An Implementation of Incremental Disambiguation
with Conceptual Hierarchy

Thanaruk Theeramunkong
Hozumi Tanaka

Manabu Okumura

Department of Computer Science,
Tokyo Institute of Technology
2-12-1, O-okayama, Meguro-ku, Tokyo 152, Japan
Tel. (03)726-1111 (Ext. 4175)
E-mail {ping,dora,tanaka}@cs.titech.ac.jp

Abstract

Word scnse ambiguity is one of the most important problems of natural language scimantic interpre-

tation. In traditioual method. there is a combinatorial explosion problem due to the fact that the

propriety of cach word sense of an ambiguous word is independently checked with each word seuse of

other ambiguous words during the disambiguation process. In this paper, we describe au “incremen-

tal semantic disambiguation’ model which uses two representations called “generalized discrimination
network [Okumura et al.. 1990] and *bit-vector-formed conceptual hierarchy represeutation’. By these
representations, word seuses of an ambignous word are represented iu the expression that can be used
immediately in disambiguation process by not individualizing these word senses. Consequently. the
complexity in semantic disambiguation process is improved. independent. of the number of word senses

of a word. Operations for the disambignation process in our model are simply equivalent to OR. oper-

ation. Finally. we introduce the tree-like representation to compact the bit vector style representation.

Then. the reduction rate of space using the compaction is evaluated.

1 Introduction

The meaning of a word is ambiguous because it can-
not be uniquely determined uuless the information
of other parts in the sentence is obtained. There are
three roughly-classified classes of word sense ambi-
guities that oceur in natural language. We define
words that hiave many coucepts. called polysemy. to
be the first kind of them. It includes words such
as bank (river bauk. mouney bank. sequence bauk).
The second one is called homonymy. This includes
words that have various meanings (views) but the
same superficial word (such as. children (for one’s
own children or general children)). The last one is
the kind of underspecific ambiguity where some kinds
of information (more details) are not defined. such
as. "human’ has more general meaning than ‘man’
and will be restricted to "man’ when there is some
information showing that "human’ is male.

79

There are currently incremental style and non-
incremental style for resolving word sense ambiguity.
In noun-incremental style, the meanings of words in
the sentence are determined at the end of the sen-
tence. However. when the sentence is long. this strat-
egy is impracticable because it will encounter a com-
binatorial explosion. In incremental style. towards
the first and second ambiguity. [Hirst. 1987].[Hirst
and Words. 1988] had suggested ‘Polaroid words’
that represent all word senses in list-like represen-
tation. Then wheu some information is obtained. all
word senses in the list will be examined aud the -
proper ones will be eliminated. This method is the
incremental disambiguation process. liowever there
arc enormous checks in the process of ambiguity reso-
lution. For cxample. between two words. the number
of checks is the product of the number of word senses
of tliese two words and betwcen three words. the
number of checks in the worst casc is the product of

the muuber of word senses of these thiree words. and
30 on. Thercfore. this method is incflicient because
of the large compntational complexity. Towards the
third ambiguity. [Sowa. 1984] had suggested concep-
tual graph (that is canonical) formation rule for re-
stricting the coucept to more specific oue.

Towards the above mentioned problem. we pro-
pose our computational model based on "incremental
disambiguation” [Mellish. 1985]) where the process is
considered to be the immediate refincment of am-
biguous results of semantic processing by uewly ob-
tained constraints. In onr model. two representations
called generalized discrimination network (GDN for
short) [Okumura et al. 1990] and bit vector rep-
resentation that characterizes conceptual hierarchy
(CH-representing bit vector for short) are used to
thie semantic disambiguation process inore efficient.

