s

An Architecture for Text Revision

Inui Kentaro, Tokunaga Takenobu, Tanaka Hozumi

Department of Computer Science. Tokyo Institute of Technology
2-12-1 Ookayama Meguro Tokyo 152 Japan
{inui,take,tanaka}@cs.titech.ac.jp

Abstract

In order to generate good text. many kinds of factors should be taken into account.
In order to generate better text. many researchers have spent much time to search for
the architecture which decides the necessary factors in proper order. However, there.
are certain kinds of problems in text which are difficult to detect until the text is
actually generated. These problems can be easily detected and solved by introducing
a revision phase after generation. In this paper. we argue the importance of text
revision with respect to natural language generation. and propose a computational
model of text revision. We also describe an experiniental Japanese text generation
systemn WEIVER, which incorporated a revision module.

1 Introduction

During the course of text generation. many kinds of
decisions should be made. Traditionally. these deci-
stons are classified into two categories; decisions on
what-to-say. that is. the topic selection and the topic
organization, and decisions on how-to-say. that is.
decisions on grammatical choices and lexical choices.
Mauy of the text generation systems proposed so far
make these decisions sequentially in a fixed order.
The order is usually arranged from decisions on what-
to-say to decisions on how-to-say.

Some researchers. however. have claimed these de-
cisions are dependent on each other and the versa-
tile architecture are required to handle these inter-
actions.241% For example, the number of proposi-
tions contained in a sentence is counstrained by both
the rhetorical relations among the propositions and
the complexity of the sentence. The former is the
constraint of what-to-say and the latter is the one
of how-to-say. aud the both are dependent on each
other. Furthermore, within each of them, there are
interactions among decisions.

If one makes decisions sequencially i a fixed or-
der. since the information flow is limited to one direc-
tion. that is from what-to-say to how-to-say. it is diffi-
cult to realize the interactions among the decisions as
mentioned above. Some researchers have developed
devices which allow versatile interactions among de-
cision modules.[**1911] For example. Hovy proposed

an architecture which can decide the order of deci-
sious dynamically during the generation process.!4}

One of the limitations of these approaches is that
the system still must foresee how the current decisions
constrain the subsequent decisions, since the system
does not change the decisions once made. However,
there are certain kinds of problems which are diffi-
cult to find until a text is actually generated. For ex-
ample, one cannot detect ambiguitics of modification
relations between plhrases until s/lhie decides lexical
choice. word order. punctuation and so oun.

This leads us to the idea of revising text once gen-
erated. Mann."l Gabriel® and Shibatal*? partially
incorporated this idea into their systcis. We follow
this line and aim to realize a revision mechanism on
computers which is similar to the one of humans'.
We consider text revision as a process uecessary after
text generation'. Throughout revision process, since
text is always realized. problems such as ambiguities
of modification relations are easy to detect. Further.
by repeating the revise operations, the quality of the
text 1s improved.

The importance of text revision is also supported
by the observation of human writing. From a psy-
cholinguistic viewpoint. Yazdani argued that the
largest part of human text writing is devoted to re-
vision rather than initial generation '3 This is easy
to imagine when we iutrospect oun the way we write
text.

1We call this process initial generation in order to emphasize revision process.

145

2 Introduction to Japanese

For the reader’s convenience in understanding the ex-
amples in this paper, we provide a brief introduction
to Japanese in this section.

A simple Japanese sentence consists of a sequence
of postpositional phrases (PPs) followed by a pred-
icate (a verb or an adjective). A PP consists of a
noun phrase (NP) followed by a postposition which
indicates the case role of the NP. In this case we say
~each NP modifies the predicate” and call NPs the
modifiers and the predicate the modifiee. For exam-
ple. both “AXERIE" and “HFEIC" modify “fEATW
A" in sentence (1). Here, the second line indicates
the translations of NPs and the third line indicates
grammadtical relations.

