Direct ID/LP Parsing
with Generalized Discrimination Networks

Surapant Meknavin

Manabu Okumura

Hozumi Tanaka

Department of Computer Science
Tokyo Institute of Technology
2-12-1, O-okayama, Meguro-ku, Tokyo 152, Japan
e-mail surapan@cs.titech.ac.jp

Abstract

We present a new parsing method using ID/LP rules directly without transforming to context-

free grammar rules. The method regards parsing as traversal of the generalized discrimination

networks and represents the parsing process as states in the networks. This can yield more compact
represcntation of parser's state sets compared with the previous methods. We also optimize LP
rules checking by compiling the LP constraints to a Hasse diagram so that it can be checked

efficiently using bitwise operations.

‘1 Introduction

It is widely admitted that variations of word order
in natural languages are governed by generalizations
that should be expressed by the grammars. General-
ized Phrase Structure Grammars(GPSG)[4] provide
a method to account for these generalizations by de-
composing tlie grammar rules to lmmediate Dom-
inance(ID) rules and Linear Precedence(LP) rules.
ID rules just constrain that what constituents may
appear as the daughters within a given coustituent
but. as opposed to conventional rule specification.
coustrain nothing about the order among them. In-
stead. the order constraiuts are specified seperately
in LP rules. Using ID/LP formalism. the flexible
word order languages can be more casily and con-
cisely described. Given 4 set of ID/LP rules, one
alternative for parsing is to compile them into au-
other grammar description language, e.g. Coutext-
Frec Grammars(CFG), for which there exist parsing
algorithmg. However. this approach lacks of the nat-
uraluess, especially for flexible word order language.

16

in the sense that it does not take the language gen-
eralizations in the grammars into account while pars-
ing. Moreover. the object grammar may be so huge
that will cause parsing to take a lot of time. An-
other set of approaches[7. 1] tries to parse by us-
ing ID/LP rules as they are without transforming to
other formalisms. Shicber[7] gives a direct parsing al-
gorithm which is a simple generalization of Earley’s
algorithmf3]. Bartou[2] showed that Shieber's algo-
rithm usually does have a time advantage over the
use of Earley's algorithm on the expanded CFG. Thus
the direct parsing strategy appeals to be an interest-
ing candidate for parsiug with ID/LP rules from the
computational and natural viewpoints.

However, Shieber's aléoritluu may still suffer from
the combinatorial explosion of the nuber of interme-
diate states while parsing. Although this cannot be
avoided because of the NP-complcte characteristic in-
herent in the problem, it does not preclude algorithms
with better average performance. We could search for
more efficient algorithm that can (1) further pack the



states or (2) reduce the time nsed in other organi-
zations of parsing process as much as possible. In
this paper. we present an efficicut method for direct
ID/LP rules parsing that provides the desirable prop-
erties for both aspects above. )

2 ID Rules as Generalized Dis-
crimination -Networks

Iu fact. the reason why Shieber’s algoritlun wins over
parsing on expanded CFG is mainly by virtue of the
multiset representation of the states that can reduce
the number of intermediate states drastically in av-
erage cases. The multiset representation in Shicber’s
algorithm saves a lot by keeping many possibilities
unexpanded in its generalized dotted rule. In this
section. we present the method that can further save
more with its compact rule representation as gener-
alized discrimination networks|[6).

Given a set of constraints defining a concept. oune
can build a corresponding discrimination network
used to check the concept efficicntly. Considering the
ID rules with the same LHS clement as a set of con-
straints to construct that constitueut structure. we
can thus represent such a set as a discrimination net-
work by viewing each clement in RHS of an ID rule
as an arc in the network. Representing such rules by
a discrimination network has the merits that we can
use the states in the network to track the progress of
parsing and this can delay rules expausion as by using
Shieber's data structure. Morecover. since a discrimi-
nation network is constructed regarding with the set
of ID rules with the same LHS. we can also compact
RHS elements of the same form in different rules into
oue arc in the network. Shieber's representation. in
contrast. considers each single ID rule seperately and
hence canunot capture this kind of compactness.

