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A discrimination network has been used for various problem solv-
ing systems, especially in natural language processing to represent
multiple word meanings compactly. The problem solving process
corresponds to a step by step downward traversal of the net-
work from the root node to a leaf node guided by branches which
satisfy the obtained constraints. Although a discrimination net-
;3 work has the excellent characteristics, it has critical problems
3 that it cannot be traversed unless constraints are entered in an
a priori-fixed order. To solve the above problems, we proposed
b a ‘generalized discrimination network(GDN)’ which can be tra-
versed in any order of constraints. The problem solving process
can traverse the GDN immediately whenever any constraints are
obtained. In this paper, we show how GDN can neatly deal with
various problems in natural language processing, such as word
sense disambiguation, ellipsis resolution. Merits of using GDN
: for them are described. i}
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1 Introduction

A discrimination network is a generalization of a decision tree[3] and has been
used for various problem solving systems[5], especially in natural language
processing to represent multiple word meanings compactly(10, 15, 13, 1]. A
discrimination network is considered as a directed acyclic graph with one
root node and many leaf nodes. The solutions are located at each leaf node
of the network. The problem solving process corresponds to a step by step
downward traversal of the network from the root node to a leaf node guided
by branches which satisfy the obtained constraints. A discrimination network
has the following advantages:

e in the discrimination network, a unique node can represent multiple
solutions which correspond to the leaf nodes below it. Therefore, the
downward traversal of the network corresponds to the continuous refine-
ment of a solution into a more specific one. This is what the constraint
programming paradigm|7] will achieve;

o compared with a linear search, the discrimination network’s search al-
gorithm is more efficient because the downward traversal is guided by
constraints which are labels of-branches, and the search space can be
gradually narrowed down. This search takes time O(!) in the worst
case, where /(= logn) is the height of the network, while the linear
search takes time O(n) in the worst case, where n is the number of all
possible solutions|2];

o we can compact a set of rules since some of the same preconditions(constraints)

can be merged into one branch in the network. Therefore, whether a
constraint is satisfied is checked only once for one constraint and waste-
ful repeated computations can be avoided.

Although a discrimination network has the excellent characteristics men-
tioned above, it has two critical problems. The first one is that it cannot be
traversed unless constraints are entered in an a priori-fixed order. Since the
order in which constraints are obtained cannot be a priori fixed in general,
the process to traverse the network downward may often have to suspend
until the constraint in the right order is obtained. Because the network is
traversed downward from the root node, constraints must be entered one



by one from constraints which are labels of branches connected to the root
node. This order depends on the original structure of the network. The
second problem is more serious. If some constraints, which are necessary
for traversing the network downward, are not obtained, the problem solving
process will not be able to traverse the network and a deadlock will happen.
In this situation, the constraints that have been already obtained will cease
to contribute to the problem solving process.

To solve the above problems, we proposed a ‘generalized discrimination
network(GDN)’ which is a variant of a discrimination network and can be
traversed in any order of constraints[17]. The problem solving process can
traverse the GDN immediately whenever any constraints are obtained.

In this paper, we show how GDN can neatly deal with various problems
in natural language processing, such as word sense disambiguation, ellipsis
resolution. Merits of using GDN for them are described.

In section two, a discrimination network and GDN are outlined. In section
three, various usages of GDN for natural language processing are described.
Finally, in section four the possibility of other applications is explored.

2 Ordinary and generalized discrimination
networks

2.1 Characteristics of discrimination networks

Figure 1 is a sample discrimination network!. Each branch of the network
has a constraint as its label. Each leaf node of the network points to a
solution. Other nodes represent a set of possible solutions which correspond
to leaf nodes below them because further traversal along branches to multiple
nodes are possible from them. The root node corresponds to the set of all
solutions.

The problem solving process using discrimination networks is a step by
step downward traversal of the network from the root node to a leaf node
guided by branches which satisfy the obtained constraints. In this process,
inappropriate alternatives are rejected and appropriate solutions are selected.
Reaching a leaf node means that a solution is found.

'For expository clarity. we use only tree-form examples in this paper.
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Figure 1: A sample discrimination network

As mentioned in section one, a discrimination network has three advan-
tages. However, it also has two critical problems. Some solutions to the
problems have been suggested(l1, 23]. But as described in [17], we thought all
of them are not satisfactory because they contain inner problems; therefore,
we proposed a ‘generalized discrimination network(GDN).’

