P*“feﬂ(‘hgs L poclivg Ty
e ch?utatcmi Lz“f’«*-‘stf:p Conterence

Y Lo b g3 -2 ='-—"-"’>
Folkitiiat P rrdg s

YAGLR : Yet Another Generalized LR Parser

Hozumi TANAKA K.G. SURESH

Department of Computer Science
Tokyo Institute of Technology
2-21-1 Oookayama Meguro-ku Tokyo 152, Japan
Email : tanaka@cs.titech.ac.jp

Topic area : Syntax (Parsing), Natural Language Processing
Date : 12/07/1991

( Draft )

Abstract

We have developed a new generalized LR parsing algorithm called YAGLR. The parsing algorithm
uses graph-structure stacks similar to Tomita's algorithm, but the merge operations on the graph-
structure stack is more deeper. Since YAGLR has an eflective merge operations, the speed in parsing
time and the reduction in memory space are remarkable. Because of YAGLR’s effective merge op-
erations, even if tree-structure stacks are used in YAGLR instead of graph-structure stack, this will
not cause heavy loss of memory space and still the compactness and reduction of memory space is
retained. The realization of tree-structure stack is more simpler than graph-structure stack which is
one of the important factor for the implimentation of YAGLR. YAGLR's parsing time is in the order
of (n?) for any CFG. We also present the experimental results which supports this fact. We conclude
that YAGLR has advantages of both Earley's and Tomita's algorithm.




X0
]—M‘"-.« .

1 Introduction

Some compilers of programming languages have made use of the LR(k) parsing algoritlun devised by
Kunth [Kunth 65] which enables us to parse an input sentence deterministically and efficiently. But
the gramunars used in this algorithm is limited to LR(k) grarmumar so that Context Free Grammars
(CFG) in general can not be handled.

Tomita extended the LR(k) parsing algorithm to handle CFG [Tomita 86,87). The extended
algorithm is one of the generalized LR parsing algorithms. Empirical results of Tomita’s and Earley's
algorithm reveal that the Earley/Tomita ratio of parsing time is larger when the length of an input
sentence is shorter or when the input sentence is less ambiguous (Tomita 86]. It has been shown by
[Johnson 89) and [IKipps 89] that for some CFG Tomita's algorithm dosen’t fare well compared to
Earley's algorithm.

In this paper we propose a new generalized LR parsing algorithm called YAGLR (Yet Another
Generalized LR parsing) which has advantages of both Earley’s and Tomita’s algorithms. YAGLR
also uses graph-structure stack (GSS) similar to Tomita’s but the memory space used by YAGLR's
GSS is more compact than that of Tomita's. Even if tree-structure stacks are used in YAGLR instead
of GSS, this will not cause heavy loss of memory space and will remain almost the saune as GSS. The
realization of tree-structure stack is more simpler than GSS which is one of the important factor in
the implimentation of YAGLR. The reason for memory compactness in YAGLR is that the merge
operations of stacks in YAGLR is more deeper and effective. Further YAGLR's parsing time is in the
order of (n®) for any CFG. Our experimental results also supports this fact.

Tomita's algorithm creates partially parsed trees during parsing process whereas YAGLR creates
items called as dol reverse items (drit) which are different from Earley’s items. These drits make not
only effective merge operations possible, but also ease the removal of duplicated items. In section 2
we will explain about generalized LR parsing (Readers familiar with generalized LR parsing can skip
this section). In section 3 we introduce drit by comparing with Earley’s items and discuss the factor of
forming drils instead of Earley's items. Section 4 gives the formal definition of drits used in YAGLR.
Section 5 gives a parsing algorithm of YAGLR along with the merge procedures of GSS. In section 86,
we will give some of the experimental results and its related discussions. In section 7, future research

themes will be discussed.

‘)

~l

The generalized LR parsing algorithm uses LR stacks and an LR parsing table generated from prede-
termined grammar rules. An ambigous English grammar and its LR parsing table are shown in figure

Brief Introduction to Generalized LR Parsing Algorithm

1 and 2, respectively (Tomita 87}.

