Increniental Analysis of Japanese Dependency Relations
with a Generalized Discrimination Network

Manabu Okumura®, Tomoyosi Akiba™, Hozumi Tanaka**

* School of Information Science,

Japan Advanced Institute of Seience and Technology, Hokuriku

Tatsunokuchi, Ishikawa, 923-12, Japan
E-mail: oku@jaist-cast.ac.jp

Abstract

In this paper we present a semantics-driven incremental
disambiguation approach for Japanese structural ambi-
guity. Structural ambiguity occurs in Japanese analysis
when we determine dependency relations in which one
phrase modifies anorher in a sentence. We show that
hy using a generalized discrimination network(GDN) as
a representation of a set of case frames, we can resolve
structural ambiguity earlier than by ordinary integrated-
and-inecremental approaches. In onr approach, semantic
checking can be executed not only after both are ana-
lyzed, but also as soon as two modifiers which might
modify the same modifyce are analyzed. Further inte-
grated with lower level analyses, such as morphological
analysis, our truly incremental disambignation approach
is considered useful in that our earljer decision making
based on syntactic and semantic knowledge contributes
to the further suppression of ambiguities at lower levels.

1 Introduction

In natural language analysis. one of rhe most important tasks is
to resolve ambiguities in a sentence. hecause if they are not suffi-
ciently resolved, many anomalons and undesirable results are ob-
tained. Structural ambignity occurring in syntactic analysis is one
such ambiguity. It is known to cause a Catalan number of ambigu-
ous parse trees[5], which increase at an exponential rate if syntactic
analysis is pecformed separately from other analyses, such as se-
mantic analysis, that might follow it. In such a case, all the parse
trees have to be checked, once by one, for their semantic appropri-
ateness by semantic analysis.

One soliition of this problem of sa-called two-stage approach is to
avoid generating a combinatorial number of individual parse trees
explicitly, and to praduce a compact representation of ambiguity
that leaves all local ambignities packed. Representations such as
the syntactic graph{22]. the constraint network[15], the modifying
relation table(23] and the right-branching tree{7], and notions such
as amhignity procrastination[21] and least commitment parse[20]
are considered to helong to this category.

‘The other solution is to integrate syntactic analysis with other
analyses, snch as semantic analysis, and to resolve ambiguity in-
crementally curing one analytical process[16, 2, 12, 9]. In this ap-
proach. semantic knowledge, snch as case frames, is used to check
the applicability of grammar rules in syntactic analysis. [t con-
tributes to the suppression of anomalous partial parse trees gen-
erated during the analvtical process. and thus the derivation of a
combinatorial number of parse trees from them can be avoided.

In this paper we present a semanties-driven incremental disam-
bignation approach for Japanese structural ambiguity. Structural
ambignity occurs in Japanese analysis when we determine depen-
dency relations in which one phrase modifies another in a sen-
tence(this is deseribed in more detail in section three). However,
syntactic knnwledge, such as grammar rules, is not very useful for
structural disambiguation in Japanese because of the language’s

** Department of Computer Science,
Tokyo Institute of Technology
2-12-1, O-okayama, Meguro-ku, Tokyo, 152, Japan
E-mail: {akiba,tanaka}®@cs.titech.ac.jp

telatively free word arder and widespread cllipsis. Thercfore, in
our approach semantic knowledge(case frames) is used directly to
tesolve structural ambiguity incrementally during the analytical
process.

We show that by using a generalized discrimination network
(GDN)[19] as a representation of a set of case frames, we can ro-
solve structural ambiguity carlier than by ordinary integrated-and-
incremental approaches. In ordinary approaches, semantic check-
ing(in which semantic appropriateness of a potential dependency
relation is checked in terms of case frames) is executed after hoth
the modifying phrase(modifier) and the modified phrase(modifyec)
are analyzed. [n our approach, however, semantic checking can be
executed not only after both are analyzed, hut also as soon as two
modifiers which might modify the same modifyce are analyzed. In
Japanese, a modifyee(usually a verb) usually appears after all of
its modifiers in a sentence, and so semantic checking begins sooner
in our approach than in ordinary ones. GDN enables to resolve
word sense and structural ambiguities truly incrementally when-
ever a phrase appears in a sentence. Further integrated with lower
level analyses, such as morphological analysis, our truly incremen-
tal disambiguation approach is considered useful in that our earlier
decision making based on syntactic and semantic knowledge con-
tributes to the further suppression of ambignities at lower levels.
At first. we proposed GDN for incremental word sense disambigua-
tion,but in this paper we show that. it is also useful for incremental
structural disambignation.