In the generalized discrimination network. which
15 the exteusion of a discrimination network to deal
with an a priori-fixed order problem{Okumura et
al.. 1990]. semautic disambiguation process cau be
equated with the downward traversal of the network.
Indeterminates which represent word sense ambigu-
ities of words were introduced in this model. When
some more information is obtained, the meanings of
word will be incrementally determined. The indeter-
minates are not the list-like representation by enu-
meration. but are represented as the states in the
generalized discrimination network. The merit of
this network is that instead of selection through a sct
of multiple candidate word seuses (a linear search)
that takes time O(n) (n is the munber of candidate
word senses), the discrimination network’s search al-
gorithm (downward traversal in the network) takes
time O(l). where 1is the height of the tree. roughly
equivalent to logn. The generalized discriniination
network is used to represent word sense ambiguity
for "verb” in our model. Here. the selectional restric-
tions on surface cases. such as subject(S). object(O).
prepositions like "with’. "to” and so on. are used as
constraints on the arcs of the network.

We introduce bit vector expression that is suffi-
cient enough to characterize concepts (word senses).
especially noun. in conceptual hierarchy. In gen-
eral, word sense ambignities of a word. polysemy.
homonymy and underspecific ambiguity. are repre-
seuted by a bit vector in our model. By this bit vec-
tor. this ambiguous word (bit vector) can be resolved
to be less ambiguons by using the AND operator.
We will describe semantic disambiguation in detail
in next section. To be mentioned later, the number
of bits in a bit vector is equivalent to the number of

80

concepts in a conceptual hierarchy. Therefore. when
the number of concepts is large. the long bit vector
is not appropriate to be implemented. We introduce
the tree-like representation to compact the bit vec-
tor. Then. we evaluate the reduction rate of space
after the compaction to tree-like representation.

Using generalized discrimination network for
‘'verb” and conceptual hierarchy for ‘noun’. it is not
necessary to check cach of the word senses of “verb’
with each of the word seuses of ‘noun’ but only to
check satisfaction between thie GDN of ‘verb' and
tlie bit-vector-formed representation of moun’. The
complexity beconies independent of the number of
word senses but linearly relative to the number of
words.

2 Word sense Ambiguity in
Conceptual Hierarchy

In this paper. we use conceptual hierarchy based on
the superordinate/subordinate relation to represent .
ambiguities (especially of noun) that occur in nat-
ural language. Conceptual hicrarchy refered in this
paper is the isa relation of ‘noun’ where relations be-
tween concepts are defined in the ralated way. There
are also many rescarches concerned conceptual hi-
erarchy. especially for noun. such as [Tanaka and
Nishina. 1987]. [Ishizaki ¢t al.. 1987]. [Nirenburg and
Raskin. 1987]. [Isahara and Ishizaki. 1990]. How-
ever. in those researches. the way to tackle word
sense ambiguity in the semantic disambiguation pro-
cess is not described. In this section. we show lexical
ambiguities expressed in conceptual hierarchy and
we will show liow it can be used in semantic disam-
biguation in the section 4.

There are many sources of word sense ambiguities
in natural language. We roughly classified them into
three kinds of ambiguities. The part of conceptual
hicrarchy has been shown iu figure 1. Homonymy
refers to words whose various definitions are unre-
lated. such as "bank™ has at least three meanings
(‘river bauk’. ‘moncy bank’ and -sequence bank’).
Polysemy refers to words whose several meanings are
related but in different views[Tokuunaga et al.. 1989].
For example. there are several views of ‘money bank’.
such as place’. "building’. "organization’. and so on.
Underspecific ambiguity refers to words which will be
restricted to the more specific ones when some infor-
mation is obtained. eg. "place’ is restricted to ‘river
bank’ when information like "a place near river' is
acquired. All of these kinds of ambiguities are repre-

thing

sequence_bank woney_hank

river_bank bridge animal

Figure 1: A part of conceptual hierarchy

sented in CH. For example. word "bank”s ambiguities
are shown in figure 2

thing

sequence

sequence bank money _bank river hank

Figure 2: Word Sense Awmbiguity

3 Generalized Discrimination
Networks

In this section. we describe an incremental disam-
biguation model called “generalized discrimination
network’ that is proposed in [Okwmnura et al.. 1990).
This model is used for representing “verh” ambigui-
ties. The incremental disambiguation process is con-
sidered to be the refinement of ambiguous (unde-
termined) results of semantic processing by newly
obtained coustraints. The semantic disambiguation
process can be equated with the downward traversal
of a discrimination network [Charniak et al.. 1980).
However. for a discrimination nctwork, it cannot
be traversed unless constraints are entered in an a