2.2 Principles of generalized discrimination networks

In this section, principles of GDN are outlined. Consider the discrimination
network shown in Figure 1. To represent the network as a table, we make
stages of preparation. First, a numerical string is assigned to each node as a
unique identifier. ‘1’ is assigned to the root node. To each child node of the
root node, an identifier of two digits li(where 7 is an integer between 1 and
n which represents the number of child nodes) is assigned. Similarly, to each
child node of the node 1%,%,...7,,, an identifier 17,%5...7,,7(where 7 is an integer
between 1 and n which represents the number of child nodes) is assigned. To
the nodes in Figure 1, identifiers are assigned as shown in Figure 2.

Second, constraint-identifier pairs are extracted from the network in the
following form: a branch and a subordinate node which is directly connected
by the branch. This correspondence between constraint and identifier means
that if a constraint is satisfied, thenodes of corresponding identifiers can
be reached in the network. For example, if constraint ¢/ca is satisfied, the
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Figure 2: Discrimination network with identifier-assigned nodes

network can be traversed downward to the node of corresponding identifier
122.

Here, we must pay attention to the other constraints in the path from
the root node to the reached nodes. In the case of the node of identifier 122
mentioned above, constraint a/a, exists and is unsatisfied. Therefore, the
reachability of node 122 is ‘conditional’ in that node 122 can be reached if
constraint a/a, is satisfied.

Hence from Figure 2, pairs of a constraint and a ‘conditional identifier,’
that is, an identifier of the conditionally reached node, are obtained in Table
1. A conditional identifier consists of an identifier of the reached node fol-
lowed by an ‘if-clause’ which represents a list of unsatisfied constraints. An
identifier with no if-clause means that a node of the identifier can be reached
unconditionally. For the constraints of attribute name b, multiple pairs exist
and so sets like {111 i¢f a/a1,1231 if a/as and c/c3} correspond to them.
The existence of multiple pairs means that multiple corresponding nodes can
be reached if a constraint is satisfied.

The preparation is finished. The regular order of constraints is a/aa,
c/cs, b/by for traversal of the network in Figure 2 downward to node 1231.
Here, in contrast, the case where constraints are obtained in the order of
b/by, c/c3 is considered. Notice that in this case, a necessary coustraint
afa; is not obtained and the order of the obtained constraints is irregular.




a/al 11

a/ag 12

b/bp  {1114if afa,,1231¢f a/as and c/cs}

b/by {112if a/a,,1232if a/as and c/c3}
Cb/bs {113 if afa,,1233 if afa, and ¢/c3}

C/Cl 121 'lf a/az

C/Cg 122 'lf a/ag

cfes 123 if afas

C/C.; 124 ’Lf a./ag

Table 1: Correspondence between constraint and node identifier

The discrimination process in our approach for that case is briefly described
below. Figure 3 shows a ‘state’ transition which represents the discrimination
process. A state is in the form of a conditional identifier. The initial state(a
state where no constraints are obtained) is 1 with no if-clause(the identifier
of the root node). Informally?, after constraint b/b, is obtained, the state
is computed as follows, with the current state(the initial state) and a set of
conditional identifiers {111 if a/a;, 1231 if a/a> and ¢/c3} corresponding to
the obtained constraint by Table 1:

Both 111 and 1231 include 1 as a prefix-numerical string, so the
longer strings 111 and 1231 are returned. Because the current
state has no if-clause, the if-clause of the next state becomes the
same as the if-clause of the conditional identifiers correspond-
ing to the obtained constraint. The if-clause of the obtained
constraint represents a list of constraints between the current
node(1) and the reached node({111,1231}) except the obtained
constraint, that is, ¢f a/a;,if a/a; and c/c; respectively. There-
fore, the next state becomes {111:f afa,,1231if a/as and c/c3}.

As shown in Figure 2, identifiers of mutually reachable nodes in the
network are in prefix-numerical string relation with each other. Therefore,
the operation between identifiers can easily check whether one node can be

¥For formal detail. please refer to [17).
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Figure 3: The discrimination process using GDN

reached from the other in the network. If one node is reachable from the
other, the identifier of the subordinate one is returned. This operation cor-
responds to a downward traversal of the network by satisfying the obtained
constraints. The analysis will fail if one identifier is not a prefix of the other.

Next, constraint c¢/c3 corresponds to conditional identifier 123 if a/aa.
When the constraint is obtained, the state has multiple conditional identifiers
{111 if afay,1231 if afa> and c/c3}, and so the operations are performed
on each conditional identifier with the constraint:

As for 111 if afa,, the identifiers are not in a prefix relation, so
the analysis fails. Therefore, the result is necessary only for con-
ditional identifier 1231 if a/as and c/c;. The resultant identifier
is 1231 from identifiers 123 and 1231. The resultant if-clause is ¢ f
a/a» because constraint ¢/c3 in the if-clause of the current state is
obtained and removed from it. Hence the final result of traversal
for the above case becomes 1231 if a/a,, which means that node
1231 is reachable if constraint a/a, is obtained.

