IN0EEA TR P2 SMAL (H50E)

11—-4

Direct ID/LP Parsing with a Generalized Discrimination Network

Surapant Meknavin®

Manabﬁ Okumura

Hozumi Tanaka

Tokyo Institute of Technology

We present a new parsing method using ID/LP rules directly without transforming to
context-free grammar rules. The method regards parsing as traversal of the generalized
discrimination networks and represents the parsing process as states in the networks. We
also optimize LP rules checking so that it can be checked efficiently in constant time.

1 Introduction

It is widely admitted that variations of word order
in natural languages are governed by generalizations
that should be expressed by the grammars. Gener-
alized Phrase Structure Grammars(GPSG)|3] pro-
vide a method to account for these generalizations
by decomposing the grammar rules to Immediate
Dominance(ID) rules and Linear Precedence(LP)
rules. One alternative for parsing is to compile
ID/LP rules into another grammar description lan-
guage, e.g. Context-Free Grammars, for which
there exist parsing algorithms. These approaches
lacks of the naturalness, especially for “free word
order language”, in the sense that they do not take
the languages’ generalizations in the grammars into
account while parsing. Another set of approaches
try to parse by using ID/LP rules as they are with-
out transforming to other formalisms. Barton[l]
showed that Shieber’s direct parsing algorithm(5]
usually does have a time advantage over the use of
Earley’s algorithm|2] on the expanded CFG. Thus
the direct parsing strategy appeals to be an inter-
esting candidate for parsing with ID/LP rules from
the computational and natural viewpoint.

However, Shieber’s algorithm may still suffer from
the combinatorial explosion of the number of inter-
mediate states while parsing. Although this cannot
be avoided because of the NP-complete character-
istic inherent in the problem, it does not preclude
algorithms with better average performance. We
could search for more efficient algorithm that can
(1) further pack the states or (2) reduce the time
used in other organizations of parsing process as
much as possible. In this paper, we present an ef-
ficient method for direct ID/LP rules parsing that
provides the desirable properties for both aspects
above.

2 ID Rules as Generalized Dis-
crimination Networks

In fact, the reason why Shieber’s algorithm wins
over parsing on expanded CFG is mainly by the
virtue of the multiset representation of the states
that can reduce the number of intermediate states
drastically in average cases. The multiset represen-
tation in Shieber’s algorithm saves a lot by keep-
ing many possibilities unexpanded in its general-
ized dotted rule. In this section, we present the
method that can further save more with its com-
pact rule representation as generalized discrimina-
tion networks{4].

Given a set of constraints defining a concept, une
can build a corresponding discrimination network
used to check the concept efficiently. Considering
the ID rules with the same LHS element as a set of
constraints to construct that constituent structure,
we can thus represent such a set as a discrimina-
tion network by viewing each element in RHS of
an ID rule as an arc in the network. Represent-
ing such rules by a discrimination network has the
merits that we can use the states in the network
to track the progress of parsing and this can delay
rules expansion as by using Shieber’s data struc-
ture. Moreover, common elements of different rules
can be merged into one arc in the network. This
yields more compact rules representation and the
wasteful recomputation can be avoided.

However, the discrimination network has a prob-
lem in that it cannot be traversed unless constraints
are entered in an a priori fixed order, and thus may
be in trouble with order-free constraints of ID rules.
Okumura(1990) proposes the method of generalized
discrimination networks, or GDN, to solve the prob-
lems. GDN is a generalization of a discrimination

*Department of Computer Science. 2-12-1, O-okayama. Meguro-ku, Tokyo 152. e-mail surapan@cs.titech.ac.jp

467

i i

"W

w




191 FEA TR ER2EAS (555 E)

s —yp a,bed (1)

s —ip a,bef (2)
a,b,c < d (3)
b < ¢ (4)
a,e < f (5)

Figure 1: An example ID/LP grammar : G,

Figure 2: discrimination network representation of
ID rules

network which can be traversed according to the
order in which constraints are obtained incremen-
tally during the analytical process, independently
of order. Then, parsing process can be viewed as
traversal of the GDN incrementally downward to
the leaf nodes. For example, the ID rules of G,
shown in Figure 2 ,can be represented as the GDN
in Figure 2, of which each node is assigned a unique
identifier. The identifier of a node v is the sequence
S(v), which is the catenation of the sequence S(u)
and the integer k, where u is the immediate prede-
cessor of v and arc u-vis the kth element in the or-
dered set of arcs issuing from u. To each node iden-
tifier, a bit vector is attached which has the same
length as the identifier and consist of 1’s except the
leftmost and rightmost bits. These identifiers to-
gether with their corresponding bit vectors play an
important role in the parsing process with GDN, as
will be described later.