In section two, we briefly outline (iDN. In section three, we
describe how GDN drives incremental analysis of Japanese depen-
dency relations.

2 Outline of Generalized Discrimina-
tion Networks

In this section, we outline GDN's characteristics and principles to
make comprehensible the explanation of incremental structural dis-
ambiguation with GDN, which is described in the following section.
For details, please refer to [19].

2.1 Characteristics of Generalized Discrimina-
tion Networks

A discrimination network is a gencralization of a decision trec(3]
and has been nsed for various problem solving systems{d], espe-
cially in representing multiple word meanings compactly in natu-
ral language processing [10. 17, 13. 1]. A diserimination network is
considered a directed acyelic graph with one root node and many
leaf nodes.

Fignre | is a portion of the discrimination network that repre-
sents word senses(and case frames) of Japanese verhs. Each branch
of the network is labeled as one of two types of the canstraint. “'he
first type is a selectional restriction on surface cases(postpositions
"ga,’ ‘wo," and so on) with which the verbs co-ocenr. The other
type is on the entry word of the verbs(for example, “verb/kakeru’),
which indicates the entry word that a word sense(a case frame)

787

1311

()

Figure I: A portion of the discrimination network of word senses
of Japanese verhs

belongs to. Each leaf node of the network points to a word sense
of the verbs, which is represented by the boxed label. A set of con-
straints in the path from the root node to a leaf node represents
the case frame for the word sense corresponding to the leaf node.
Other nodes represent. ambiguous word meanings that include all
word senses corresponding to the leaf nodes helow them, because
from these the further traversal along branches to multiple nodes
is possible. The root node cortesponds to the most ambiguous
meaning’ . .

The semantic analysis(word sense disambiguation) process using
a discrimination network is a step by step downward traversal of
the network from the root node to a leaf node guided by branches,
the constraints of which are satisfied by the information of the
analyzed phrases. In this process, semantically inappropriate al-
ternatives are rejected, and appropriate word senses are selected
by virtue of information about other co-occurring phrases in the
sentence.

A discrimination network has the following advantages:

o In the discrimination network, a unique node can represent
multiple word senses that correspond to the leaf nodes below
it. Therefore, the downward traversal of the network corre-
sponds to the continuous refinement of an ambiguous word
meaning into a more specific one. This is what the constraint
programming paradigm[6] will achieve;

o The discrimination network s search algorithm is more efficient
than a linear search, hecause the downwatrd traversal is guided
by constraints which are labels of branches, and the search
space can he gradnally narrowed down;

¢ Becanse the common selectional restrictions(constraints) can
be merged into only one branch in the network, we can com-
pact a set of case frames. Therefore, we need only check once
for one constraint to see if- the'constraint is satisfied, thus
avoiding wasteful and repetitious computations.

Despite the diserimination network's impressive characteristics
mentioned above, it does have some critical problems. Because
the network is traversed downward from the root node, constraints
must be cntered one by one from constraints that are labels of
branches connected to the root node. However, because incre-
mentally obtained constraints might deviate from an a priori-fixed
order and because some constraints that are necessary for travers-
ing the network downward might not he obtained, it is not always
possible to traverse the network downward during the analytical
process.

1We explain identifiers attached Lo the nodes in the nest subsection.

788

GN solves these problems of the discrimination network that.
prevent the incremental word sense disambignation approach, and
enables the downward traversal of the network. which uses the in-
crementally obtained constraints during the analyvtical process. We
think incremental disambiguation[l6] is also a better strategy for
word sense disambiguation, because a combinatarial explosion of
the number of total ambignitics might acenr if word sense ambi-
guity is not incrementally resolved as carly as possible whenever
constraints are obtained during the analytical process of a sentence.

As surface variations such as relative clauses and passive forms in
English demonstrate, problematic situations often develop for the
discrimination network. In Japanese, the situation is even worse.
Because Japanese has greater word order flexibility, the degree of
deviation from the a priori-fixed order can he considerable. In addi-
tion, in Japanese, phrases that can he easily understood from con-
textual information are often omitted. Thevefore, we think GDN
is essential to the analysis of such a langnage as Japanese.

In the next subsection, we briefly descrihe how GDN executes
semantic analysis.