(1) s — NP, VP State | det | n P v S [S|NP|PP|VP
(2) S — S§,PP 0 shl | sh2 3| 4
(3) NP - n 1 shs
(4) NP — detn 2 red red | red
(5) NP — NPPP 3 shé ace 7
(6) PP — p,NP 4 shé sh8 10
(1) VP — vNP 5 Ted red | red
Figure 1 6 shl | sh2 11
7 re2 re2
8 | shl | sh2 12
9 rel rel
10 Ted re5 | red
11 sh6/re6 | re6 | re6 10
12 sh6 /re7 re? 10
Figure 2
22




DLO

The parsing table consists of two fields, a parsing action field action and a goto field goto. The
parsing actions are determined by state (the row of the table) and a look-ahead preterminal (the
coloumn of the table) of an input sentence. Here, S represents the end of the sentence. There are
two kinds of stack operations: shift and reduce. Some entries in the LR table contain more than two
operations and are thus in conflict. In such cases, a parser must conduct more than two operations
simultaneously.

The 'sh N’ in some entries of the LR table indicates that the generalized LR parser has to push a
look-ahead preterminal on the LR stack and goto ‘state N'. The symbol ‘re N' denotes that the parser
has to pop the number of elements (corresponding to right hand side of the rule numbered ‘N') from
the top of the stack and then goto the new state determined by goto field. The symbol ‘acc’ means
that the parser has successfully complcted parsing. If an entry contains no operation, the parser will
detect an error. 3

The LR table in figure 2 has conflicts in state 11 and 12 for coloumn ‘p’. Each of the two conflict
contains both a shift and a reduce operation and is called a shift/reduce conflict. When our parser
enconuters the conflict, all shift actions shoule be carried out after all reduce actions are completed.

On input "i saw a girl with a tclescope”, the sequence of stack and input contents is shown in
Fig.3. For example, at line (1) the parser is in state 0 with "i" the first input symbol. The action
in row 0 and column n (the grammatical catagory of "i") of the action field of Fig.2 is sh2, meaning
shift and cover the stack with state 2. That is what was happened in line (2): the first grammatical
category n and the state symbol 2 have both been pushed onto the stack.

Then, "saw” becomes the current input symbol, and the action of state 2 on v (the grammatical
catagory of "saw”) is to reduce by NP — n. One state symbol and one grammar symbol are poped
from the stack and 0 again becomes the top of the stack. Since the goto of state 0 on NP is 4, NP
and 4 are pushed onto the stack. We now have the configuration in line (3). Each of the remaining
moves are determined similarly until the shift of "girl”.

In line (8), we get a conflict with sh6/re7, because for the word "with” whose preterminal is p and
the state on the top is 12. Here we carry out re7 at first and we see that the stack on which sh6 to
be performed is waited until all the other remaining stacks experiences shift actions. At line (10) we
do the shift action and merge the stacks because both stacks have the same top state. The remaining
parsing proceeds in this way.

%—...-w.—.-- e e it o

No. | Stack Input Actions

(1) |o I saw the girl with a teleS | shift

(2) |On2 saw the girl with a teleS | reduce by NP—n
(3) |ONP4 saw the girl with a teleS | shift

(4) |oNP4vs the girl with a tele$ shift

(5) |ONPdv8detl girl with a tele$ shift

(6)
(7)

(8)
(9)
(10)

ONP 4v8detlins
ONP 4v8NP12

0 NP 4[v 8 NP 12
Ve s
0[NP4v8NP12
S3
0[NP4V8NP12p6
iy i

with a teleS
with a teleS

with a teleS

with a teleS

a teleS

reduce by NP—detn
reduce by VP—v NP
shift

*shift

reduce by S=NP,VP
*shift

shift

Figure 3. An Example of Generalized LR Parsing

[RS8 ]
(W8]

ey ‘_,_.‘.....‘...m et
B S OO L N e

k= T U G AP A

B e
P A 2

to

e T T i
= Rt

SR e

TS T




3 Earley’s Item and Dot Reverse Item

In YAGLR method, we are not using terminal and non-teriminal symbols along with state number as
in Generalized LR parsing algorithm shown in fig.3 . But instead we use position numbers along with
state number. The position number indicates the position upto which the shift of an input sentence
has been completed. Since all the actions are carried out using state number, the actions of every
nodes in the stack will be the same if we use either position number or grammar catagory along
with state number. In Tomita’s method, packed forest representation is used instead of grammatical
catagories and partially parsed trees are produced.

During reduce actions, YAGLR creates drits. These drifs are different from Earley's items. Instead
of a partially parsed tree, we attach a set of position numbers to each node and we can create either
Earley's items or drits during reduce actions. In this section, we would like to consider the factors of
forming drits instead of Earley’s items. .