The if-clause allows us to cope with the irregular order of the obtained
constraints and the lack of necessary constraints. The if-clause is the storage
of constraints which must be obtained to reach the destination node but have
not been obtained yet. When constraints are obtained in irregular order, the
constraints in the wrong order can be found in the if-clause and are removed
from it.

Thus constraints in the if-clause are expected to be obtained, and so they
can be used as predictions for constraints which will be obtained later. In
another viewpoint, constraints in the if-clause can be regarded as assump-
tions in the abductive reasoning[9, 16} because the if-clause means that the
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conclusion of a rule(corresponding to the leaf node) holds and so precondi-
tions(constraints) in the if-clause must hold in the future.

3 Various usages of GDN for natural lan-
guage processing

In this section, we show how various problems in natural language processing
can be dealt with by GDN. We treat word sense disambiguation and ellipsis
resolution.

Figure 4 is a portion of the discrimination network which represents the
word senses(and case frames) of the Japanese verb ‘naosu.’ Each branch of
the network has as its label a selectional restriction on surface cases such as
postpositions ‘ga,” ‘wo,” and so on. Each leaf node of the network points to
a unique word sense, which is represented by the underlined label . Other
nodes represent ambiguous word meanings which include all word senses
corresponding to the leaf nodes below them because from these, the fur-
ther traversal along branches to multiple nodes is possible. The root node
corresponds to the most ambiguous meaning: it is a representation which
includes all leaves, namely, all word senses. A set of constraints in the path
from the root node to a leaf node represents the case frame for the word
sense corresponding to the leaf node.

The word sense disambiguation process using a discrimination network is
a step by step downward traversal of the network from the root node to a
leaf node guided by branches which satisfy the obtained constraints. In this
process, semantically inappropriate alternatives are rejected and appropriate
word senses are selected by virtue of information about other words in the
sentence. The reaching of a leaf node means that the ambiguity has been
fully resolved.

Works such as [10, 15, 13, 1] realize the word sense disambiguation process
as a downward traversal of the discrimination network. In these works, the
merits of such a network are described, as mentioned in section one.

Using GDN instead of a discrimination network adds another advantage
in that the word sense disambiguation process proceeds incrementally. We
think incremental disambiguation{14] is a better strategy for word sense dis-
ambiguation because a combinatorial explosion of the number of total am-
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Figure 4: A portion of the discrimination network of the word senses of the
verb ‘naosu’

biguities might occur unless word sense ambiguity is incrementally resolved
as early as possible whenever constraints are obtained during the analytical
process of a sentence.

The incremental disambiguation approach allows us to deal with cases
as well where it is impossible to disambiguate unless information about
succeeding sentences is taken into account. This is because the incremen-
tal disambiguation process is considered to be the refinement of ambigu-
ous(undetermined) results of semantic processing by newly obtained con-
straints and makes it easy to represent a partial semantic interpretation of
a sentence and disambiguate it by additional constraints from subsequent
inputs.

Notice that the partial traversal of the discrimination network is consid-
ered to be the representation of the ambiguous result of partial semantic
processing; the ambiguous result is easily represented by nodes except leaf
nodes in the network. Making a new decision by additional constraints from
subsequent inputs naturally corresponds to traversing from the current node
further downward using newly obtained constraints. Discrimination networks
are therefore well suited for the incremental disambiguation approach.




However, because the order in which constraints are obtained incremen-
tally might be deviated from an a priori-fixed one and some constraints which
are necessary for traversing the network downward might not be obtained, it
is not always possible to traverse the network downward during the analyt-
ical process. GDN solves these problems of the discrimination network that
prevent the incremental disambiguation approach and enables the downward
traversal of the network, which uses the incrementally obtained constraints
during the analytical process. As surface variations such as relative clauses
and passive forms in English show, problematic situations to the discrimi-
nation network often happen. In Japanese, the situation is worse. Because
Japanese has greater word order freedom, the degree of deviation from the
a priori-fixed order is considerable. In addition, in Japanese, phrases are
often omitted that can be easily guessed from the contextual information.
Therefore, we think GDN is essential to the analysis of such a language as
Japanese.