2.2 Incremental Semantic Analysis with Gener-
alized Discrimination Networks

Consider the analytical process of the sentence ‘hasi wo kawa ni
kakeru(someone constructs a bridge over the river)”, using the
network shown in Figure 1. For the traversal of GDN, we provide
correspondences between a constraint and a ‘conditional identifier.’
A conditional identifier consists of an identifier of a node followed
by an ‘if-clause’ that represents a list of unsatisfied constraints.
This correspondence between constraint and identifier means that
if a constraint of a branch is satisfied, the nodes of the correspond-
ing identifiers can be reached in the network conditionally(if the
constraints in the if-clause are satisfied). An identifier with no
if-clause means that a node of the identifier can he reached un-
conditionally. In Figure |, identifiers of the nodes are given, and
unsatisfied constraints in the if-clause are computed as a list of
the constraints, other than the satisfied one, in the path from the
root node to the reached node. For example, if the constraint
wo/human is satisfied, the network can he traversed downward
to the node of the corresponding identifier 131 if the constraint
ga/human is satisfied.

Now we informally describe the analytical process of the ahove
sentence, in which a necessary constraint ga/human is not ob-
tained(ellipsis of the postpositional phrase corresponding to ‘some-
one’) and the order of the obtained constraints is irregular(order
flexibility of postpositional phrases). Figure 2 shows a ‘state’ tran-
sition which represents the discrimination process. A state is rep-
resented in the form of a conditional identifier. The initial state(in
which no constraints are obtained) is 1(the identifier of the root
node). After the phrase ‘hasi wo(a bridge)’ is analyzed, the state
is computed as follows, with the current state(the initial state)
and a set of conditional identifiers {12] if gafanimal, 1322 if
ga/human & ni/place} corresponding to the constraint satisfied
by the phrase: ‘

Both 121 and 1322 include | as a prefix-numerical string,
so the longer strings 121 and 1322 arc returned®. Be-
cause the current state has no if-clause, the if-clause
of the next state hecomes the same as the if-clause of
the conditional identifiers corresponding to the obtained
constraint. Therefore, the next state hecomes {121 if
gafanimal, 1322 if ga/human & nifplace}).

Next, the phrase ‘kawa ni(over the river)’ satisfies the constraint
ni/place, which corresponds to a set. of the conditional identifiers

2The postpositional phrase carrespaiiling to ‘sameane’ is onitted in the
nri;linnl Japanesr xentence.

*As shown in Figure 1, identifiers of nintually reachable nodes in the net-
work are in a prefix-nuinerical string relation with ~ach other. Il one node
is reachable fruns the other, the identifier of the subioptinate one is retuned.
This aperation corresponds Lo a downward Laversal of the network by the
obtained coustraints.

wo/object ni/place verb/kakeru

Initiall
.ifal
im
D %? if @G if G22Dif
ga/human ga/human ga/human

& ni/place

Figure 2: "The diserimination process using GDN

aaYara

kawa-wo umi-ni sumu sakana-ga oyogu

Figure 3: Dependency strucrure of the sentence “kawa wo umi ni
sumu sakana ga oyogu’

{123 if gnfanimal, 132 if ga/human}. Any combinations of the
identifiers hut 132 and 1322 are not in a prefix relation, and so
the analyses fail. Therefore, the resultant identifier is 1322 from
identifiers 132 and 1322, The resultant if-clause is if ga/human
because the constraint ni/place in the if-clause of the current state
is obtained and removed from it.

Similarly, after the phrase ‘kakern{construct)’ is analyzed, the
final result of the traversal for the above case becomes 13221 if
ga/human, which means that node 13221 is reachable if the con-
straint ga/human is obtained. .

Note that the word sense of the verh ‘kakeru,” which appears in
the last of the sentence, is uniquely determined to be ‘construct’
among three word scnses(corresponding to identifiers 111, 1222
and 13221) hefore the verb is analyzed. Further, the place of the
missing phrase is detected as the unsatisfied constraint ga/human.

Compared with the ordinary approach for semantic analysis us-
ing case frames, where semantic checking(used to check whether
a postpositional phrase(‘kawa ni’) satisfies a selectional restric-
tion of a verh) is not executed until a verb(‘kakeru') is analyzed,
aur approach executes earlier semantic checking before a verb is
analyzed later in the sentence. Our approach exccutes semantic
checking{word sense disambiguation) truly incrementally whenever
a phrase is analyzed.