(1) KBRIZ RFUC EA TV 5.
Taro Tokyo lives.
NOM in

The order of PPs are not strictly fixed. so it is possible
to scramble PPs without changing the meaning of the
sentence. For example, a sentence “HITIC KHRIE
ATV 5" has the same meaning as the sentence (1).
One of the‘important constraints in Japanese is that
no two modification relations cross each other.

When a sentence has only a modifiee, the modifi-
cation relation can be determined uniquely. However
this is not always the case. Sentence (2) is an exam-
ple in which the noun “fEF" is modified by the verb
“F 25TV (departing)”. This is similar to a rela-
tive clause in English. In this example, “®F & (with
Poti)” can modify either &> Tv> ¢ (departing)”or
“R, TV (looked at)”.

(2) KERIZ RFE FoTW fEFE BTV
Taro Poti departing Hanako looked at
NOM with ACC

Depending on which verb the *®KF & (with Poi)"
modifies, this sentence gives two interpretations®:

o Taro looked at (Hanako departing with Poti].
(where " F & modifies “FE 2 TV (")

¢ With Poti, Taro looked at Hanako departing.
(where *&HF &£ modifies "R TV /")

Both the interpretations are equally acceptable. To
determine the correct modification relation is one of
the important goals of natural language understand-
ing. From the viewpoint of natural language genera-

“tion, the goal is to avoid generating such an ambigu-

ous sentence.

3 Why Revision?

Following the previous section. we discuss the deci-
sion order in the generation process and the neces-
sity of revision. In particular. we concentrate on the
problems of Japanese sentences with ambiguous mod-
ification relations.

Consider sentence (2) again. Assume we want to
generate a sentence which has the second meaning,
that is “With Poti. Taro looked at Hanako depart-
ing.” If the generation system would generate the
word ovder of sentence (3) , then “H®F & (with Poti)"
can only modify “&,Tv>7Z (looked at)”. and we would
obtain a desirable sentence. This is becaunse modifiers
can only modify succeeding elements in Japanese.

(3) KERIZ £oTW(fEFE HF L& RTwi
Taro departing Hanako Poti looked at
NOM ACC with
(With Poti. Turo looked at Hanako departing.)

Also the ambiguity of sentence (2) can be solved by
inserting a comma as follows:

(4) KBRiZ BF &, EoTW fET-% RTwia
Taro Poti departing Hanako looked at
NOM with ACC
{ With Poti. Taro looked at Hanako departing.)

Furthermore. this ambiguity never happeus if the sen-
tence is realized with two sentences. That is:

(5) TEFi FoTwol.
Hanako (NOM) depurting
(Hanako was departing.)

ABRI (% RF& RTwr.
Taro (NOM) it (ACC) Poti (with) looked at
(Taro looked at it with Poti.)

From these examples, we can see that there are
several possibilities to avoid ambiguity; proper deci-
sion on word order. lexical choice, punctuation, syn-
tactic structure, and so on. However, it is obviously
impossible to foresee what kind of syntactic structure
will not cause ambiguities before deciding word order
and words. Thus we can find ambiguities of modifi-
cation only after deciding all these factors.

The problems in the length of sentences and in
the depth of embedding are difficult to find before

21t is interesting that English trauslation also causes the ambiguity. We make the difference clear by using brackets and inversion.

146

text is actually realized as well. These two also affect
the quality of the text. The poiut is whatever the
order of the decisions we adopt. there is the possi-
bility that some kinds of problems will still need to
be solved. Seeing only examples like the sentence (3).
one may think that the ambiguity of modification can
be solved by deciding the word order at thie end. How-
ever this strategy does not work due to the following
reasons:

o It is not always possible to find a proper word
order which coes not cause ambiguities.

o Word order should not be decided only with re-
spect to avoiding ambiguities of wmodification.
There are many fctors on deciding word order,
such as old/new information. constraints, focus-
ing constraints and so on.

Even if the system has the ability to decide the
order of decisions dynamically. it does not help these
problems. By introducing the revision process. we
can casily find and solve such kind of problems. In
the next section. we describe our approach in detail.

4 Our approach

We consider text generation as a process consisting
of two phases; tnitial generation followed by revision.
The revision phase solves the problems which are dif-
ficult to consider in initial gencration as we discussed
in section 3.