81

priori-fixed order. Towards this point. the general-
ized discrimination network is proposed in [Okumura
et al.. 1990]. This method can traverse the discrimi-
nation network according to the order in which con-
straints arc obtained incrementally during the ana-
lytical process. This order is independent of the a
priori-fixed order of the network. This wmethod is
based on the notion of constraint logic programming
and is implemented by extended nnification.

In (Okumura et al.. 1990). generalized discrimina-
tion network is used to represent semantic ambigu-
ity of ‘verb” where the newly obtained constraints
are the selectional restrictions on surface cases such
as subject(S). object(O). prepositions like *with'. “to’
and s0 on. The GDN for the verb "check’ is shown
in figure 3.

check

checkl check2 checkd choeck4 .

Figure 3: An example of the generalized discrimina-
tion network of word ‘check’

4 Semantic Disambiguation

with CH and GDN

*Verh' awbiguity resolution information is repre-
sented in the form of GDN while ‘noun’ information
is represented in the form of graph (a part of concep-
tual hierarchy). Seclectional restrictions that are the
constraiuts (arcs) in GDN are also represented in the
form of a part of conceptual hicarchy. The process
of semantic disambiguation with CH aund GDN oc-
curs by unifying constraints in GDN and input ‘noun’
occurrence to the result graph. If the result graph
is null. the constraint is not satisfied. otherwise the
constraint is satisfied and "noun’ ambiguities are par-
tially resolved to be less ambiguous. The following
example claborates the unification between graphs.

|
|
:

Suppose that "I check the bank.” is currently ana-
lyzed. Here. chieck” and “bauk” arc ambiguous. The
case of ‘bauk’ in this sentence is ~object’. ~Object’
coustraints in GDN of ‘check” are "human’. "abstract
thing’ and speed’. Unification between these three
constainuts and ‘bank’ acts as the disambiguation pro-
cess. When unification of a constraint witl “bank’
produces a result graph that is not null. this con-
straiut satisfies restriction in GDN and word “bank’
is resolved to be less ambiguons. Figure 4 shows the
unification between abstract thing” and ‘bank’ and
the result of the unification (less ambignous *bank’).

sequence

sequence_bank money_bank river_bank
: Mapping
thing
ab_tidug

ng

sequence rganization

sequence_bank money_bauk

Figure 4: Graph unification as ambiguity resolution

As described. in the traditional method. the mean-
ings of words in the sentence are determined by
checking all of the possible combinations of word
senses. However. when the number of words that are
used to determine word sense of the word. are large.
it causes combinatorial explosion. Sewmantic disam-

82

biguation process of our model. can be viewed as the
transaction between two word represcutations. GDN
and CH. Since all of ambiguities are not individu-
alized but integrated into one expression. the cowm-
plexity of our model is independent of the nunber
of word senses i1 words but linearly relative to the
number of words. That is, the complexity is O(NV)
wlien Vs the muuber of words. This shows that our
mode] Las less complexity than the previous method
in which complexity is also depeudent to the number
of word senses in words.

5 Bit Vector Representation
and Operations

In this section. we describe the way to represent CH
by bit vector! that can characterize CH graph. Am-
biguous word caun be represented by ORing the bit
vector of a set of concepts that the word means. The
unification between ambiginous words as semauntic
disambiguation correspouds to AND operation be-
tween the bit vector of those words.

5.1 Linearly ordered relation

Conceptual hierarcly is a set of upper/lower relation
between any two nodes. This relation is partial or-
der < relation. To assigu a bit vector to any concept,
we find < relation called lincar order of CH by sup-
posing that if a < b then a < b. The algorithmn to
find linear order is called topological sorting al-
gorithm [Kolman and C.Bushy. 1987]. For instance.
topological sorting of CH in the figure 1 is shown in
figure 6. After sorting linear order of CH. we assign
a bit vector of a concept by using the algorithm in
figure 5 and then the result is showu in figure 6.