Let us consider the following stack with a reduce action ‘re,x’ and an input sentence wyws - - - w,.

(a) -+ -[{3}, S3}—I({5}, S2]—[{6}, S1]  (Top) 1ex
Here, S1, S2, S3 indicates states and 3, 5, 6 indicates position numbers. The position number i is
location between w; and w;i4). The node {6}, S1]in (a) covers the input word wg, the node ({5}, S2]
covers the input word wy to ws and so on.

Now, assume that the rule ‘x’ in the reduce action is A — B C, then two nodes from the top must
be popped and the Earley’s items shown in (b) are formed.

(b) Earley’s items :
I, 5 [A-B-C,3
Iy > [A-BC.,3

In the items in (b), number 3 inside the item is the position number, starting from which Earley’s
items are formed. This indicates that the input sentence from position 3 to 5 in the first item has
been recognized as “B”. In this way the input sentence from position 3 to 6 in the second item has
been recognized as “B C" and combined as “A" by applying rule 'x’.

Let us see what will happen if we form the items starting from position number 6 and ending with
3 in the reverse order using the rule 'x’.

(c) drits :
T Iy 3 [A-B-C,f
I, 3. [A—--BC,g

In case of (c), number 6 inside the item is the position number appeared in the top node of the
stack (a)!. These items are formed by considering the dot positions from right to left which is in
reverse direction compared to Earley’s items. Hence we call them as dot reverse items (drits), the
definition of which will be given in the next section. Here, in the first dril, the input sentence from
position number 6 down to 5 (ws) has been recognized as “C” and the input sentence from position
6 down to 3 (wywswg) in the second drit has been recognized as "B C" and combined as “A” by
applying rule 'x’.

Now let us think of the following case having stack (d) whose top nodes are merged, which is same
as Tomita's merge.

(@ 3. SI—(5), S2A1(6). S rex
==-[{2}, S4]—({4}, S2—({6}, S1]

Using the same rule 'x’, through the reduce actions on stack (d), Earley's items and drils are formed

in (e) and (f) respectively.

(¢) Earley's Items : (1) drits :
Is 35 [A-B-C,3 Is 35 [A—-B-C
Is > [A—‘BC-,3] I, > [A—»-BC,GI
I, > [A=-B.C,? I, > [A-B.C,g

'This position number 6 will remain the same until the next shift action.

24




Is > (A—'BC-,?] I, > [A—*-BC,G]

Since both top nodes of (d) has the same state, let us merge the stack (d) one node deeper to get the
stack shown in (g).

(®) ++1(3}, SI=l(5), S2({6). $1 ree

==-[{2}, S4]—{{4}, 52
Performing the reduce action ‘re,x' on (g), the two nodes are popped from the top. The items same
as that in (¢) and (f) are created from (g).

Since the state S2 of two nodes below the top node ({6}, S1] in (g) are the same, now let us see
what will happen if we proceed the merge of stack (g) one more node down as shown in (h).
(h) -~ ({3}, 33]r[{4-5}- §2)—({6}, S1] re,x

==-{{2}, $4]
In (h) we merged the nodes of state S2 with the union of position numbers. On carrying out the
reduce action ‘re,x’ on (h), the two nodes [{4,5}, S2} and ({6}, S1] are popped. In addition to Earley’s
items shown in (e), the following two Earley’s items are also created which we don’t want to have.

I, 3 [A-—’BC,S]
Is e [A—»BC',?.]

However, if we form drits for the above merged stack (h) it is again the same as in (f). This means
that the creation of proper drils is possible from much deeper merged GSS than (g). In other words,
the new merge algorithm enables us to make deeper merge of GSS and makes the structure of GSS
much simpler. This is one of the important advantages of creating drits instead of Earley’s items.
The reason why the creation of proper driis is possible comes from the fact that LR parsing is based
on the right-most derivation. Needless to say, Tomita's merge algorithm does not permit such a deep
merge operation. The details of our merge algorithm is given in the following sections along with
justifications. ;

Another important fact in using drits is the localization of duplication checks. The position number
inside Earley’s items will change within the processing of a single input word itself, as we see in (e).
On the other hand, the position number inside drits will remain the same throughout the processing
of a single input word and thus it enables us to limit the duplication check within the processing ol a
single input word. Therefore we can localize and reduce the range of duplication check of drits.