3 Incremental Dependency Analy-
sis with Generalized Discrimination
Networks

Unlike other langnages which are based on phrase structure,
Japanesc sentences have a dependency structure among their
phrases. A Japanese sentence can be segmented into a sequence
of phrases called *hunsetu.” In this paper the term ‘phrase’ is used
to mean Japanesc ‘bunsetu.’ A phrase is regarded as a minimel
semantic element in a sentence. The internal structure of a phrase
has been well studied in Japanesé lingnistics, so the details are not
given here. We assume the results of past ‘inner-phrase’ analy-
ses. The dependency relation is one in which a phrase modifies
another in a sentence. The dependency structure for the sentence
‘kawa wo umi ni sumu sakana ga ovogu(Fishes that inhabit the sea
swim in the river) is shown in Figure 3. In Figure 3. arrows from
modifying phrases(moditicrs) to moclified ones(modifyees) repre-
sent dependency relations. For example. the postpositional phrase
‘kawa wo(in the river) modifics the verb ‘oyogu(swim).’

In this seetion. we deserihe how these dependency relations
among phrases are analyzed incrementally during the analytical

kawa-wo umi-ni kawa-wo umi-ni

Figure 4: The intermediate state of incremental dependency anal-
ysis at the phrase ‘nmi ni’

process of a sentence, hased on GDN-represented case frames.

3.1 The Process of Incremental Dependency
Analysis

Incremental dependencey analysis is to determine dependency rela-
tions between two phrases incrementally as a sentence is analyzed
from left to right. The intermediate state of ineremental depen-
dency analysis (after a phrase is analyzed) is represented as a set
of stacks? of arrows which pass over or start from the phrase and
do not end. The stack indicates a set of potential dependency re-
lations in which modifyecs are not determined®. Multiple stacks
might exist hecause of the ambiguity. For example, the state at
the time after the phrase ‘umi ni' is analyzed in the sentence ‘kawa
wo umi ni sumn sakana ga oyogu' is shown in Figure 4. ‘The left
stack is for the structure in which two phrases(‘kawa wo' and ‘umi
ni’) modify a different modifyee, and the right stack is for that in
which two phrases modify the same modifyect.

Dependency analysis operations act on each stack of the current
state whenever a phrase is analyzed. There are two types of oper-
ations; those for treating the phrase as a madifyee and those for
treating the phrase as a modifier. We call them ‘In phase’ and
‘Out. phase’ operations, respectively. We provide the following In
and Out phase operations, which are illustrated in Figure 5:

e In

pass no phrases modify the phrase. The current stack is
handed to the Out phase unchanged.

pop phrases(an arrow) on the stack top of the current stack
modify the phrase. The element of the stack top is
popped and the stack is handed to the Ont phase.

e Qut

merge an arrow from the phrase is merged with the arrow of
the stack top, regarding the phrase as modifying the same
modifyec as the set of phrases indicated hy the arrow.

push a new arrow is generated from the phrase and is pushed
on the stack top.

As is clear from the above descriptions, hoth operations in the
phases can he non-deterministically executed, unless knowledge
useful for disambiguation is taken into account. Therefore, the
ambiguity of dependency relations occurs in the analytical process
and canses multiple stacks, as shown in Figure 4. Although our
approach tesolves the ambiguity as early and as much as possihle
using syntactic and semantic knowledge deseribed in subsequent.
subsections, we also pack a set of stacks if passible. As in Tomita’s
algorithm[24, 18], we make a set of stacks structured in the tree
form in cases where stack tops are common. ‘This tree-structured
stack avoids redundant computation as much as passible. For ex-
ample, two stacks

*We use a slack representation to naturally take into acrount the “no cooms
ing prinwiple’ in Japanese, as described in the neat subsection.

SFixed dependency relations are stored «ifferently an o part of intermediaie
semantic representation fur a sentenee.