However. the discrimination network lhas a prob-
lem in that it cannot be traversed unless constraints
are entered in an a priori fixed order. and thus may
be in trouble with order-free constraints of ID rules.
Okumura et al.[6] proposes the method of generalized
discrimination networks(GDN) to solve the problems.
GDN is a generalization of a discrimination network

17

s —p a.becd (1)

s = abef (2)
abec < d (3)
b < ¢ (4)

a.e < f (5)

Figure 1: An example ID/LP grammar : G;

which can be traversed according to thie constraints
obtained incrementally during the analytical process.
independently of order. Then. parsing process can be
viewed as traversal of the GDN incrementally down-
ward to the leaf nodes. For example. the ID rules
of Gy. shown in Figure 1 .can be represented as the
GDN in Figure 2. of which each node is assigned a
unique identifier. The leftmost digit of an identifier
of a node » indicates whether the node is a leaf or
not. "0 for being a leaf and "1 for being a non-leaf.
This digit is followed by the sequence S(v). which is
the catenation of the sequence S(u) and the integer &,
wlere u is the iinmediate predecessor of v and arc u-v
is the kth element in the ordered sct of arcs issuing
from u.! Note that the identifier of the root node r
has only the first leftmost digit (S(r) is null).

To each node identifier. a bit vector. which has the
same leugth as the identifier and consists of 1's except
the leftmost and rightmost bits. is attached. These
identifiers together with their corresponding bit vee-
tors play an important role in the parsing process
with GDN., as will be described later.

3 LP rules as a Hasse diagram

3.1 Constructing the diagram for a set
of LP constraints

Given a sct of LP counstraints. we can build the corre-
sponding so called ‘Hasse diagram’ ? to represent the
precedence relation between the relevant symbols as

follows.

1The encoding used here ix a little different from the original
oue in [6].

2Hasse diagrau is a representation of partially ordered set
used in graph theory.



Figure 2: discrimination network represeutation of ID
rules

Figure 3: The directed graph representing the prece-
dence between symbols

18

Figure 4: Hasse diagram with the precedence vector
assigned to each node

First, we build a directed graph representing these
relations where a node represents a symbol and an
arc between two nodes represents the precedence be-
tween them, with the direction of an arc goes from
lower precedence node to higher one, as shown in Fig-
ure 3. Next, we can simplifiy this grapl into Hasse di-
agram by deleting unnccessary arcs and omitting the
arrowheads representing direction. As for Figure 3,
we can delete arc b-d because we know that “<” is
a transitive relation and, consequently. the existence
of arcs b-¢ and c-d is enough to imply the arc b-d.
In addition. becanse we know that the direction of
the arrowheads between nodes always go upward. all |
arrowheads can also be omitted. Finally. assign each
node a unique flag and compute the precedence vector
of each node from the disjunction of that node's flag
with all of the flags of nodes below it in the diagram.

As for this example. the set of all nodes is
{a,b,c,d,e, f } and we assign each node a unique flag
represented as an integer which has one bit set to "1’
and the rest reset to 0" ie.. flag(a) = 1, flag(b) =
10, ..., flag(f) = 100000. These flags are then used
to compute the precedence vectors of all nodes. The
resultant diagram is shown in Figure 4.

3.2 Order legality checking

Now that each node has its corresponding precedence
vector, we can use the vectors to check the order le-




gality betwecn the corresponding symbols easily by
the algorithm below.

Algorithm: CheckOrder

Input : Two symbols. A and B with the precedence
vector Pre4 and Prepg respectively. where A is before
B in the input.

1. Take the bitwise disjunction between Prey and
Prep.

2. Check equality: if the result is equal to Pregy,
fail. Otherwise, return the result as the prece-
dence vector of the string AB.

By the reason that the precedence vector of symbol
A that must precede symbol B always be included in
B’s precedence vector. so. if A comes behind B the
disjunction of their precedence vectors will be equal
to B’s precedence vector. The above algorithm thus
employs this fact to detect the order violation easily.
In real implementation. we can represent a precedence
vector by an integer and the order legality can thus be
checked efficiently in constant time by using Boolcan
bitwise operations betwecn integers provided in most
machines.

