~

TPROCLDINGS Of TTré INDIAN ONPITING GrngREss

AELD AT HYDERARAD Dupmg DEGEMPBER- 24-29 99

IMPLEMENTATION AND EVALUATION OF YET ANOTHER
GENERALIZED LR PARSING ALGORITHM

K.G. SURESH and HOZUMI TANAKA

Depariment of Computer Science, Tokyo Institute of Technology
2-12-1 Ookayama Meguro-ku Tokyo 152, Japan

Abstract

This paper presents an implementation and evaluation of our new generalized LR parsing al-
gorith called Yet Another Generalized LR parsing algorithm (YAGLR). In its original version,
YAGLR uses graph-structured stack (GSS) whereas in the preliminary implementation we use tree-
structured stack (trss). The merge operation of atacks in our algorithi is deeper than top nodes
and in effective. Hence the parsing time and the reduction in memory space are remarkable. Due
to cffective merge operations, cven when using tras, we retain packed nature of GSS and thus not
causing heavy loss of memory space. Through reduce actions, YAGLR creates items called drit
which are symmetrically diffecent frony Earley’s itemi. The advantages in creatiug drit are realized.
Through our implementation, we practically prove that for a context-free grammne with reasonable
size and complexity, YAGLR's parsing time is in the order of n®, where nis the length of an input
sentence. We conclude that YAGLR has the advantages of both Earley's and Tomita’s algorithm.

1 Introduction

Some compilers of programming languages have made use of the LR(k) parsing algorithm devised by
Kuuth [Kunth 65] which enables us to parse an input sentence deterministically and efficiently. But
the grammars used in this algorithm is limited to LR(k) grammar so that Context-Free Grammars
(CFG) in general can not be handled.

Tomita extended the LR(k) parsing algorithm to handle CFG [Tomita 86,87]. This is one of the
generalized LR parsing algorithins. Empirical results of Tomita's and Earley's algorithm reveal that
the Earley/Tomita ratio of parsing time is larger when the length of an input sentence is shorter or
when an input sentence is less ambiguous [Tomita 86]. It has been shown by [Johnson 89] and [Kipps
89] that for some CFG, Tomita's algorithm dose not fare well compared to Earley's algorithm.

In this paper we present an implementation and cvaluation of our new parsing algorithm YAGLR
[Tanaka 91). This algorithm in its original version, uses graph-structured stack (GSS). In this paper
we use tree-structured stack ({rss) to implement YAGLR. Through out this paper we explain all the
actions of YAGLR on a set of trss. We call a set of {rss as TRSS. The reasons for using trss is of
two folds. First, the implementation of algorithms which we use to compare in this paper are also
implemented using trss. Second, because of our merge algorithm, we find that even using (rss, the
parsing time and reduction in memory space are remarkable.

Tomita's algorithm creates packed forest during parsing process whercas YAGLR creates item
called dot reverse ilem (drit) which are symmetrically different from Earley’s item. These drits make
not only effective merge operations possible, but also ease the removal of duplicated items. In the
following sections, we briefly state about generalized LR parsing and the necessity of drits. Rest of the
paper gives the implementation details with the evaluation of YAGLR based on experimental results.
We also prove experimentally that for the most complex CFG given by Tomita {Tomita 86}, YAGLR's
parsing time is in the order of n3.

506

0

TATH mcé‘(%v\j‘.—\‘\”—l— /PUBL\SH\Nd Q’NQNL{ Lm/
NE v D& e

2 Generalized LR Parsing : An Overview

The generalized LR parsing algorithm uses stacks and an LR parsing table generated from given
grammar rules. An English grammar and its LR parsing table are shown in figure 2-1 [Tomita 87).

State Action field Goto field
() § - NPVP] = | v > T [NPIPP [VP [S
(2 S - SPP G [oha | nd 2]
(3) NP — n l shG acc 3
(4) NP = detm 2 sh7 | shé 9 | s
() NP - NPPP 3 sh10
(6) PP — pNP 4 red ted red
() VP~ v.NP S re2 (LY

6 shd | sh4 11

Figure 2.1 7 shd | shd 12

8 rel rel

9 red red ted

10 red red red

11 te6 | rc6/sh6 | re6 9

12 re7/sh6 | re? 9

The parsing table conaists of two ficlds, a parsing action field and a goto field. The paraing actiona
are determined by state (the row of the table) and a look-ahead preterminal (the column of the table),
which is the grammatical category of an input sentence. Here, $ represents end of the input sentence.
There are two kinds of stack operations: shift and reduce. Some entries in the LR table contain more
than two operations and are thus in conflict. In such cases, a parser must conduct more than two
operations simultaneously.