8Thix in the mraning of the merged arrow, as describied belos

789

ga/objact

construct

Figure 1: A portion of the discrimination network of word senses
of Japanese verbs

belongs to. Each leaf node of the network points to a word sense
of the verbs, which is represented by the boxed label. A set of con-
straints in the path from the root node to a leaf node represents
the case frame for the word sense corresponding to the leaf node.
Other nodes represent. ambiguons word meanings that include all
word senses corresponding to the leaf nodes below them, because
from these the further traversal along branches to multiple nodes
is possible. The root node correspands to the most ambiguous
meaning’. :

The semantic analysis(word sense disambiguation) process using
a discrimination network is a step hy step downward traversal of
the network from the root node to a leaf node guided by branches,
the constraints of which are satisfied by the information of the
analyzed phrases. In this process, semantically inappropriate al-
ternatives are rejected, and appropriate word senses are selected
by virtue of information about other co-occurring phrases in the
sentence,

A discrimination network has the following advantages:

o In the discrimination network, a unique node can represent
multiple word senses that correspond to the leaf nodes below
it. Therefore, the downward traversal of the network corre-
sponds to the continuous refinement of an ambiguous word
meaning into a more specific one. This is what the constraint
programming paradigm(6] will achieve;

o The discrimination network's search algorithm is more efficient
than a linear search, because the downward traversal is guided
by constraints which arc labels of branches, and the search
space can be gradually narrowed down;

o Beeause the common selectional restrictions(constraints) can
be merged into only one branch in the network, we can com-
pact a set of case frames. Therefore, we need only check once
for one constraint to see if the:constraint is satisfied, thus
avoiding wasteful and repetitious computations.

Despite the discrimination network’s impressive characteristics
mentioned above, it does have some critical problems. Because
the network is traversed downward fram the root node, constraints
must be entered one by one from constraints that are labels of
branches connected to the root node. However, because incre-
mentally obtained constraints might deviate from an a priori-fixed
order and because some constraints that are necessary for travers-
ing the network downward might not be obtained, it is not always
possible to traverse the network downward during the analytical
process.

We explain identifiers attached to the nudes in the neat subsection.

788

GIIN solves these problems of the discrimination network that
prevent the incremental word sense disambignation appreach, and
enahles the downward traversal of the network. which uses the in-
crementally obtainad constraints during the analytical process. Ye
think incremental disambignation{16] is also a hetter strategy for
word sense disambigunation, because a comhinatorial explosion of
the number of total ambiguitics might occur if word sense ambi-
guity is not incrementally resolved as early as possible whenever
canstraints are obtained during the analytical process of a sentence.

As surface variations such as relative clauses and passive forms in
English demonstrate, problematic situations often develop for the
discrimination network. In Japanese, the situation is even worse.
Because Japanese has greater word order flexibility, the degree of
deviation from the a priori-fixed order can be considerable. In addi-
tion, in Japanese, phrases that can be easily understood from con-
textual information are often omitted. Therefore, we think GDN
is essential to the analysis of such a language as Japanese.

In the next subsection, we briefly describe how GDN executes
semantic analysis.

2.2 Incremental Semantic Analysis with Gener-
alized Discrimination Networks

Consider the -analytical process of the sentence ‘hasi wo kawa ni
kakeru(someone constructs a bridge over the river)™, using the
network shown in Figure 1. For the traversal of GDN, we provide
correspondences between a constraint and a ‘conditional identifier.’
A conditional identifier consists of an icdentifier of a node followed
by an ‘if-clause’ that represents a list of unsatisfied constraints.
This correspondence between constraint and identifier means that
if a constraint of a hranch is satisfied, the nodes of the correspond-
ing identificrs can be reached in the network conditionally(if the
constraints in the if-clause are satisfied). An identifier with no
if-clause means that a node of the identifier can be reached un-
conditionally. In Figure I, identifiers of the nodes are given, and
unsatisfied constraints in the if-clause arc compnted as a list of
the constraints, other than the satisfied one, in the path from the
root node to the reached node. For example, if the constraint
wo/human is satisfied, the network can be traversed downward
to the node of the corresponding identifier 131 if the constraint
ga/human is satisfied.

Now we informally describe the analytical process of the abhove
sentence, in which a necessary constraint gafhuman is not ob-
tained(ellipsis of the postpositional phrase corresponding to ‘some-
one’) and the order of the obtained constraints is irregular(order
flexibility of postpositional phrases). Figure 2 shows a ‘state’ tran-
sition which represents the discrimination process. A state is rep-
resented in the form of a conditional identifier. The initial state(in
which no constraints are obtained) is I(the identifier of the root
node). After the phrase ‘hasi wo(a bricge) is analyzed, the state
is computed as follows, with the current state(the initial state)
and a set of conditional identifiers {121 if gafanimal, 1322 if
git/human & ni/place} corresponding to the constraint. satisfied
by the phrase: ’

Both 121 and 1322 include | as a prefix-numerical string,
so the longer strings 121 and 1322 are returned®. Be-
cause the current state has no if-clause. the if-clause
of the next state hecomes the same as the if-clause of
the conditional identifiers corresponding to the obtained
constraint. Therefore, the next state becomes {121 if
gajanimal, 1322 if ga/human & ni/place}).