4 Dot Reverse Item

While Tomita's algorithm creates partialy parsed trees during reduce actions, YAGLR crcates the
drits which differ from Earley's items. A dritis defined as follows.

Let G= (N, T, P,S)be 2 CFG and let w= w; w; .... wo € T" be an input sentence in T which
is a set of 2 sequence of terminal symbols. Fora CFGrule A = X; ... X, and0<; < n, [A = X
Xq .. Xp - Xgg1 o X, J] is called a drit for w. The dot between X; and Xi41 is 2 metasymbol not
in N and T. The suffix 1 in the input sentence is called the position numder in the following sections.
The special position number ‘0’ represents the left hand side position of w;.

I;, a set of drit is defined as follows. Fori and j (0<i<j<n),[A—>c-B,J]€if SS>7AS,
B = wip wiga... wj, and § > Wi4iWi42. .. Wa Where the dot position is a suffix 1 of an item set I;.
The sequence of sets Iy, Iy, ... , I, is the parse list for the input sentence w.

The difference of a drit with Earley’s item lies in the interpretation of j. It is cvident from the
above definition that, in the dril, the analysis has been completed for § which is on the right hand
side of the dot symbol. On the contrary, in case of Earley's item, the analysis has been completed for
a which is on the left hand side of the dot symbol.

L8]
I

RS eeptpdiysi sl niiafnnlisusinbioa

Sl ~dame ety aps
LR R T T I

T e SO} 4 Mg A o Y S,

£
&
&
4 ¢
2
i3

-

[EX o

S AL L R TGN T

R

=. AT TR

o EEAi s T D

Eatad Rt ot s - R L

. omwomTIE il i




5 The Method of YAGLR

In this chapter, we will explain the structure of a graph-structured stack (GSS) and merge actions
followed by shift and reduce actions. Finally we give the procedure of YAGLR.

5.1 GSS,Merge, Shift and Reduce Action
5.1.1 Graph-Structured Stack (GSS)
Each node of GSS used in YAGLR has the following structure:

[<a set of position numbers>, <state>].

The set of position numbers are used to produce drils during reduce actions. Traversing a path of
GSS from top to bottom, we have two adjoining nodes A and B (refer figure below). Concerning to
this path, let the node which is nearer to top of the stack be A. Then, A is the parent node of B and
B is the child node of A. The node X positioned other than top and bottom of the stack stretches
links to the children nodes and the parent nodes. Concerning to node X, the former's links (links to
children nodes) are called as OUT links and the later's links (links from parent nodes) are called as
IN links. Again concerning to node X, OUT links V, ..., W are all in the same level. The bottom
of GSS is mentiond as O in the figure below. In general, there will be several top nodes in GSS, but
after merging, the remaining top nodes will be at most no more than the number of distinct states.

7‘1 r’x' r Y—°
(bottom) 0< E i (top)
I LaTNz :
0UT link I¥ link B

5.1.2 Merge of Nodes
™~ . -

In YAGLR, the merge proceeds from top to bottom of GSS. The nodes which are having the same
state can only be merged and the merge procedure difleres depending on the location of the merging
node. To mecrge two nodes with the same state, we apply the following procedures (M1) and (M2).
Applying (M1) and (M2) recursively the merge can be extended to handle more than two nodes having
the same states.

(M1) The two top nodes [{i}, s] and [{i}, s] are merged into one node as [{i}, s}. The two top
nodes before merge are now become merged into one and their OUT links becomes the OUT links of
newly created merged node.

(M2) Let the parent node be X. For the two children nodes [M, s] and [N, s] of X, a new merged
node [M U N, s] is formed. The OUT links of [M U N, s] are decided by either (M 21) or (M 22).

(M21) If M (or N) is subset of N (or M) then, the node [N, s] (or [M, s]) will become the merged
node and hence, the OUT links of merged node will become the OUT links of the node [N, s] (or [M,
s]). In this case, the states of the children nodes attached to OUT links are different from cach other
and so no more merge is possible.

(M22) If M (or N) is not subset of N (or M), then all OUT links of both {M, s] and [N, s] will
become the OUT links of the merged node.

After the explanation of a reduce action, we will give the justification of the above two merge
procedures, (M1) and (M2). Since we defined the merge actions considering two nodes, we now give
the merge algorithm of GSS as follows.