3 LP rules as a Hasse diagram

3.1 Constructing the diagram for a set
of LP constraints

Given a set of LP constraints, we can build the cor-
responding so called ‘Hasse diagram’ to represent

Figure 3: The directed graph representing the
precedence between items

the precedence relation between the relevant items
as follows.

First, we build a directed graph representing
these relations where a node represents an item
and an arc between two nodes represents the prece-
dence between them, with the direction of an arc
goes from lower precedence node to higher one, as
shown in Figure 3. Next, we can simplifiy this graph
into Hasse diagram by deleting unnecessary arcs and
omitting the arrow representing direction. In Fig-
ure 3, we can delete arc b-d because we know that
“<” is a transitive relation, consequently, the exis-
tence of arcs b-c and c-d is enough to imply the arc
b-d. In addition, if we restrict that the direction of
the arrow between nodes always go upward, then we
can omit all the arrows. Finally, assign each node
a unique flag and compute the precedence vector of
each node from the disjunction of that node’s flag
with all of the flags of nodes below it in the diagram.

As for this example, the set of all nodes is
{a,b,c,d,e,f} and we assign to each node as a unique
fAag an integer which has one bit set to ‘1’ and the
rest reset to ‘0'\i.e., flag(a) = 1, flag(b) = 10, ...,
flag(f) = 100000. These flags are then used to com-
pute the precedence vectors of all nodes. The resul-
tant diagram is shown in Figure 4.

3.2 Order legality checking
Algorithm: CheckOrder

Input : Two items, A and B with the precedence
vector Pre4 and Prep respectively, where A is be-
fore B in the input.

1. Take the bitwise disjunction between Pre4 and
Prepg.

2. Check equality: if the result is equal to Pre4,
fail. Otherwise, success and return the result
as the precedence vector of the string AB.

468




19EE AT P2 LBEAS GE5ED

Figure 4: Hasse diagram with the precedence vector
assigned to each node

In real implementation, we can represent a prece-
dence vector by an integer and the order legality
can thus be checked efficiently, in constant time, by
using Boolean bitwise operations between integers
provided in most machines.

4 Compiling the grammar into
the table

GDN can cope with any order of input constraints
by referring to the table of constraint-identifier
which is extracted from the network by collecting
pairs of a branch and its immediate subordinate
node. But, as described, GDN is first proposed to
handle the completely order-free constraint system.
So, in order to apply the model to natural language
parsing where word order is restricted by some lin-
ear precedence constraints, some modifications have
to be done to take those constraints into account.

First, the definition of a state is changed to a
4-tuple (Cat,Id,Pre, BitV) where each element is de-
fined as the following:

Cat : the mother category the state belongs to;

Id : the identifier of the state;

Pre : the precedence vector of the state;

BitV : the bit vector indicating those categories
required to reach the state.

Next, the constraint-identifier table is re-
placed by the category-state table, notated as
table(category, state), viewing each category as a
constraint. Third, for every nonterminal cate-
gories appearing in LHS of some ID rules, we
have to know when the categories are complete
and can be reduced to higher level constituent
states. So the state-reduced_state table, notated as
reduce(statel, state2), is also built to serve for this
purpose. A mother category is completed(eg. can

table(a,(s.11,1,00)).
table(b,(s,111,10,010)).
table(c,(s,1111,110,0110)).
table(d,(s,11111,1111,01110)).
table(e,(s,1112,10000,0110)).
table(f,(s,11121,110001,01110)).
reduce((s,11111,_,00000),goal).
reduce((s,11121,.,00000),goal).

Figure 5: Table generated from ID/LP rules : G,

be reduced) just in case the current state is at a leaf
node and all bits of BitV are set to 0.

Figure 5 shows the generated table after compil-
ing G;, written in Prolog syntax. Note that the
special symbol goal is used to represent the state
that the category in the top level will be reduced
to.

5 Direct ID/LP Parsing Algo-
rithm

Given a table T generated from ID/LP grammar
G and an input string s = wyws ... w,, where w;
is a terminal category in G, we construct chart as
follows:

k—0;
while £ < n do begin

1. For all table(C,c), span the inactive edge a
between vertices k and k+1.

Now perform steps (2) and (3) until no new
edges can be added.