Next, we describe how GDN deals with ellipsis resolution which fills in
the missing phrases. Because GDN is a variant representation form of a
set of case frames, the ellipsis resolution approach with GDN is case frame-
based[4, 21]. It can detect easily which phrases are omitted and can test
the possible substitutions for the missing phrases by means of the selectional
restriction, as described below. However, it requires another mechanism that
finds candidates for the substitution and decides the order of priority among
them from the contextual information[20, 11]. The mechanism is out of the
scope of this paper and the naive heuristic ‘recency’ is assumed.

The positions of the missing phrases are detected in two ways with GDN.
First, they are indicated by the if-clause mentioned in section two because
constraints in the if-clause are not obtained but are expected to be. Secondly,
in the case where the reached node is not a leaf node when the analysis of
the whole sentence is finished, constraints between the current node and leaf
nodes are considered to be the positions of the missing phrases because the
verb should have a unique word sense®. So in such case, ellipsis resolution
enables the further disambiguation of the word sense. By applying to the
candidates for the substitution the selectional restriction which corresponds

30f course. another mechanism for checking the syntactic granmaticality is necessary
in the case of languages such as English bucause it is strange to say that [ repair.” is
grammatical and the object is omitted in tlie sentence. As for Japanese. such a mechanisim

SCCI1IS ulnecessary.
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to the detected position of the missing phrase, the semantic appropriateness
of the substitution is checked.

Finally, we illustrate how incremental word sense disambiguation and
ellipsis resolution proceed jointly in Japanese. Consider the sentences:

tarou ga nihongo de ronbun wo kaki,
(Tarou 'Japanese a paper  wrote)
eigo ni hanako ga naosita.

(English Hanako)

Tarou wrote a paper in Japanese, and Hanako translated it into

English.
O

In the example, the word sense of the verb ‘naosu’ is ambiguous as shown in
the network of Figure 4% and the order of obtained constraints ‘ni/eigo(English),
ga/hanako(Hanako)’ is irregular compared with the one of the network. Con-
straint ‘ga/human’ must be obtained earlier than ‘ni/language;unit’ in the
network. Additionally, the phrase corresponding to ‘it’ is omitted.

At the end of the first sentence, the candidates for ellipsis resolution
is [‘ronbun’(a paper), ‘nihongo’(Japanese), ‘tarou’(Tarou)], where the first
element is preferred. The second sentence is analyzed as follows:

‘Eigo’(English) is a language and satisfies a selectional restriction

of a postposition ‘ni’ and node 1 is reached. Next, ‘hanako’(Hanako)
satisfies a selectional restriction of ‘ga’ and the reachability of
node 1 becomes unconditional. The word sense ambiguity of the
verb ‘naosu’ has been reduced from seven to two, but the word
sense is still ambiguous®. Because the reached node does not point
ﬁ) to a unique word sense, the further traversal is tried from it. As

' the result, we get the candidate positions of the missing phrases,
that is, {‘wo/language;unit’}, {‘wo/paper;weight’,‘kara/language;unit’}.
Then, ellipsis resolution is tried using the candidates mentioned
above. Because ‘ronbun’(a paper) is a paper and ‘nihongo’(Japanese)
is a language, they satisfy a selectional restriction of postpositions
‘wo’ and ‘kara’ respectively. Thus, the substitutions are decided

*However. ouly the correct word sense is written in the English translation.
SWe thiuk there is a subtle difference between the remaining two word senses hecanse
they have a different case frauue.
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~and the word sense of the verb ‘naosu’ is uniquely determined.
The final result for the second sentence is ‘Hanako translated the
paper( which Tarou wrote) from Japanese into English.’

4 Conclusion

We showed how GDN can neatly deal with various problems in natural lan-
guage processing, such as word sense disambiguation, ellipsis resolution and
parsing of word order-free languages. We also described merits of using GDN
for them.

Lastly, other possible applications shall be mentioned. First, the parsing
mechanism using GDN can neatly handle word order-free languages. ID/LP
framework in Generalized Phrase Structure Grammar formalism[8] can write
grammar rules of those languages in a general way. And our GDN-based
parsing mechanism augmented with a Hasse diagram|[6] can parse directly
and efficiently with ID/LP rules. Please refer to [22] for the details of the
parsing algorithm.

Second, we think GDN realizes a better way to organize(index) MOPs.
MOP(Memory Organization Packages)[18] is considered to be a hierarchically-
organized memory for scripts[19] and is often used to understand stories in
specific domain, such as articles about terrorism. Usually MOPs are indexed
in the form of multiple redundant discrimination networks[12]. ‘Multiple
redundant’ networks, where like a lattice, multiple redundant paths are pro-
vided to reach the same script, are inevitable if order freedom of obtained
constraints is considered because of the problems of discrimination networks
mentioned in section one. Our GDN, however, solves these problems and can
organize MOPs more concisely without redundant links.