Councept's flag and concept’s identifier are used
to represent any one coucept in CH. Concept’s flag
points the bit that represents that coucept. as con-
cept’y identifier shiows the relation between that con-
cept and other concepts. Note that if coucept a has
upper/lower relation with concept b. the bit repre-
senting concept b in identifier of concept a is 1. oth-
erwise 0.

5.2 Representation of word sense am-
biguities

Let W| be an ambiguous word that has two possi-

ble concepts, C,.Cs. Let BI(C;) and BI(C,) be

lyeries of 0 and 1

‘l—.‘;s’za%.v.:. .
o

Marking Identifier Algorithm :

1. Using the topological sorted order to wmark the
uuique flag to any one concept. mark the small-
est flag to the top concept and next bigger flag
to the next concept and so on as shown in figure
6

2. Find concept identifier by ORing that concept’s
flag with its subordinate concepts’ flags and
its precedence coucepts’ flags. The example
identifiers are shown in figure 6.

Figure 5: Marking identifier algorithun

No. coucepts flag identifier
1 thing 1 111111111111111
2 | con.thing 10 1001111111111
3 | living.thing 100 11111
4 | human 1000 1
5 [auimal 10000 10111
6 [building_thing 100000 1000101100011
7 | building 1000000 1100011
8 place 10000000 1001110000011
9 | bridge 100000000 110100011
10 | river.bauk 1000000000 1010100011
11 | ab_thing 10000000000 111110000000001
12 | organization 100000000000 1110000000001
13 | money._bank 1000000000000 1110010100011
14 | sequeuce 10000000000000 | 110010000000001
15 | sequence.bauk | 100000000000000 110010000000001

Figure 6: Au Augmented Topological Sorting

the bit vector ideutifiers of Cy and Cy respectively.
Let BF(C,} and BF(C,) be the bit vector flags of
C; and C; that are derived by the algorithm shown
in figure 5. respectively. The bit vector identifier
and flag of word . WI; and WF;, are calculated by
ORing BI(Cy) with BI(Cy). BI(C;) V BI(C;) and
ORing BF(C,) with BF(C,). BF(C,)VBF(C3). re-
spectively. For example. "bank’ in figure 2 has three
concepts (money_bauk. river_bank. sequence_bank).
So the identifier and flag of the word ‘bank’ can
be calculated by ORing the identifiers and flags of
money_bank. river_bank and sequence.bank. Here.
the ideutifier and the flag is *1111111010100011" and
101001000000000". respectively.

5.3 Operations on concept bit vectors
for Semantic Disambiguation
In this subsection. semautic disambiguation with bit

vector represeutation is decribed. Suppose that there
is a 'verb’ generalized discrimination network G and

83

a concept, C, is being checked; satisfaction with con-
straints in the GDN. The disambiguation algorithm
is shown in the figure 7

Disambiguation Algorithm :

1. Choose a constraint. Con. from generalized dis-
crimination network G.

2. Suppose the constraint identifier of Con is
BI(Con) and the identifier and flag of the
concept. C are BI(C) and BF(C). respec-
tively. Make ANDiug BI(Con) aud BI(C) and
ANDing BI(Con) aud BF(C) and let the re-
sult identifier and flag be BRI(Con.C) and
BRF(Con.C). respectively.

3. If BRF(Con.C) is 0. that means coustraint sat-
isfaction fails. then goto uext step otherwise the
concept C satisfies the constraint and the con-
cept ambiguity is resolved to bhe BRI(Con.C).

4. repeat 1. until no coustraint left in G.