5.1.3 Merge Algorithm of GSS
(1) If all the top nodes of stack has distinct states then merge process cnds. Otherwise, to merge the
top nodes of the stack with same states, apply (M1) repeatedly. Then, for every set of children nodes

of all the merged top nodes, perform (2).
2) In 2 given set of nodes, il there is nonode having same state then the merge action ends. Otherwise,

apply (M2). In performing (M2) for the two nodes, if (M21) is applied then the childern nodes of
the currently merged node has dictinct states. It means that jt is not necessary to proceed the merge
beyond this level. This is an important fact from the efficiency point of view of our merge operations.
If (M22) is applied merge operations will proceed one step deeper.

An Example of Merge on GSS
-0 d-==[-] (top)
(a) --- -[{2,3}, 8)4--[{2,4,5}, 9)--[{6}, 1] (top)
(b) === -[{2,3,4}, 8)--({3,5}, 9)---[{6}, 1] (top)
! applying (M1)

[ 3---{--] (top)
(c) --- -({2,3}, 8]4{t[{2,4.5}: 9
-[{8}, 1] (top)

=== -[{2,3,4}, 8]-*[{3,5}, g
| applying (M22) i t.l\.e‘x:-

/"[- +J---[---] (top)
j;>~—[{2i§,s}, 9)---[{6}, 1] (top)

=== -[{2,3,4}, 8

(d) -~ -[{2,3}, 8]

! applying (M21)

-[-3=-=(--] (top)

(e) -+ =-[{2,3}, 8] )

-1{77,5}, 9)---[{6}, 1) (top)
=== -[{2,3,4}, 8 V-

Let us merge the above stacks (a) and (b) using our merge algorithm. Since the top states of both
the stacks are the same which is 1, use (M1) and get the partialy merged stack (c). The children
nodes of the merged top node in (c) has the same state 9 and one more step deeper merge operation is
carried out using (M22) and we get (d). As newley created merged node has two children nodes with
the same state 8, carry out merge operations using (M21) since we have the set of position number
{2,3} is a subset of {2,3,4}. As all the children nodes below the node [{2,3,4}, 8] are retained as the
resultant children node of the merged node, we get (¢) (in this case it is the same as (d) ) and the

merge operation ends here.

5.1.4 Shift action

Let us explain a shift action, “sh, u” to a path of GSS as shown in (a). It shifts (pushes) a new node
onto the path of GSS getting (b) and creating a drit in I; as shown in (c). Tle position number of

SRR P i € T TS AET

L=




the shifted node in (b) is increased by one.

(a) -+ ~[M,s]—({i}.,t] (top) “sh,u”
(b) - ~[M.—{(i}4-[{+1)} 1] (top)

() I: 3 (X = - wipr, i+1). ‘

5.1.5 Reduce action
Let us consider a reduce action for a path of GSS using a CFG rule having m nonterminal symbols
on its RHS:

A - A’lXQ....Xm

After the reduce action for (a), (b) is obtained along with the formation of 2 set of drits as shown in

().

(2) -+ =[Ps. se)-[Pry1s se41)= - =[Pram, St4m](top)

(b) - =[P, st]-[P'r4m, t](top)

\Where the state ‘t’ in (b) is a new state determined by GOTO table of both's; and A (the LHS of 2
CFG rule used in the reduce action) and

Pr={a,b,.. .}, Pesa={c,d,. ..}, ..., Pigmor ={e {,. . g}, Prgm = {i}, Prsm = {i}

Note that 2 set of position number. Py, at the top node of (2) is {i} which includes only one position

number of the last input word shif; o far and a set of position number P’y ;.. after the reduce action
is {i}. Note that the position number in both Py, and P’y are same.

(c) Formation of drils :
L 3 [A--X1X2..Xnm i)
15 9 [A — ~X1X3...Xm ,ll]
L 5 [A—=Xi XaXnm i
Id E] [A - A') 'J\"_’-.-Xm ,:]
I, 3 [A - X1 Xqo- Xm ,{]
I, 3 [A-X1X. Xn i

I, 5 (A= XX Xm o]

The position number 1 inside a drit is a position number of the top node in the stack and is
remained unchanged until the next shift action occurs. The drit such as [A — X, ... , Xin - ,i] (€L;)
is not produced because they do not contribute the formation of trees.