4 Compiling the grammar into
the table

GDN can cope with any order of input constraints
by referring to the table of constraint-identifier which
is extracted from the network by collecting pairs of
a branch and its immediate subordinate node. But.
as described. GDN is first proposed to handle the
completely order-frec constraint system. So. in order
to apply the model to natural language parsing where
word order is restricted by some linear precedence
constraints. some modifications have to Le done to
take those constraints into account.

First. the definition of a state is changed to a 4-
tuple (Cet.Id. Pre. BitV) where cach element is defined
as the following:

Cat : the mother category the state belougs to:

Id : the identifier of the state:

19

reduce(a,(s.11.1.00)).
reduce(),(5.111.10.010)).
reduce(e,(s.1111.110.0110)).
reduce(d.(s.01111.1111,01110)).
reduce(e.(s,1112.10000.0110)).
reduce(f.(5.01121,110001.01110)).
reduce(s,goal).

Figure 5: Category-state table generated from ID/LP
rules : G,

Pre : the precedence vector of the state:

BitV : the bit vector of the state.

Next. the GDN's constraint-identifier table is
replaced by the category-state table. notated as
reduce(category. state). viewing cach category as a
constraint. This table will be used when a category
is complete (e.g. the current state is at a leaf node
and all bits of BitV arc set to 0) to rednce it to higher
level coustituent states.

Figure 5 shows the generated table after compiling
G,. Note that the special symbol goal is introduced
for representing the state that the category in the top
level will be reduced to.

5 Direct ID/LP Parsing Algo-
rithm

Using the table gencrated from the ID/LP gram-
mar as above. we can parse the input by the algo-
rithm below. The algorithm is based on chart parsing
method[5]. with slightly modification.

Algorithm

Given a table T generated from ID/LP grammar G
and an input string s = wnyw, ... w,. where w; is a
terminal category in G, we construct chart as follows:

k0
while k < n do begin

1. For all o of reduce(w4y.ct). span the edge a
between vertices & and k+1.




Now perform steps (2) and (3) until no new edges
can be added.

2. For each inactive(complete) edge of category f3
spanued between vertices j and k+1 (j < k+1).
if reduce(f. ¢) is an entry in T. span the edge ¢
between vertices j and k+1.

3. For each active(incomplete) cdge. of category f3
spanned between vertices j and k+1, search for
active cdge spanned between vertices i and j
(i < j). For cach one found, perform the check
operation between the two edges. If this suc-
ceeds. add the resultant new edge between ver-
tices ¢ and k+1.

4 ke—Lk+1

end;

The string is accepted if and only if there exist some
goal edges spanned between vertices 0 and n in the
chart.

Here, the check operation between two edges
(states) includes all of the following operations:

operation between Cats : If Cats are the same
then return Cat. Otherwise. fail;

operation between Ids : If one Id includes the
other as a prefix-numerical string, return the
longer string. Otherwise, fail;

operation between Pres : As described in Check-
Order algorithm;

operation between BitVs : After adjusting the
length of BitVs by attaching 1's to the end of
the shorter vector, return the bit vector of which
each bit is a conjunction of the corresponding
bits of two bit vectors.

The operation between Cats first checks whether
the two states are in the same network. The opera-
tion between Ids then checks whether one node can
be reached from the other in the network. The oper-
ation between Pres tests whether the concatenation
of the edges violates LP constraints and returns the
precedence vector of the successful combined edge as
described in section 4. The operation between BitVs

20

allows us to cope with the free order of constraints.
The bit vector represents all the constraints that must
be satisfied between the root node and the reached
node. A bit of 0 and 1 means that the corresponding
constraint is satisfied and unsatisfied respectively.®
For example. state (5.1112.10000.0110) of table in
Figure 5 represeuts the satisfaction of the constraint
corresponding to the rightmost bit. which is e. By
taking the conjunction of bits of these vectors. bits of
the resultant vector are incrementally changed to 0.
Because the bit coujunction operation is executable
in any order, it is possible to cope with an arbitrary
order of constraints.