Figure 1 illustrates our model of text generation.
At the moment we focus on how-to-say issues. so we
assume that the input to the system is a rough rhetor-
ical structure, which we call Pre-rhetorical siructure
(PRS). “Rough™ means that this structure does not
provide the orders among the blocks and the relations
among the blocks can be transformed later. Surfuce
Generator decides on transformations of rhetorical
structure, grammatical choices. lexical choices. and
so on. In the initial generation, Surface Generator
generates a text from the input PRS. We call this
text draft, which means that it may not yet be the
final version because of the problems wentioned in
section 3. Drafts are represented with draft descrip-
tions. each of which consists of a PRS and a syntactic
structure.

The revision process is realized as a repetition
of the rewvision cycle. which consists of evaluation.
planning and surface change. In each revision cycle.
Evaluator first evaluates the current draft description
to detect some problems. Then Planuner selects one

147

of them and suggests a change which will solve the
problem. After plauning. Surface Generator actually
chauges the surface structure according to the gram-
mar. The revision cycle ends when the surface change
succeeds. By repeating revision cycles. the draft de-
scription is gradually improved into the final version

of the text.
| heuristics
Surface
Generator

input granuuar

surface gencration
(change)
histor;
Y/ £ draft
description
PrE- -
. ntact
rhetorical i) i
tructure structure I}”’,

Figure 1

Model of text genecration

Evaluation

There is little research on the evaluation of text from
the viewpoint of natural language generation. Here
we focus on the following problems. as meutioned in
section 3. which are difficult to solve before text is ac-
tually rcalized. We call these problews surface prob-
lems.

ambiguities of modification relations between
phrases

the length of sentences, clauses and phrases

the depth of embedded sentences

center embedding

Planning

In each revision cycle, Planner selects a problem from
thie ones detected by Evaluator. and suggests a change
to solve the problem using heuristics. We call these
Leuristics planning rules. Then Planner sends a mes-
sage which specifies the change to Surface Generator.
When the change can not be realized due to some

reason. for example, due to grammatical constraints.
Surface Generator requests alternatives from Plan-
ner. If Planner cannot suggest alternatives for the
problen, it tries the other problem. During the revi-
sion cycle. Planner manages the history of draft de-
scriptions and changes to them. By monitoring the
history, Planner keeps the revision cycle from falling
into an infinite loop.

This model repeats the revision cycle until text
becomes good enough. Thercfore. even if a surface
change introduces new problems. they can be de-
tected and solved in the subsequent cycles. This
means that Plauner need not consider the side ef-
fects caused by cach change seriously. At this point,
our model is significantly differcut from previous oune-
pass generation models, in which each process has to
foresee the effects of decisions on the subsequent pro-
cesses.

Surface Change

Surface Generator is used both in initial generation
and in revision.
heuristics to make decisions on how-to-say. At any
point in text generation, tliere are several choices to
take, the heuristics put preference on these choices
with tespect to various kinds of resources, such as
syntactic, semantic and pragmatic ones.

In the revision phase, Surface Generator realizes
various kinds of changes on the surface structure.
which are proposed by Plauner. The change also must
satisfy syntactic, semantic and pragmatic constraints.

5 Implementation

The generation model described in the previous sec-
tion has been partially implemented as WeiveR. We
describe some implementation issues of WEIVERIn
this section, in particular. we focus on realization pro-
cess of surface chauge..

5.1 Using Phrasal Lexicon

The generation process can be considered as a set of
decisions, each of which is made at a choice point in a
decision tree. From this point of view, we can regard
a surface change as a change of a decision. So it is
desirable that both grammatical and lexical choices
are described in uniform representation.