2. For each inactive edge § spanned between ver-
tices j and k+1 (j < k+ 1), if reduce(B, ¢) is
an entry in T, span the active edge ¢ between
vertices j and k+1.

3. For each active edge 3 spanned between ver-
tices j and k+1, search for active edge spanned
between vertices 7 and j (i < j). For each one
found, perform the check operation between
the two edges. If success, add the resultant
new edge between vertices ¢ and k+1J.

4. ke—k+1

end;

The string is accepted if and only if there exist
some goal edges spanned between vertices 0 and n
in the chart.

469




191FFEA AP LEAS (B5E)

Here, the check operation between two edges
(states) includes all of the following operations:

operation between Cat : If Cats are the same,
successes and return Cat. Otherwise, fail;

operation between Id : If one Id includes the
other as a prefix-numerical string, return the
longer string. Otherwise, fail;

operation between Pre: As described in Check-
Order algorithm;

operation between BitV : After adjusting the
length of BitVs by attaching 1's to the end
of the shorter vector, return the bit vector for
which each bit is a conjunction of the bits of
two bit vectors.

Example: Suppose we are given the string of
categories b,e,a,f to parse, using grammar in Fig-
ure 2. First, the edge (s,111,10,010) is spanned
between vertices 0 and 1, since the first element
of the string is a b. No more iterations of step
2 and 3 are possible, so we move on to the next
word. After category e is obtained, its correspond-
ing state (s,1112,10000,0110) is then operated with
the state (s,111,10,010). Operation between cat-
egories succeeds because both states have s cate-
gory. Operation between identifiers 111 and 1112
succeeds because 111 is a prefix of 1112, thus 1112
is returned. Operation between precedence values
10 and 10000 also succeeds because the bitwise dis-
junction of them yields 10010 which is not equal to
10. Last, the operation between bit vectors 010 and
0110 returns the result of conjunction between 0100
and 0110 which is thus 0100. So the above oper-
ations yield the resultant state (s,1112,10010,0100)
as the edge spanned between vertices 0 and 2.

Continuing in this manner, we will get
(s,1112,10011,0000) between vertices 0 and 3, and
(s,11121,110011,00000) between vertices 0 and 4.
Because the latter can be reduced to goal state, the
input string is thus accepted. The chart is shown in
Figure 6.

6 Conclusion

The direct parsing method presented here attacks
two points: data compactness and efficient LP con-
straints checking. The former is handled by rep-
resenting ID rules as GDN and the state of the
GDN is then used to track the parsing process. This
can reduce the number of data structures generated
while parsing because we can keep unexpanded until
needed many possibilities of the states at the nodes
below a state. This is similar to the merit of data

~

(s,11121,110011,00000)

4 N

//”

ﬁs 1112,10010,0100)

(s,1112,10011,0000)

(s,111, 8,1112, s, 1112
(s,11,1,00) 110011
10,110) ]10000,0110) 01110)‘
b

Figure 6: Chart of parsing beaf.

structure used by Shieber. Moreover, a GDN is con-
structed regarding with the set of ID rules with the
same LHS, so it can compact RHS elements of the
same form in different rules into one arc in the net-
work. Shieber’s representation, in contrast, consid-
ers each single ID rule seperately and hence cannot
capture this kind of compactness. LP rules checking
is also optimized by compiling to a Hasse diagram
and computing each category’s precedence vector.
The LP constraints are embeded in these vectors
and also propagated with the precedence vector of
the resultant string. These vectors are then used
to check order legality efficiently using machine in-
struction of bitwise operations.

References

(1] Barton, E. On the Complexity of ID/LP Pars-
ing. In Computational Linguistics, pp. 205-218,
October-December 1985.

[2] Earley, J. An Efficient Context-Free Parsing Al-
gorithm, Comm. ACM 13.2:94-102. 1970.

[3] Gazdar, G., E. Klein, G.K. Pullum and I.A. Sag.
Generalized Phrase Structure Grammar. 1985.

Okumura M. and Tanaka H. Towards Incremen-
tal Disambiguation with a Generalized Discrimi-
nation Network. In Proceedings Eighth National
Conference on Artificial Intelligence, pp. 990-
995, 1990.

[4]

(5] Shieber, Stuart M. Direct Parsing of ID/LP
Grammars. Linguistics and Philosophy 7(1984),
. pp. 135-154. 1984.

470