The ‘shN’ in some entries of the action field in LR table indicates that the generalized LR parser
has to push a look-ahead preterminal on the LR stack and shift to ‘state N'. The symbel ‘reN’
indicates that the parser has to pop the number of elements (corresponding to right hand side of the
rule numbered ‘N') from the top of the stack and then goto the new state determined by goto field.
The symbol ‘acc’ means that the parser has successfully completed parsing. Il an entry contains no
operation, the parser will detect an error. The LR table in figure 2-1 has conflicts in state 11 and 12
for column 'p’. Each of the two conflict contains both a shift and a reduce actions, which is called a
shift/reduce conflict. When our parser encounters a conflict, all reduce actions should be carried out
before the shift action.

3 Dot Reverse Item

During reduce actions, YAGLR creates drits which are symmetrically different from Earley's items.
Since a state always accompanied with position number, we call the pair as a node in the rest of this
paper (sce 4.1). From the trss we can create either Earley’s items or drits.

One of the important factor in creating drits is that, it enable us to do deeper merge of TRSS and
makes the structure of TRSS much simpler. In other case, if we create Earley's items, the deep merge
is not possible and we have to restrict only to the merge of top nodes, and if we do deep merge then it
leads to the creation of unwanted items. The reason why the creation of proper drifs is possible comes
from the fact that LR parsing is based on right-most derivation. Another important factor in using
drits is the localization of duplication checks. The position number j inside Earley's item I; 3 [A —
B . C ,j] will change within the processing of a single input word. On the other hand, the position
number j inside drits will remain the same throughout the processing of the input word w, and thus

507

it enables us to limit the duplication check within the processing of a single input word. Therelore we
can localize the range of duplication check of drits. The drits are claborately discussed in [Tanaka 91].

The following is a formal definition of a dril.

Let G=(N,T,P,S) bea CFG and let w = w; wz ... w, € T* be an input sentence in T* which
is a set of a sequence of terminal symbols. For n CFGrule A — X; .. X, and 0<5j<n, [A = X,
X2 oo Xt Xigr oo Xony J) is ealled a drit for w. The dot between Xy and X4y is a metasymbol not
in N and T. The position number ‘0’ represents the left hand side position of w,.

I;, a set of dritis defined as follows. Foriand j (0€i<j<n),[A —a-B,j]€;iTSSvAS,
B> wipwisa. ..wj, and § = Wi 1Wj42 ... W Where the dot position is a sulfix i of an item set I;.

The difference of a drit with an Earley’s item lies in the interpretation of j. It is evident from the
above definition that, in the drit, the analysis has been completed for 8 which is on the right hand
side of the dot symbol. On the contrary, in case of Earley’s.item, the analysis has been completed for
a which is on the left hand side of the dot symbol.

4 An Implementation of YAGLR Algorithm

In this section we will give the structure of a TRSS along with shift and reduce actions on TRSS
followed by merge operations. In our implementation, each entry in a LR parsing table is regarded as
a process which will handle shift, reduce, accept and error actions.

4.1 Structure of TRSS

In parsing, the basic parsing process are determined by a sequence of state numbers in the stack.
Whether or not we use grammatical symbols (as in generalized LR parsing) or packed forest (as in
‘Tomita's method) or position numbers (as in our methoed) along with a state in the stack, they do not
affect the basic parsing process. Each node of a trss used in YAGLR has the following structure :
[< a set of position numbers >, < state > |.

The set of position numbers are used to create drits during reduce actions. In general, there will be
several top nodes in TRSS, but after merging, the remaining top nodes will be at most no more than
the number of distinct states. Even though we use trss in our implementation, because of our merge
operations, we retain the packed nature of GSS. An example of {rssis given in (a) and its list structure
in (b). In the trss in (a), [{5},6] is the top node and other nodes below top nodes such as [{4},12],
({3}, 8], [{2}.7), [{1}, 2] and [{0},0] are all called parent nodes of the top node.