In order to fulfill this requirement, we adopt a
phrasal lezicon to represent linguistic knowledge. The

Surface Generator uses a set of -

148

phrasal lexicon integrates the gramumar and the lex-
icon into a unified reprcseutatiou.[9] In addition.
the phrasal lexicon contributes to generating fluent
text.8] We basically follow Jacobs' representation.
which represents the phrasal lexicon as a collection of
PC pairs (Pattern-Concept pairs).s! Each PC pair
defines a mapping from a part of the semantic struc-
ture to syntactic/lexical fragments. and the generator
realize surface sentences by constructing these frag-
ments. Using PC pairs. decisions on how-to-say can
be considered as choices among PC pairs. From the
viewpoint of revision, chauges can be realized as re-
placing PC pairs with alternatives.

CONTEXT: []
MAP-FROM: |
[con:@absorb.
required-slots:[agt:@CO,],
optional-slots:{obj:@heat],
constr:[type:sentence. tense:past] ...],
([con:@CO,, ...|,
[con:@heat, ...]]
MAP-TO: [
[lex: " HRILY 5™,
con:@absorb,
slots:[agt:@CO,. obj:@heat).
constr:[type:scut, tense:past.
pos:V. connect:period] ...].
[con:@CO,.
constr:[pos:ND. case:ga] ...].
[con:@heat,
constr:[pos:NP, case:wo) ...]]

EFFECTS: [...]

Figure 2 An example of extelded PC pair

We made some extensions on PC pairs in order to
realize revision process. Figure 2 shows an example
of our PC pair.

A PC pair cousists of four parts; CONTEXT,
MAP-FROM. MAP-TO and EFFECTS. and defines
a mappiug from the sub tree specified in MAP-FROM
to the sub tree specified in MAP-TO. CONTEXT and
MAP-FROM define the conditions by which to apply
the PC pair. CONTEXT specifies the coustraints on
sub tree which douminates the sub trce specified in
MAP-FROM. The Surface generator can apply a PC
pair, ouly if both CONTEXT and MAP-FROM unify
a subtree of the current structure. EFFECTS defines
the effects which are achieved when the PC pair is
applied, for example, make-it-concise, pronominalize,
make-it-formal, and so forth.

Significant improvements on Jacobs' are as fol-
lows. First, our PC pair maps from tree structures to

tree structures, while Jacobs’ maps conceptual struc- because of the uniform representation. Jacobs® PC

tures to linear strings. If the generator makes many pair is only for single sentence generation.

kinds of decisions on this tree structure. such as lexi-

cal. grammatical aud even textual, it can treat them Secondly. the EFFECT part is nuewly introduced.

in uniform manner. since the result of mapping is al- The EFFECT part enables the system to take into ac-

ways the uniform representation. And the trec struc- count more than semantic constraints. say pragmatic
F tures provide more information for evaluation than constraints, in selecting PC pairs. The EFFECT part

strings do. Furthermore. the generator can easily is also used by Planner to suggest the decisions to be

coustruct the structures larger than a single sentence changed (see the next subsection).

conjunction#1 (a)
arg arg
cricumstance#1 absorb#1
s 1 ag bj
produce#1 cause#l CO2#2 heat#l
obj s n
energy#1 burn#l generate#l
|obj |obj
oil#1 CO#1
PC pai:w(i/ \Pc\pe:ir#m
circumstance#1 (type:sentence) (b) conjunction#1 (¢)
s n (type:segment)
producef1 cause#1 ar g
obj $ n, abs circumstance#1 absorb#1

rb#1
energy#1 burn#l generate# 1(c01m<?ct:ﬁfoun) (type:sentence) (counect:period. type:sentenct)

|obj obj|#y lobj '\
oil#1 CO2#1 heat#1l

Figure 3 Rewrite of Structure

5.2 An Example or “BHET 5 (is generated).™ This gives rise to the
two interpretations: “burning oil causes heat to be
absorbed by CO," aud “buruing oil causes CO; to
be generated.” Pragmatic knowledge 1s necessary to
solve this ambiguity. i.e. to reject the former inter-
pretation. However. readers are likely to believe the
former interpretation before their eyes get to “CO,."
This is similar to the garden-path sentence and brings
the system to the revisiou process. In the following
we demonstrate the revise operatious used to solve
this problem.