The above algorithin is based on the plain bottom-

’ up chart parsing method by the reason of clarity,

though one can add other strategies. e.g. lookahead,
to improve the efficiency of the algorithm.

6 An Example

Suppose we are giveu the string of categories b,e,a.f
to parse, using grammar in Figure 1. First, the edge
(5,111,10,010) is spanned between vertices 0 and 1.
since the first clement of the string is a b. No more
iterations of step 2 and 3 are possible, so we move on
to the next word. After category e is obtained, its
corresponding state (5,1112,10000,0110) is then op-
erated with the state (5,111,10.010). Operation be-
tween categorics succeeds because both states have s
category. Operation between identifiers 111 and 1112
succeeds because 111 is a prefix of 1112, thus 1112
is returned. Operation between precedence values 10
and 10000 also succeeds because the bitwise disjunc-
tion of them yields 10010 which is not equal to 10.
Last, the operation between bit vectors 010 and 0110
returns the result of conjunction hetween 0100 and
0110 which is thus 0100. So the above operations
yield the resultant state (s,1112,10010,0100) as the
edge spanned between vertices 0 and 2.

Coutinuing in this manner, we will get the edges
(5.1112,10011,0000) between vertices 0 and 3, and
(5,01121,110011,00000) between vertices 0 and 4. Be-
cause the latter is a complete edge and then can be re-
duced to goal state, the input string is thus accepted.

3The leftmost bit has no corresponding coustraint and
makes the vector length the same as that of the identifier.




./ (s,01121,110011,00000) \

/ (s,1112,10011,0000) \

ﬂs,1112,1oo1o,o100)
((s 111, (s,1112, ﬂs,ouzi,
(s,11,1,00)] 110011,
10 110) ]10000,0110) ° o113
a f

Figure 6: Chart of parsing beaf.

The chart is shown in Figure 6.

7 Conclusion

The direct. parsing method presented here tackles two
points: data compactness and efficient LP constraints
checking. The former is handled by representing ID
rules as GDN aud the state of the GDN is then used
to track the parsing process. This can reduce the
number of data structures generated while parsing
because we can keep unexpanded until needed many
possibilities of the states at the nodes below a state.
This is similar to the merit of data structure used
by Shieber. However. unlike Shieber's. comuon ele-
ments of different rules can be merged into one arcin
the network. This yields more compact rules repre-
sentation and thus more wasteful recomputation can
be avoided. LP rules checking is also optimized by
compiling to a Hasse diagram and computing each
category's precedence vector. The LP constraints are
embedded in these vectors and also propagated with
the precedence vectors of the resultant strings. These
vectors are then used to check order legality efficicutly
using machiue instruction of bitwisc operations.

Our future works iunclude investigating how the
method works in parsing general granunars and then
improving the deficiencies found.

21

References

"[1] Abramson. H. Mctarules for Efficient Top-down

ID-LP Parsing in Logic Grammars. Technical Re-
port TR-89-11. University of Bristol. Department
of Computer Science, 1989.

(2] Bartou. E. On the Complexity of ID/LP Pars-
ing. In Computational Linguistics. pp. 205-218,
October-December 1985.

(3] Earley. J. An Efficient Context-Free Parsing Al-
gorithm, Comm. ACM 13.2:94-102. 1970.

[4] Gazdar, G.. E. Klein. G.K. Pullum and L.A. Sag.
Generalized Phrase Structure Grammar. 1985.

[5] Kay. M.. Algoritlun Schemata and DataStruc-
tures in Syntactic Processing. Readings in Natural
Language Processing. B. J. Grossz et al. eds. pp.
35-70. 1986.

[6) Okumura M. and Tanaka H. Towards Incremen-
tal Disambiguation with a Geueralized Discrim-
ination Network. In Proceedings Eighth National
Conference on Artificial Intelligence. pp. 990-9935.
1990.

[7] Shieber. Stuart M. Direct Parsing of ID/LP
Grammars. Linguistics end Philosophy T(1984).
pp. 135-154. 1984.