5.1.6 Justification of the merge of nodes

The justification of (M1) in section 5.1.2 is evident without any arguments. The justification of (M2)
is as follows.

1. In YAGLR, a shift action will wait until all reduce actions has been carried out. Becausc of
this, during all the reduce actions the top nodes of all GSS will have the same position number.
Therefore all position numbers inside any drils, formed by reduce actions before the next shift,

should be the same.

2. A suffix of a drit set such as ¢ in I; stands for the position number of a dot in the drit. The
suffix i is determined by position numbers in the poping nodes by a reduce action as explained
in 5.1.5. As two nodes merged are in the same distance from the top node, all position numbers

28




in these nodes are included in the resultant merged node which includes a union of two sets of
position numbers in the two nodes before merge.

3. When M is not a subset of N, it can be clear that the children nodes of both top nodes should
be inherited to the merged node and be candidate nodes of the next merge operations. On the
other hand, if M is a subset of N, the merged node [M U N, s] is equal to [N, s] which inherits

all the subtrees immediately below [N, s].

5.2 Procedure of YAGLR
Let us give a complete algorithm of YAGLR.

Set the initial state of GSS as :

1.
(Bottom)  [{0},0]  (Top)
9. For every node in the top of the stack, select the actions determined by the LR table and do
them as described in (3).
3. For actions other than shift: Do (3.1) to (3.4) repeatedly for every top node of the stack and

goto (4).
(31) “accept”: End with “success”

(3-2) “error” : End with “failure”
(3-3) “reduce”: Do the reduce action and then with the newley created top nodes goto (2).

(3-4) “shift/reduce”: Do all the reduce actions by (3-3) and then goto 4 with shift actions.

4. Carry out all shift actions, merge GSS and then goto (2)

6 Experimental Results

In this section we give the preliminary experimental results comparing with SAX [Matsumoto, 88)
and SGLR [Numazaki, 91). SAX is based on the bottom up version of Chart algorithm and SGLR is
based on Tomita's algorithm using tree-structured stacks. All the experiments are done on Sun 3/260

machine and using Quintus PROLOG.

50— ——————— 100 . —_— )
{
i
ast i
i
40 ;
SGLR: 80
i
35 H /
Eoax ]
&l; 30 §: O 60 SGLR
i L.
2 £ ©
_:: 2% :: B
£ £
= 20 H = 40
g 2
o 15t : o
g .! ;
< i a
10 i; 20}
Z:
st / YAGLR
0, 2 'Y ' = re (N 0, 2 3
& < ) - Wil T4 4 - © L] ¥
Length of Input Sentence No. of PP-attachments
Figure. 5.1 Figure. 5.2




In figure 6.1 we give the results for the grammar in [Johnson,89] for which Tomita's and even SAX
or SGLR doesn't fare well. In figure 6.2 we give the result for a larger grammar with 123 grammar
rules. For fig.6.1 we can easily prove that the parsing time is in the order of 2(n?) [Tanaka, 91] ang
also from fig.6.2, for general CFG, we can infer that the time compexity of YAGLR is in the order of
Q(n’). The results in fig 6.1 and 6.2 shows the parsing time without forming trees for all the three
SAX, SGLR and YAGLR parsers. Figure 6.3 shows the results of our preliminary experiment on the
memory space consumed by YAGLR for the parsing of fig.6.1 and fig.6.4 shows that of fig.6.2. From
these comparisons the performance of YAGLR is clearly understandable.

20 . v - — 20 - v T .
: i
{ H
/
s , / 15 l
“ ] ] iR
> : / = IG’
& s i ISGLR Q e
X 9] hY !
g Si = saxi
5 10 if s ]
o :. &; ] ’
S / S ;
i > I
g S i
£ if g iy
Y I'; O ; /
X s i X s /,/
P =’ YAGLR
S YAGLR vl
0 1 ’..::l‘f N L G MR ;.4..".- -| - (8 3
B (3] L) 14t 14 — 14 [4 R ] ® 3 0
Length of Input Sentence No. of PP-anachments
Figure. 5.3 Figure. 54

The memory space consumed by YAGLR is very less since YAGLR does effective and cfficient
merge operations on GSS. Note that in YAGLR we produce the partially parsed informations (ie,
drits), whereas in our experiment, SAX and SGLR are not producing any form of partially parsed
informations. It is the reason why YAGLR needs more space in case of PP-attachments less than 5.
Still we are testing our algorithm with different grammars and we will present them in our preparing

paper.