In this subsection, we discuss three significant fea-
tures of our method through an example.

Consider draft (1). We assume this draft was gen-
erated from a PRS. Figure 3 (a) is a part of the PRS,
and (b) is an intermediate structure derived from (a)
by applying PC pair#103. These structures corre-
spoud to the first sentence in draft (1).

If we consider only syntactic and scemantic con-
straints in the first sentence. “#L 728 (due to
burning (oil))” can modify either “BiT % (absorb)”

Draft (1)

IANME-OEBBRETIE. AMERPTAO #MERNTE CO.A° RETS.
In producing energy due to burning oil heat absorbing CO, is generated.
(Burning oil to produce energy generates CO; which absorbs heat.)

IANF-OHRIMELEE CO,NRITH #A Ka{%h KEIFLATL
Consuming more energy absorbed by CO2 heat increases temperuture Tises.
(Consuming more energy causes the temperature to rise. because CO; absorbs more heat.)

149

‘Suggesting a choice to change

First, the Plauuner has to suggest an appropriate
change and send the message to Surface Generator.
In this example, the planning rule below is applied.

IF a modifier X can modify two verbs V,
followed by V,, and X intends to modify
V,. and V; modifies a noun N. THEN re-
move the PC pair which makes the sub
tree whose root correspouds to Vi be a
modifier of N.

Generally. the plauning rules suggests PC pairs to be
removed or replaced in terms of the features specified

Draft (2)

in “constr” slots of PC pairs. Then Planner searches
for the PC pair to be changed in the PC pair his-
tory. PC pair listory iy the history of the PC pairs
which are used in the last revision cycle. Assume PC
pair#103 specifies the value of the feature “counect™
of absorb#1 to “noun”. which means absorb#1 should
modify a noun. Siuce PC pair#103 satisfies the re-
quirement of the above rules, Planner sends a message
to remove PC pair#103 to Surface generator.

Planner may refer to the EFFECTS part in PC
pairs in the history as well. when it scarches for the
PC pair to be changed. This is the case when things
other than grammatical features. for example, prag-
matic constraints. are involved.

IAINF—OLEBBETIE BHLHERLTD COH RT3,

In producing energy due to burning oil

is generated.

(Burning oil to produce energy causes CO; to be generated.)

T COxid BERIT 5.
And COy absorbs heat
(CO, absorbs heat).

IANF-DERISHELLE OB KElih) KREFERT 3.

Consuming more energy the heat increases

temperature Tisese

(Consuming more energy causes the temperature to rise, because the heat (absorbed by CO,) increases.)

Internal/external dependency

Next, Surface gencrator actually changes the draft
with respect to the message. In this example. Surface
generator replaces PC pair#103 with another PC pair
on the choice point shown in figure 3 (a). We assume
that PC pair#107 was chiosen. This choice leads to
generating draft (2). The first sentence in draft (1)
was divided into two sentences. At the same time.
the value of the feature “connect”in absorb#1 changes
from “noun” to “period.” This change of the feature
value causes the changes of the conditions to apply
PC pairs to absorb#1. So the PC pairs which was
applied to absorb#1 in draft (1) may not be applica-
ble anymore. The dependency among the applied PC
pairs can be determined by refering to the PC pair
history.

For example, applying PC pair (a) changes the
part of the current intermediate structure. This may
enable some other PC pairs to be applicable. And if
some of them, say PC pair (b) and (e). are actually
applied, these PC pairs are dependent on PC pair (a).

We call this the internal dependency. Figure 4 illus-
trates this situation. These dependencies. in general.
are represented as a directed acyclic graph. which we
call dependency graph. If PC pair (b) i1s replaced, the
PC pairs dependent on (b) (enclosed by the dashed
line in figure 4) may also be replaced.

...............

Figure 4 A dependency graph

On the other hand, “CO; DRI T 5 ZAT (the
heat absorbed by CO,)" is also changed to just *Z
@ AT (the heat)”. This is because when the reader
has read to the second to the last sentence. the focus
is on “Z4 (heat)"in draft (2). while the focus is on
*CO," in draft (1). That is, the second sentence in

150

draft (1) is dependent on the first one in terms of the
focusing heuristics.