Next, the phrase ‘kawa ni(over the river)’ satisfics the constraint
ni/placc, which corresponds to a set of the conditional identifiers

2The pontpositional phrase corvesponding b samenne’ s omitted in the
nrigilml Japanese sentence.
“As shown in Figure 1, identifiers of munlually reachable nodes iv the nel-

work are in a prefix-munerical string relation with ~ach other, [f one node
is reachable from the other, tiie identifier of 1he suboglinades one is eetimed,
This oprration correspands to a downwird travesal of the aetwork by e
abtained constraints.

wofobject
Initially

ni/place verb/kakeru

QD if

imal
© %@ if G2 it G2Dif
ga/human ga/human ga/human

& ni/place

Fignure 2: "'he diserimination process using GON

aaYara

kawa-wo umi-ni sumu sakana-ga oyogu

Figure 3: LDependency structure of the sentence ‘kawa wo umi ni
sumu sakana ga oyogu’

{123 if gafanimal, 132 if gafhuman}. Any combinations of the
identifiers hut 132 and 1322 are not in a prefix relation, and so
the analyses fail. Therefore, the resultant identifier is 1322 from
identifiers 132 and 1322, The resultant if-clause is if ga/human
hecaunse the constraint nifplace in the if-clause of the current state
is obtained and removed from it.

Similarly, after the phrase ‘kakern(construet)’ is analyzed, the
final result of the traversal for the above case becomes 13221 if
gafhuman, which means that node 13221 is reachable if the con-
straint ga/human is obtained. .. .

Note that the word sense of the verb ‘kakeru,’ which appears in
the last of the sentence, is uniquely determined to be ‘construct’
among three word senses(corresponding to identifiers 111, 1222
and 13221) hefore the verb is analyzed. Further, the place of the
missing phrase is detected as the unsatisfied constraint ga/human.

Compared with the ordinary approach for semantic analysis us-
ing case frames, where semantic checking(used to check whether
a postpositional phrase('kawa ni’) satisfies a selectional restric-
tion of a verb) is not executed until a verb(‘kakeru’) is analyzed,
our approach executes earlier semantic checking before a verb is
analyzed later in the sentence. Our approach exccutes semantic
checking(word sense disambiguation) truly incrementally whenever
a phrase is analyzed.

3 Incremental Dependency Analy-
sis with Generalized Discrimination
Networks

Unlike other languages which are hased on phrase structure,
Japanese sentences have a dependency structure among their
phrases. A Japanese sentence can he segimented into a sequence
of phrases ealled ‘bunsetn.” In this paper the term ‘phrase’ is used
to mean Japanesce ‘bunsetu.’ A phrase is rogarded as a minimal
semantic clement in a sentence. The internal structure of a phrase
has been well studied in Japanesé linguisties, so the details are not
given here. We assume the results of past ‘inner-phrase’ analy-
ses. The dependency relation is one in which a phrase modifies
another in a sentence. The dependeney strncture for the sentence
*kawa wo umi ni sumn sakana ga ovogu(Fishes that inhabit the sea
swim in the river) is shown in Figure 3. In Figure 3, arrows from
wodifying phrases(moditicss) to modified ancs(modifyees) repre-
sent dependency relations. For example. the postpositional phrase
‘kawa wolin the river) modifies the verb ‘ovogu(swim).’

In this section. we descrihe how these dependency relations
among phrases are analyzed incrementally during the analytical

kawa-wo umi-ni kawa-wo umi-ni

Figure 4: The intermediate state of incremental dependency anal-
ysis at the phrase ‘nmi ni’

process of a sentence, hased on GDN-represented ease frames.

3.1 The Process of Incremental Dependency
Analysis

Ineremental dependeney analysis is to determine dependency rela-
tions hetween two phrases incrementally as a sentence is analyzed
from left to right. The intermediate state of incremental depen-
dency analysis (after a phrase is analyzed) is represented as a set.
of stacks* of arrows which pass over or start from the phrase and
do not end. The stack indicates a set of potential dependency re-
lations in which modifyees are not determined®. Multiple stacks
might exist hecause of the ambiguity. For example, the state at
the time after the phrase ‘umi mi’ is analyzed in the sentence ‘kawa
wo i ni sumu sakana ga oyogu’ is shown in Fignre 4. The left
stack is for the structure in which two phrases(‘kawa wo' and ‘umi
ni’) modify a different modifvee, and the right stack is for that in
which two phrases modify the same modifyec®.