® ({0}, o——1{1}, 2——1{{2}, T——1{4}, 12

[{5}v 6] Top

[{0}, 0} ({1}, 2—{{3}, 8
(b) [({0}, 0, {1}, 2, {2}, 7, {4}, 12], [{0}, 0, {1}, 2, {3}, 8], {5}, 6] 'Top

4.2 Shift action

Let us consider a shift action ‘sh,u’ to a trss as shown in (c). It shifts (pushes) a new node onto top
of the trss getting (d) and creating a drit in I; as shown in (e). The position number of the shifted
node in (d) is increased by one.

508

(c) o —[{M}, s—1{{i}, Y Top (sh,u)
(d) .. —{{M), s} [{i}, ——{{(i+1)},u] Top
(&) Ld[X— - wiy i+l

4.3 Reduce action

Let us consider a reduce action for a trss using a CFG rule A — X;X3 Xga, having m
nonterminal symbols on its RHS. Applying this rule for the reduce action on (f), the stack (g) is
obtained along with the creation of a set of dris as shown in (h).

() oo o==(Py, i ——{Prsr S " ~{Pitmi 8k4m] Top
(8) [Py, 3&}_—_-“)'&+m' t} Top

where Py = {a,b,. . .}, Pryr = {c dyo - .}y ooy Prgmet = {6, [« 8}y Piym = (i}, P'rem = {i}.
The state ‘t’ in (g) is a new state determined by goto field of both s; and A. Note that a set of position
numbers, namely Py, at the top node of (f) is {i} which includes only one position number of the
last input word shifted so far. A set of position numbers P’y m remains the same as (i} after the
reduce action.

(h) Creation of drits :

I 3 [A=-XiXaw Xmoil e,
L 3 [A—-:XiX3 . X i) L 3 [A = XiXz. Xm i)
...................................... i 3 [A= XXz Xm i)
L 3 [A=Xi-X1e Xmoi] s
I 3 [A =Xy X3 Xenoi , 3 [A=XiXz Xm il

The position number i inside a drit is a position number of the top node in the stack and is remained
unchanged untll the next shift actlon occurs. Note that the drit such as [A — Xi, , X;m * ,i] (EL)
is not created because they do not contribute to the formation of trees.

4.4 Merge of Nodes

In our merge operation, the nodes which have the same states can only be merged. Our merge
operation begins from the top nodes with the same state and then proceeds one level down towards
the parent nodes. To merge two nodes with the same state, we apply the following operations (M1)
and (M2).
(M1) The two top nodes [{i}, 5] and [{i}, 8] are merged into one node as [{i}, 8| which inherits all
the parent nodes of the two top nodes before merge.
For example, by applying (M1) to the TRSS as shown in (i), we get the TRSS as shown in (j).
- - .. }—..
) — — —{{2.3).8 (2.4,5), s——{{81&5 ki Top
= = =(23.4). 8——{(3.5), s————{(6}4T

- — ..
i) - — —{2.3). BI‘—SQQTQS"”
w = ={(2,3,4), 8}—I 538k (6. 1] P

(M32) For the two parent nodes [M, s] and [N, s] of X (X is a merged node), apply either (M21) or
(M22).

Top

509

(M21) If M is ncither a subsct nor a superact of N, a new merged node [M U N, 8] is formed as a
new parent node of X and all the parent nodes of [M, 8] and [N, s] will become the parent nodes of
the new merged node [M U N, 8].

For example, in case of (j), X is [{6}, 1] and its parent nodes to be merged are [{2,4,5}, 9] and
[{3,5}, 9). The resultant TRSS alter applying (M21) to (j) is shown in (k).

(k) - Top

(M22) If M is a subset of N, then simply take [N, s] as a merged node and no more merge is
necessary beyond this level. The parent nodes of X from [M, 8] is removed. If M is a superset of N,
then take (M, a] as a merged node and parent nodes from X to [N, 8] are removed. No more merge is
necessary beyond this level.

For example, in case of (k), X is [{2,3,4,5}, 9] and the parent nodes to be merged are [{2,3}, 8]
and {{2,3,4}, 8]. We now apply (M22) to the above TRSS (k) and get the TRSS as shown in (1).