We call this kiud of dependency ezternal depen-
dency in order to distinguish it from the internal de-
pendency. In figure 4. the PC pairs enclosed by the
dashed line is dependent internally on the PC pair
(B). On the other hand, the PC pairs are dependent
externally on (b) if they are outside of the dashed line
and their surface strings do not proceed that of (b).
in this example (e) and (f). External dependencies
are caused not by the grammatical constraints. but
by the heuristics of focusing, the reader’s model, and
50 on.

Minimal Change Priciple

Note that some parts are intact through this revision
in this exapmle. From the viewpoint of efficiency. it
is desirable to preserve the parts which are indepen-
dent of the changes as much as possible. We call this
mintmal change principle.

According to minimal change principle. Surface
Generator prefers the PC pairs used in the last revi-
sion cycle. Surface Generator chiecks every counditions
in terms of dependencies. With regard to the inter-
nal dependency. Surface Generator checks the condi-
tion of both PC pairs and heuristics used in the last
generation. On the other haud. with regard to the
external dependency. it checks only the conditions of
the heuristics.)

5.3 Advantages over Backtracking

Our approach may seem similar to a naive depth-
first search with backtracking. But it is very differ-
ent from backtracking in the following two respects.
Consider figure 4 again. The numbers associated with
the nodes indicate the order of the application of PC-
pairs.

First. when the planning rules suggest to change a
decision. WEIVERtries to change the decision directly.
On the other haund. in case of backtracking all deci-
sions which have made since the suggested decision
was made should be canceled before making an al-
ternative decision. For example, when the planning

rules suggests to change decision (b). WEIVERtries to

directly replace the PC-pair (b). On the other hand.
by backtracking all decisions (g) through (c) would
be canceled.

Secondly, when WEIVER tries to replace a PC-pair.
it tries to reuse the PC-pairs which are subordinate
to the PC-pair to change as much as possible. For ex-

151

ample. when WEIVERtriex to replace (b) in figure 4.
the system prefers to use (c). {d) and (g) which were
used with (b) iu the last revision cycle. In backtrack-
ing, the system will first try the same PC-pairs as

were tried when (b) was adopted.

6 Related works

There is little rescarch on text revision. This is
mainly because the methodology of evaluating text
is not establishied yet. Maun and Moore's KDS is one
of the oldest systems which incorporate an element
of revision.®] KDS is different from WEIVERin two
significant points. One is that KDS never reverts the
decisions on rules once made. and the other is that
KDS's evaluation is not on surface text but on the in-
termediate expressions. Due to these difference, KDS
has difficulties in detecting and solving the surface
problems mentioned in section 3.

Gabriel's YR is another example which incorpo-
rates a revision module, liowever. Yh revises the in-
termediate expression ouly once.¥] So Y also suffers
from the same short comings that of KDS does.

Unlike the above two systeins. Mann's Penman
evaluates the surface text once gencrated.”’) Pen-
man's approach is quite similar to owrs. How-
ever, Mann’s main concern in the Penman project
is in implementing a broad coverage grammar (called
NIGEL) and in providing a mechanism for organizing
the rhetorical structure of text. The revision module
has not been fully discussed and the details are not
clear.

The importance of text revision is emphasized in
Meteer's PhD work.['!] She collected more than 500
changes on a published paper which were made by a
professional edior and categorized thew into 16 types.
Based on the result, Meteer proposed a data structure
called Text Structure. which aiws to provide a data
structure versatile enough for the revision operation.
and bridging between the how-to-say and the what-
to-say modules. Unfortunately. Metecer has not yet
given a coucrete operational model of text revision
using Text Structure. It is not clear to what extent
Text Structure contributes to computer text revision.

7 Concluding remarks

Text revision does not oppose to (initial) text gen-
eration. They are both complementary. We have
pointed out that there are problems which are dif-
ficult to counsider in initial generation. Our claim is

that text generation should consist of two pliases: the
initial generation and the revision.