References

[1] G. Adriaens and S.L. Small. Word expert parsing revisited in a cognitive
science perspective. In S.L. Small, G.W. Cottrell, and M.K. Tanenhaus,
editors, Lezical Ambiguity Resolution : Perspectives from Psycholingui-
tics, Neuropsychology, and Artificial Intelligence, pages 13-43. Morgan
Kaufmann Publishers, 1988. ~

12




[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and
Algorithms. Addison-Wesley, 1983.

[3) G. Brassard and P. Bratley. Algorithmics. Prentice Hall, 1988.

[4] J.G. Carbonell. Discourse pragmatics and ellipsis resolution in task-
oriented natural language interfaces. In Proc. of the 21st Annual Meeting
of the Association for Computational Linguistics, pages 164-168, 1983.

[5] E. Charniak, C.K. Riesbeck, and D.V. McDermott. Artificial Intelli-
gence Programming. Lawrence Erlbaum Associates, 1980.

[6] D.J. Cooke and H.E. Bez. Computer Mathematics. Cambridge Univer-
sity Press, 1984.

[7] M. Dincbas. Constraints, logic programming and deductive databases.
In Proc. of the France-Japan Artificial Intelligence and Computer Sci-
ence Symposium 86, pages 1-27, 1986.

[8] D. Gazdar, E. Klein, G. Pullum, and I. Sag. Generalized Phrase Struc-
ture Grammar. Basil Blackwell, 1985.

[9] J.R. Hobbs, M. Stickel, P. Mar;t—in, and D. Edwards. Interpretation as
abduction. In Proc. of the 26th Annual Meeting of the Association for
Computational Linguistics, pages 95-103, 1988.

(10] P.S. Jacobs. Concretion: Assumption-based understanding. In Proc. of

the 12th International Conference on Computational Linguistics, pages
270-274, 1988.

[11] M. Kameyama. Zero Anaphora : The Case of Japanese. PhD thesis,
Stanford University, 1985.

(12) J.L. Kolodner. Retrieval and Organizational Strategies in Conceptual
Memory. Lawrence Erlbaum Associates, 1984.

(13] S.L. Lytinen. Are vague words ambiguous? In S.L. Small, G.W. Cottrell,
and M.K. Tanenhaus, editors, Lezical Ambiguity Resolution : Perspec-
tives from Psycholinguitics, Neuropsychology, and Artificial [ntelligence,
pages 109-128. Morgan Kaufmann Publishers, 1988.

13




[14] C. S. Mellish. Computer Interpretation of Natural Language Descrip-
tions. Ellis Horwood, 1985.

[15] G.D. Moerdler and K.R. McKeown. Beyond semantic ambiguity. In

Proc. of the 7th National Conference on Artificial Intelligence, pages
751-755, 1988.

[16] P. Norvig and R. Wilensky. A critical evaluation of commensurable
abduction models for semantic interpretation. In Proc. of the 13th In-
ternational Conference on Computational Linguistics, volume 3, pages
225-230, 1990.

[17] M. Okumura and H. Tanaka. Towards incremental disambiguation with
a generalized discrimination network. In Proc. of the 8th National Con-
ference on Artificial Intelligence, pages 990-995, 1990.

(18] R. Schank. Dynamic Memory: A Theory of Learning in Computers and
People. Cambridge University Press, 1982.

[19] R. C. Schank and R. P. Abelson. Scripts, Plans, Goals and Understand-
ing. Lawrence Erlbaum Assoc., 1977.

[20) C. L. Sidner. Focusing in the comprehension of definite anaphora. In
M. Brady and R. C. Berwick, editors, Computational Models of Dis-
course, pages 267-330. MIT Press, 1983.

[21] A. Stolcke. Gapping and frame semantics: A fresh look from a cognitive
perspective. In Proc. of the 13th International Conference on Compu-
tational Linguistics, volume 2, pages 341-346, 1990.

[22] M. Surapant, M. Okumura, and H. Tanaka. Direct ID/LP parsing with
a generalized discrimination network. In Proc. of the 14th International
Conference on Computational Linguistics, 1992. to be submitted.

[23] W.A. Woods. Taxonomic lattice structures for situation recognition. In
Theoretical Issues in Natural Language Processing 2, pages 33-41, 1978.

14