| - — ...
() (2.3.4,5), S———{(6). 1) Top
= = ={(234),8

4.5 Merge Algorithm of TRSS

Since we defined the merge operations considering two nodes, we now give the merge algorithm of
TRSS as follows. Our merge is performed in depth-first method by considering two {rss at a time.
procedure merge (TRSS);
begin
Initialize TmpStk to);
while TRSS # empty do
repeat
pickup .and retract a (rss (call targettrss) from TRSS;
If at least one trss with target_trss’s same top node exits in TRSS
then
begin
repeat
pickup and retract o tras (call s_tras) from TRSS having same top node of target. tras;
apply (M1) to target_trss and s_trss to get a merged top node;
for the parent nodes of merged top node apply (M2);
name the resultant of the merges of target_tras and s_tras as m_tras;
target.trss := m_trss;
until no more (rss with same top nodes as target_trss in TRSS exist;
end
put the target.trsa into the TmpStk;
until TRSS becomes empty;
TRSS := TmpStk;
end
In applying (M2), if (M21) is applied then our merge proceeds one level down towards the parent
nodes by calling (M2) recursively. However in case of applying (M22), we do not need to proceed our
merge further.

510

4.6 Procedure of YAGLR

Let us give a complete algorithm of YAGLR.
1. Set the initial state of a sct of trsscs (TRSS) as: (Bottom) {{0}, 0] (Top)
2. Initialize the TempStack to |]

J. If TRSS is empty then goto 5;
Pick up and retract one trss from TRSS (TRSS := TRSS - trss);
for this irss
Assign the aclions determined by LR table:
case aclions of
‘accept’s end with “success” for the ras and goto J;
‘error’ : end with “failure” for the trss and goto 3J;
*shift’ : push the trss into TempStack and goto J;
‘reduce’; goto 4:
‘shift/reduce”:
push the trss with the shift action into TempStack and
goto 4 cacrying the tras with the reduce action(s)
end;
4. do the reduce action(s) and push the newly formed trss{es)’ into TRSS and merge the TRSS:
goto J.

5. If TempStack := |] then return;
Perform shift action for every trss in TempStack and push the resultant into TRSS ;
merge the TRSS;
goto 2.

5 Evaluation of YAGLR

In this section we present the evaluation of YAGLR based on the preliminary experimental results
comparing with SAX [Matsumoto 88] and SGLR [Numazaki 91]. SAX is based on the bottom up
version of Chart algorithm and SGLR is based on Tomita's algorithm using tree-structured stacks.

5.1 Experimental Environment

The experiments were done on Sun 3/260 machine and using Quintus PROLOG. We used different
sets of grammars in our experiment ranging from the grammars with 3 rules to 550 rules to study the
parsing efficiency of our algorithm. In this paper we concentrate on four different type of grammars.
Gram-1 is a grammar in [Johnson 89] which is a highly densely ambiguous grammar. For this grammar
and its input pattern readers are requested to refer [Johnson 89, pp.205]. Gram-2 is a grammar with
44 rules, gram-3 with 123 rules and gram-4 with 400 rules. Gram-2 and gram-4 are taken form [Tomita
86], and gram-3 is from our lab in Tokyo Institute of Technology. Gram-4 becomes highly ambiguous
and could therefore be considered as one of the toughest natural language grammars in practice. So
we center all our experimental results mainly around gram-4. The results of gram-1 and gram-3 were
give in [Tanaka 91].

The input for the grammars 2, 3 and 4 is made more systematically. The n-th sentence in the set
is obtained by the schema, noun verd det noun (prep det noun)"~! [Tomita 86]. The example sentence
with this structure is:] saw a girl on the bed in the apartment uith a telescope The ambiguity

511

of this type of sentences grows enormously. This type of sentences are necessary to find the parsing
efficiency against sentence ambiguity.

All our program are written in PROLOG and are complied using Quintus PROLOG. Since we are
interested in the ratio of parsing time, it will be same either interpreted or compiled. The parsing
time ls determined by CPU time minus the time consumed for garbage collection (gc). We find that
the gc consumed during the execution of our algorithm is very less (even though we use trss). If we
include the gc time, then the ratio between YAGLR and other parsers will vary a large extent - in a
positive way to YAGLR. The parsing time in our implementations are without forming trees for SAX,
SGLR parsing while YAGLR parsing creates drils.

5.2 Experimental Evaluation of YAGLR

Here, we give our preliminary results.on the implementation of YAGLR. The figure 5-2(a) and 5-2(b)
shows the parsing time of YAGLR for gram-4 against length of the input sentence and against sentence
ambiguity respectively. We find that YAGLR parses the sentence more faster, as the ambiguity of the
sentence increases. In other words, as the ambiguity increases, the parsing time of YAGLR decreases
rapidly regardless to the size of the grammar or length of the input sentence.