It will be efficient if all the decisions can be made
ouly in the initial generation with one-pass process
as Meteer claims.f'Y] However. there must be a limi-
tation in the quality of text ouly with this approach.
It is obvious that the better the initial generation is.
the more efficiently we will be able to obtain the fi-
nal text through revision. If we start revision with
a very poor text. it may take a loug time to revise
into a good text. So there must be a compromise in
sharing the burden between two plases in order to
obtain a good text efficiently. In this paper. we pro-
posed a model to realize this idea and described its
implementation WEIVER.

There is little research on text revisiou so far. In
particular, this is due to the difficulty of text evalua-
tion. There is no consensus on criteria in evaluating
and changing text. Observing the human writing pro-
cess may provide valuable insight into this problem.
as Meteer has shown in her research.'!! We have
also conducted a psychological experinient to extract
humans’ criteria to evaluate and improve text. The
collected data is now under analysis.

Eventually, we will analyze the results of the ex-
periment and feed this information back into the sys-
tem. At the same time we will extend the current
system and evaluate its performance with more ex-
amples.

Acknowledgements

The authors would like to thank Mr. Craig P. Hunter
for his contribution in improving English of the paper.

References

[1] D.E. Appelt. TELEGRAM: A grammar formal-
ism for language planning. In the Proceedings of
the International Joint Conference on Artificial
Intelligence, pages 595-599, 1983.

[2] L. Danlos. Conceptual and linguistic decisions
in generation. In the Proceedings of the Interna-
tional Conference on Computational Linguistics,
pages 501-504, 1984.

(3] R. P. Gabriel. Deliberate writing. In D. D.
McDonald and L. Bolc. editors, Natural Lan-
guage Generation Systems, chapter 1, pages 1-
46, Springer-Verlag, 1988.

152

(4] E. H. Hovy. Generating Natural Language un-
der Pragmatic Constraints. Lawreuce Erlbaum
Associates, 1988.

[5] P. S. Jacobs. PHRED: A geuerator for natural
language interfaces. In D. D. McDonald and L.
Bolc. editors. Natural Language Generation Sys-
tems, chapter 7. pages 256- 279. Springer-Verlag,
1988.

(6] K. Kukich. Fluency in natural language re-
ports. In D. D. McDonald and Leonard Bolc.
editors. Naturel Language Generation Systems.
chapter 8. pages 280-311. Springer-Verlag. 1988.

[7] W. C. Mann. An overview of the Penman text
generation system. In the Proceedings of the
National Conference on Artificial Intelligence,
pages 261-265. 1983.

[8] W. C. Mann and J. A. Moore. Cowmputer gener-
ation of multiparagraph English text. American
Journal of Computational Linguistics, 7(1):17-
29, 1981.

[9] C. Matthiessen. Lexico(grammatical) choice in
text generation. In Natural Language Genera-
tion in Artificial Intelligence and Computational
Linguistics, chapter 10. pages 249-292. Kluwer
Academic Publishers, 1991.

[10] K. R. McKeown and M. Elhadad. A contrastive
evaluation of functional unification grammar
for surface language geuneration: A case study
in choice of connectives. In C. L. Paris,
W. R. Swartout. and W. C. Mann, editors,
Natural Language Generation in Artificial In-
telligence and Computational Linguistics, chap-
ter 14. pages 351-396. Kluwer Academic Pub-
lishers. 1991.

[11] M. W. Meteer. The Generation Gap: The Prob-
lem of Ezxpressibility in Text Planning. PhD the-
sis, University of Massachusetts. 1990.

[12] S. Shibata, M. Fujita, and K. Mazeki. Text gen-
eration algorithm for well-formed sentences. In
Proceedings of the {1st Annual Convention IPS
Japan, pages 3:177-3:178. 1990. (in Japanese).

[13] M. Yazdani. Reviewing as a component of the
text generation process. In G. Kempen, edi-
tor, Natural Language Generation. chapter 13,
pages 183-190. Martinus Nijlhoff. 1987.