Figure 7: Disambiguation algorithm

For instance. the analyzed sentence is 'I check the
bank’. Onc of the ‘object’ constraints of “check’ is
‘place’. Aftcr ANDing the identifiers and flags of the
two concepts, "place” and "bauk’ in figure 6. the result
identifier obtained by ANDing 1001110000011 and
'111111010100011" is *001001010000011°. Likewise.
the result flag obtained by ANDing *1001110000011°
and *101001000000000° is *001001000000000°. Here.
because the result flag is not 0, the word *bank’ that
is ambiguous satisfies this constraint ‘place’ and can
be bounded to be less ambiguous. Note that 14th
bit that represents ‘bank3’ disappears. That means
that ‘bank3’ does not satisfy the constraint ‘place’.

6 Tree-like Bit Vector Repre-
sentation

In the previous subscction. we described about how
to assign bit vector to represent a concept in CH.
Here. the number of bits in one concept’s identifier
is the number of concepts in CH. In general. the
number of concepts in CH is linge. so it’s not effi-
ciency to use this common bit vector representation.
because it will be such a long vector. Here. we in-
troduce the idea of tree representation by converting
the long bit vector to the tree-like representation by

the algorithm that is shown in figure 8.

Converting to Tree-like Representation

1. Divide long bit vector into 8-bit groups from
right to left and let it be Oth level. (n = 0)

2. For each group frow right to left do
If there are all 0's in a group. then compact them
to ‘0" in the n+1th level else compact thew to
‘1" in the nu41th level. Sce example in figure 9.

3. From (3) we obtain the u+1th level bit vector. if
the number of bits in n+1th level are less than 8
then stop. clse Divide the n+1th level bit vector
into 8-bit groups frow right to left and let n =
n+1 and then goto 2

Figure 8: Bit vector to Tree-like representation Al-
goritlun

0 1 level 1
hwman 000000 000001111 level O

Figure 9: Tree-like representation of “human’

In figure 9. the tree-like representation of “human’
is shown. Since there aren’t many concepts in CH.
there are only two levels in this case. However, when
the number of concepts in CH is large. there will be
many levels in tree-like representation. For example.
figure 10 shows 3 levels of tree-like representation. In
tree-like representation. ouly non-zero 8-bit vectors
are accumulated. A zero 8-bit vector is represented
by one 0 in the higher level. such as in figure 10. 0 in
level 1 represents a zero 8-bit vector in level 0, etc.

Therefore. the space used in this representation
decreases. Here. we use ouly 7 bytes (56 bits) to
represent this concept, in the other haud. 82 bytes (
8% bits = 512 bits) are necessary used to represent
for common bit vector representation case. Here, the
more there are 0's in the bit vector. the less number
of bits are used. In the general case. almost all bit
in identifier bit vector are 0's.

84

level 2

0001900

level 1

Fuoonmol Iwonmnol|1uon1ouo|—[moomool level 0

Figure 10: An example of Tree-like representation

7 Operation on Tree-like Rep-
resentation

The operation in the tree-like representation is sim-
ilar to the bit vector representation but instead of
one AND operation. the AND operation takes place
in eacl level of tree-like structure from top level to
the lower levels.

The number of calculation that occurs between
coucepts depend on those concept identifiers. How-
ever. in the worst case. when all of bits in the level
1 are 1, there is ouly 14.3 % more calculation than
by long bit vector represcutation. In the best case.
there are only logg N operations necessary. where N
is the number of concepts in CH (the number of bits
in bit vector).

8 Evaluation of Tree-like Rep-
resentation

We have coded concepts in couceptual hierarchy that
consists of 69938 coucepts into tree-like bit vector
style. There are 69938 bits used for a coucept in ex-
perimental CH in the common bit vector represeuta-
tion. Tree-like represcentation makes it realistic and
economic to represent coucepts. The space used in
tree-like representation of experimental CH is shown
in figure 11.)

The maximum space and minimunn space that are
used for representing concepts in experimental CH
are shown in figure 11. The sw of space for rep-
resenting all concepts in experimental CH and the
average space for representing a concept in experi-
mental CH are also shown iu figure 11.

