanese [4].

References
[1] Gazder, G., Klein, E., Pullum, G. K. and Sag, I. A. : Generalized Phrase Structure
Grammar, Oxford, Basil Blackwell, 1985.

[2] Matsumoto, Y., Tanaka, H., Hirakawa, H., Miyoshi, H. and Yasukawa, H. : BUP:
A Bottom-Up Parser Embeded in Prolog, New Generation Computing, Vol. 1, No. 2
(1983), pp. 145-158.

(3] Matsumoto, Y., Kiyono, M., Tanaka, H. : Facilities of the BUP Parsing System,
in Dahl, V. and Saint-Dizier, P. (eds.) Natural Language Understanding and Logic
Programming, Elsevier Science Publishers B. V. (North Holland), 1985, pp. 97-106.

[4] Okumura, M. : An Implementation of Top-Down Information Passing on BUP Sys-
tem, Trans. Inf. Proc. Soc. Japan, Vol. 29, No. 11, 1988 (in Japanese).

[5] Pereira, F. and Warren, D. : Definite Clause Grammar for Language Analysis — A
Survey of the Formalism and a Comparison with Augmented Transition Networks,
Artif. Intell., Vol. 13 (1980), pp. 231-278.

(6] Pereira, F. : Extraposition Grammar, Am. J. Comput. Linguist., Vol. 7, No. 4 (1981),
pp. 243-256.

[7] Pereira, F. : Logic for Natural Language Analysis, Technical Note 275, SRI Interna-
tional, 1983.

[8] Tanaka, H., Takakura, S. and Konno, S. : The Development of an English Grammar
on BUP System, Proc. of Logic Programming Conference ’84, 1984 (in Japanese).

[9] Tokunaga, T., Iwayama, M., Tanaka, H. and Kamiwaki, T. : LangLAB: A Natural
Language Analysis System, Proc. of COLING 88, 1988, pp. 655-660.

[10] Winograd, T. : Language as a Cognitive Process, Vol. 1: Syntaz, Addison-Wesley,
1983.

Appendix. Sample Sentences
1. T open the window.
. Diagram is an augmented grammar.
. The structural relations are holding among constituents.

2

3

4. It is not tied to a particular domain of applications.

5. Diagram analyzes all of the basic kinds of phrases and sentences.
6

. This paper presents an explanatory overview of a large and complex grammar
that is used in a sentence. '

7. The annotations provide important information for other parts of the system
that interpret the expression in the context of a dialogue.

8. For every expression it analyzes, Diagram provides an annotated description
of the structural relations holding among its constituents.

9. Procedures can also assign scores to an analysis, relating some applications
of a rule as probable or as unlikely.




Processing Left Extraposition

Initially published in “Computer Software”, Vol. 3, No. 2, in Japanese.

Satoshi Kinoshita

Tokyo Institute of Technology

Department of Computer Science
Oookayama 2-12-1

Meguro-ku, Tokyo

152 Japan

Present address: Toshiba Corp. R&D Center
1 Komukai-Toshiba-cho

Saiwai-ku, Kawasaki-shi

210 Japan

Hozumi Tanaka

Tokyo Institute of Technology
Department of Computer Science
Oookayama 2-12-1

Meguro-ku Tokyo

152 Japan

77