7 Conclusion
We have described the basic idea of YAGLR. The followings are main fcatures discussed.
1. For optioally choosen CFG, the parsing time of YAGLR for an input of length n scems to be in
the order of n3.

2. In the reduce action, we creat drils which are symmetrical to Earley's item and the reasons for
creating drils has been explained.

3. Since YAGLR is based on LR parsing algorithm, the total number of drits formed is less than
that of Earley's items.
4. In YAGLR we used GSS similar to that of Tomita's and merging of GSS is more deeper and

effective. Because of our effective merge algorithm we can even use tree-structured stacks instead
of GSS and on using tree-structured stack the memory space used is very less which is realized

by our experiments.

30




5. Experimentally, we proved that our YAGLR parsing algorithm parses the input much faster.
When the ambiguity of the given input becomes more the parsing speed of YAGLR increases
more and more compared to other algorithms.

A few of interesting problems have remained unsolved with YAGLR.
1. To prove the time complexity of YAGLR for general CFG is Q(ns).

To estimate the memory space needed for parsing.

(V)

3. To develop parallel algorithm for YAGLR method.
4. To develop a parallel algorithm for the tree generation from drits.

In Kipps [Kipps 89}, he made a simple correction in Tomita's algorithm and showed that for general
CFG, the parsing time can be in the order of (n®). But his algorithm requires space more than
Tomuta’s. In YAGLR, the space required seems to be minimized because of our merge algorithm. For
a general CFG, it needs to do a detailed estimation of the memory space used by YAGLR.

\Vith regard to the parallel algorithm for YAGLR, it is important to make waiting time 2s less as
possible when a shift-reduce conflict occurs [Numazaki,90).

At present the tree forming algorithm of YAGLR is corresponding to the one from Earley's jtems.
In this algorithm for the formation of one tree, the time needed is in the order of n? {Aho, 72}. Since
we want to reduce the time consumed for forming trees, we would like to do research on the parallel
algorithm for the tree formation from drits.

References

[Aho 72] Aho,A.V. and Ulman,J.D.: The Theory of Parsing, Translation, and‘ compiling, Printice-
hall, New Jersey (1972).

[Earley 70] Earley,J.: An Efficient Augmented-Conlezt-Free Parsing Algorithm, comm. of ACM, 13,
1-2, pp.95-102 (1970).

[Johnson 89] Johnson,M.: The Computationa! Complezity of Tomile's Algerithm, International pars-
ing workshop'89, Carnegie-Mcllon University, pp.203-208 (1989).

[Kipps 89) Kipps,J, R.: Aneclysis of Tomita's Algorithm for Generel Contezt-Free Parsing, Interna-
tional parsing workshop'89, Carnegie-Mellon University, pp.193-202 (1959).

[Matsumoto 88] Matsumoto,Y. : Nealural Language Parsing Systems based on Logic Progreraming,
Dotor Thesis of Kyoto University, Kyoto, Japan, 1988.

(Numazaki 90| Numazaki,H. and Tanaka.H : A New Parcllel Algorithm for Generalized LR Persing,
COLING’S0 , Vol.2, pp.305-310 (1990).

B T S R B R U S A

(Numazaki 90] Numazaki,H. and Tanaka.H : SGLR : A Sequential Generalized LR Parser in Prolog
Information Processing Socicty of Japan Vol.32 No.3, 1991.

(Tanaka 89] Tanaka,H. and Numazaki,H.: Parallel Generalized LR Perser Based on Logic Program-
ming, 1st Australian-Japan Joint Symposium on Natural Language processing, pp.201-211 (1989).

[Tanaka 91] Tanaka,H. and Suresh,K.G: YAGLR Mecthod: Yet Another Generalized LR Parser, SIG.
NLP 83-11, Information Processing Society of Japan, pp.79-88 (1991) (In Japanese).

[Tomita 86] Tomita,M: Efficient Parsing for Natural Lenguage, Kluwer, Boston, Mass(19S6).

[Tomita 87] Tomita,M: An Efficient Augmented-Conlezl-Free Parsing Algorithm, Computational Lin-
guistics, 13, pp.31-46(1987).

31

T aVTITY RRARE e Yy U 8T AT U L redeph (T S R T Ly

pora