11 2, 19,
T v v v v v . v v v v v

Lengih of Input Sentence Sensence ambiguity Sentence ambiguity
Flgure 5-2(a) Figure 3-2(b) Figure $-2{c)

The figure 5-2(c) shows the number of drits created by YAGLR against the ambiguity. Here, the
total drits produced during parsing is indicated by a dashed curve,-which includes duplicated drits.
After the shift of an input word w;, our parser makes duplication check to the drits produced in between
w;—; and w;. The other curve shows the number of non-duplicated items created among duplicated
items. Our parsing time shown in fig.5-2(a) and (b) includes the time consumed for removing the
duplicated items. If the sentence is ambiguous, the creation of duplicated drits are unavoidable. It
should be noted that, if we do not do the duplication check, YAGLR parser will run more faster.

5.3 Comparison with other methods

In this subsection, we would like to compare the performance of YAGLR with other parsers. In figure
5-3(a) and 5-3(b), we give the ratio of parsing time of SGLR/YAGLR and SAX/YAGLR against
sentence length and sentence ambiguity respectively for gram-4. The ratio will be the same by taking
it either against sentence length or ambiguity. The high, the ratio of parsing time of SGLR/YAGLR

512

PR ——

s s

or SAX/YAGLR, the low, the parsing time of YAGLR. Here, we see that, SGLR/YAGLR ratio and
SAX/YAGLR ratio is high for a sentence with considerable length, as the ambiguity increases.

o0 208,

. |
30|
10
w 5 140 5
: 4 e :
[~ s - 3 -8
5" ™ 1
R L w ¥
¥ 10 55 2‘ :‘i i
. K 3 ©
3 3 3 i | 3
&0
10
»
.] o—
Length of Input Sentence ” Sentence ambiguity Sentence ambiguiry
Figure 3-3{a) Figwre 5-3(b) Figure 3-3(c)

The figure 5-3(c) shows a comparison of Earley's items and drits. For this comparison we consider
gram-1 and its input pattern. The reason for using gram-1 is that, in case of gram-1, the total
number of non-duplicated items created by either drits or Earley’s items should be equal. So it will be
better considering this grammar to compare the number of drits and Earley’s items created including
duplicated ones. From the fig.5-3(c) we can realize the advantages of creating drits ove Earley’s items.

There are grammars, for which the number of non-duplicate Earley's items are less than that of
drits. But, the total number of items created including duplicated items are far less in case of drits.
The parsing time includes the creation of total number of items which includes duplicated items.
The more the duplicated items, the more the time consumed for creating and removing. Also, as we
disussed briefly in section 2, on creating Earley’s items using our algorithm, leads to the creation of
unwanted items [Tanaka 91]. Hence it is safe to conclude that drits are better than Earley’s items.

Gram-1 Gram-4
1/P TIME in maec. Trees n TIME in maec. Trees
SAX SGLR | YAGLR SAX SGLR | YAGLR
N 34 50 67 20 1 S0 17 67 1
6 67 8) 117 70 2 117 84 167 2
7 233 250 143 256 3 267 150 400 $
8 800 833 367 969 4 967 350 600 14
9 2867 amz 7 3762 5 | 3067 1000 94 | 42
10 10750 12630 866 14894 6 9700 3200 1417 132
11 41616 | 49716 1383 59904 7 207 10683 1917 429
12 262250 | 222233 2017 244088 8 113135 | 37800 2700 1430
9 | 398832 | 137000 3667 4862
10 - 498731 4750 16796

Figsre 5-3(d)

Some raw empirical datas got from the experimental results using gram-1 and gram-4 are given
in the table in fig. 5-3(d). In the table, I/P denotes length of the input sentence, n denotes sentence
number according to the schema described in 5.1 and Trees denotes the number of ambiguities. These
datas entierly depends on the machine system and the programming language used. But we hope that,
the ratio of parsing time will be the same for any system under a particular programming environment.

513

“ v v a0

33 3

3 30!