There are just only about 20 bytes (160 bits) used
for one concept’s identifier to be represented and the
depth of this tree-like represcutation is 6. Using tree-
like representation when 0's are in the neighborhood

Maximum 9995 bytes.

Minimum 6 Dbytes.

Sum | 1380056 Dbytes.

Avecrage | 19.7326 bytes.
no.of.concepts 69938 concepts.

Figure 11: space used after compacting bit vector to
tree-like representation

positions we can rcpreseuf by only one ‘0" in the
higher level, so when there arc many 0's in one vector
bit. it looks efficient to use this representation. The
reduction of this conceptual hierarchy indicates that
there are actually many 0'x existing in neighborhood
position in the coucept identifier in experimental CH.

The reduction can be calculated by the ratio be-
tween the number of bits that used in tree-like rep-
resentation and the number of bits that used in com-
mon bit vector. From figure 11. in the worst casc.
our system uses 9995 x 8 (79960) bhits to represent
a concept. In this case. the tree-like representation
uses space 14.33 % more than the common bit vector
representation does. But as average. the space used
in our system is about 0.23 % of that of bit vector
representation.

9 Conclusion

Our model uses two representatiou. GDN is used for
‘verb’ representation. Bit-vector-formed representa-
tion is used for "unoun’ representation. Word senses
of an ambignous word are represented in the expres-
sion that can be used inmmediately in disambiguation
process by not individualizing these word senses. Se-
mantic disambiguation is equated to AND operation
between the bit vector of counstraints in GDN aund
the bit vector of ambiguous words (noun) in CH.
The cowplexity of our model is iudependent. of the
nuiber of word senses of words but linearly relative

to the number of words. Lastly. we introduce tree-

like representation to represent concepts in CH. The
tree-like representation makes it possible to compact
the bit vector and use much less space than the bit
vector representation. Finally. We checked the effi-
ciency of this representation aud found that the used
space was improved.

10 Acknowledgements

I would like to thauk to Takenobu Tokunaga and
all members in Tanaka laboratory who gave many
helpful comments and Amarit Laorakpong. Sura-
pan Meknavin. Suresh Katare Goralrao and Craig
Patrick Hunter who helped with cliecking this paper.

References

[Charniak et al.. 1980] E. Charniak. C.K. Riesbeck.
and D.V. McDerott. Artificial Intelligence Pro-
gremming. Lawrence Erlbaum Associates. 1980.

[Hirst and Words. 1988] G. Resolving Lexical Ambi-
guity Computationally with Spreading Activation
Hirst and Polaroid Words. Lexical Amiguity Res-
olution. Morgan Kaufmaun Publishers. 1988.

(Hirst, 1987) G. Hirst. Semantic Interpretation and
the Resolution of Ambiguity. Studies in Natural

Language Processing. Cambridge University Press.
1987.

[Isahara and Ishizaki, 1990
H. Isahara and H. Ishizaki. Natural language un-

derstanding system with concept hierarchy. In
PRICAI 1990.

[Ishizaki et al.. 1987)
H. Ishizaki. H. Isahara. K. Hashida. K. Uchida,
and S Yokoyama. A method of concept description
for contexual analysis. Japan Information Pro-
cessing Society. SIG Reports. 87-NL-64, 1987. (in
Japanese).

[Kolman and C.Busby. 1987] Bernard Kolman and
Robert C.Busby. Discrete Mathematical Struc-
tures For Computer Science. DPrentice-Hall.luc..
2 edition. 1987.

[Mellish. 1985] C. S. Mellish. Computer Interpreta-
tion. of Natural Language Descriptions. Ellis Hor-
wood. 1985.

[Nirenburg and Raskin. 1987}
S. Nirenburg and V. Raskin. The subworld con-
cept lexicon and the lexicon management systen.
Computational Linguistics. 13(3-4):276- 289. 1987,

[Okumura et al.. 1990] M. Okumura. M. Surapan.
and H. Tanaka. Towards incremental disambigua-
tion with a gencralized discrimination network. In
AAAL 8 1990.