SGLx

B g ;
3 3 2 E
:' 0 : 30!
3 3
% 1 E 7]
X 10 SGLA X 10 !//

' rAGLR } / raaLa

r“" e
« 3 0 ety
Lengih of Inpui Sentence Lengih of Input Sentence
Figure. 5-3(e) Figure. 3-3(f}

The figure 5-3(¢) and 5-3(f) shows results of memory space consumed by YAGLR for the parsing of
gram-2 and gram-4 respectively. YAGLR consumes very less memory space due to its effective merge
operations. Note that in YAGLR we produce drifs, whereas in our experiments, SAX and SGLR are
not producing any form of partially parsed informations. It is the reason why YAGLR needs more
space up to the sentence of length 18 for gram-4. The amount of memory space needed depends on
the size and ambiguity of the grammar we use. In case of grami-2, which has only 44 rules, the memory
space consumed by the sentence of length up to 18 is comparable. However, when the length of input

sentence gets long, the reduction in memory space is remarkable regardless to the size and ambiguity
of the grammar.

5.4 Experimental Computational Complexity of YAGLR

For gram-1 we proved theoretically, tlie complexity of YAGLR as in the order of n® [Tanaka 91 (in
Japanese)). But we are yet to prove in case of general CFG. In this subsection we give our experimental
proof for the complexity of YAGLR. The figure 5-4 shows the order of parsing time of YAGLR for

gram-1 and gram-4. On taking log scale for both X and Y axis we find that for the parsing time to
/.
3

Parsing Tome ia bog_10

t
Lengih of 2entence in log_10
Filgure. 54

514

be in the order of n?, the slope of the time curve must be < 3. Thua the line passing through X and
Y axis in fig. 5-4 shows the sample line with slope 3. In the fig.5-4 we find the time curve of gram-4
is in parallel with the sample line and so the time complexity of gram-4 is in the order of n3. In case
of the time curve of gram-1, we find that it is not in parallel with the sample line and it is nearly in
the order of n!. However, we proved theoretically that the complexity of YAGLR for gram-1 is in the
order of n?,

6 Conclusion

We have shown the basic idea of YAGLR parsing algorithm and its implementation with evaluation. It
should be noted that after completing parse, the syntactic trees are formed from drits obtained during
the parsing process. Even though we used TRSS in our implementation, we find that the parsing
speed and the memory space consumed by YAGLR is very less. There are certain grammars for which
il we use TRSS the copying of stacks creates inefliciency. For this reason we would like to implement
our algorithm In GSS as in our original version. Through our implementation, we practically proved
that for a CFG with reasonable size and complexity, YAGLR's parsing time is in the order of n3.
Our future works includes showing the time complexity of YAGLR for any CFG, developing a parallel
algorithm for YAGLR method and also for the tree generation from drits,

References
[Aho 72] Aho,A.V. and Ulman,J.D.: The Theory of Parsing, Translation, and compiling, Printice-hall, New
Jeesey (1972).

(Earley 70] EarleyJ.: An Efficient Augmented-Contezt-Free Parsing Algorithm, comm. of ACM, 13, 1-2, pp.95-
102 (1970).

[Johnson 89] JohnsonM.: The Computational Complezity of Tomita's Algorithm, International parsing work-
shop'89, Carnegie-Mellon University, pp.203-208 (1989).

[Kippa 89] Kipps,J, R.: Analysis of Tomita's Algorithm for General Contezt-Free Parsing, International parsing
workshop'89, Carncgic-Mellon University, pp.193-202 (1989).

[Matsumoto 88] Matsumeto,Y.: Natural Language Parsing Systems based on Logic Programming, Dotor Thesis
of Kyoto University, Kyoto, Japan, 1988.

[Numazaki 90] Numazaki,H. and Tanaka.H : SGLR : A Sequential Generalized LR Paraer in Prolog Information
Procensing Society of Japan Vol.32 No.3, 1991.

[Tanaka 89] Tanaka.H. and Numazaki,H.: Parallel Generalized LR Parser Based on Logic Programming, 1st
Australian-Japan Joint Symposium on Natural Language processing, pp.201-211 (1989).

[Tanaka 91] Tanaka,H. and Suresh.K.G: YAGLR : Yet Another Generalized LR Parser, Proceedings of RO-
CLING 1V, pp.21-31 (1991)

[Tanaka 91] Tanaka,H. and Suresh.K.G: YAGLR Method: Yet Another Generalized LR Parser, SIG. NLP 83-11,
Information Processing Society of Japan, pp.79-88 (1991) (In Japanese).

[Tomita 86] Tomita,M: Efficient Parsing for Natural Language, Kluwer, Boston, Mass(1986).

{Tomita 87] Tomita,M: An Efficient Augmented-Conlezi-Free Parsing Algorithm, Computational Linguistics,
13, pp.31-46 (1987).

515