Dependency analysis operations act on cach stack of the current.
statc whenever a phrase is analyzed. There are two types of oper-
ations; those for treating the phrase as a modifyce and those for
treating the phrasc as a modifier. We call them ‘In phase’ and
‘Out phase’ operations, respectively. We pravide the following In
and Out phase operations, which are illustrated in Fignre 5:

e In

pass no phrases modify the phrase. The current stack is
handed to the Out phase unchanged.

pop phrases(an arrow) on the stack top of the current stack
modify the phrase. The element of the stack top is
popped and the stack is handed to the Ont phase.

e Qut

merge an arrow from the phrase is merged with the arrow of
the stack top, regarding the phrase as modifying the same
modifyee as the set of phrases indicated by the arrow.

push a new arrow is generated from the phrase and is pushed
on the stack top.

As is clear from the above descriptions, hoth operations in the
phases can be non-deterministically executed, unless knowledge
useful for disambiguation is taken into account. Therefore, the
ambiguity of dependency relations acenrs in the analytical process
and causes multiple stacks, as shown in Figure 4. Although our
approach resalves the ambiguity as early and as much as possihle
using syntactic and semantic knowledge deseribed in subsequent
subsections, we also pack a set of stacks if possible. Asin ‘Tomita's
algorithm{24, 18], we make a set. of stacks structured in the tree
form in cases where stack tops are cammon. “This tree-strnctured
stack avoids redundant. computation as much as possible. For ex-
ample, twao stacks

SWo use a stack vepresentation to natucally 1ake intoaccound the “oo croms-
ing prinviple’ in Japanese, ax dexcribed in the nest subsection.

SEived deprndency relations are starsd differ=nthy as a part af interimediate
semantic eepresentation for a sentence,

EThis is the memaning of the merged armw, as denerilyed brlow,

789

pass pop push merge -

Figure 5. Dependency Analysis Operations

(Mod, Type) | An Example Usage

(n.n) Hanako no(Hanako’s) Hanako no hon(book)
=Hanako's book

(n.v) hon wo(hook) hon wo katta(bought)
=hought a book
{v.n) katta(honghr) katta hon(book)
=the hook
which someone hought
(v.v) katte(bought) katte kactta(came home)

=bhought something
and came home

Figure 6: Classification of phrases

(e,d,c,b,al
[e,b,a]

are made info a tree-structured stack

(e,[d,c,b,a],
{v,2]]

because hoth stacks® tops are 'e.” In this way, tree-structured stack
avoids redundant computation for two stack tops. In addition, be-
cause of this tree-structuring the push operation need be executed
only once for a set of stacks, because the pushed element makes the
stack top common for all stacks and they can be trec-structured
into one stack.

3.2 Syntactic Knowledge for Structural Disam-
biguation

In this paper we use only syntactic and semantic knowledge for
incremental structural disambignation. Most of this knowledge is
used to check the applicahility of the above operations. Syntactic
constraints for Japanese dependency relations are as follows:

L. Each phrase. except the last one in a sentence, must modify
one succeeding phrase.

2. No dependency relations may cross one another’.

3. Fach phrase has two types for dependency relations: its own
type and a type of the phrase that it can madify. ‘The types are
n(for noun/postpositional phrases) and v(for verb phrases).
Therefore. phrases are divided into four classes, based on their
type(Type) and their possible modifyee’s type(Mod), as shown
in Figure 6. For a phrase to modify the other one, the possible
modifvee’s type of the modifier mnst he equivalent to the type
of the modifyvee.

Constraint | cannot he fully checked until the end of a sentence.
Constraint 2 can he naturally incorporated hy representing the
state of dependency analysis as a stack. because if we use only
operations an the stack rap no crassing ocenrs. Constraint 3 can

TExeeptional sentences are known ti exist for this constrainl, but we now
observe it strictly.

790

be used to check whether the stack top ean he papped in rhe pop
operation. Further, arrows from phrases of the same class can only
be merged in the Out phase. In this paper. for the sake of ex-
pository clarity, and hecause we present anly a set of case frames
as other knowledge nseful for structural disambiguation. we treat
only phrases of class (n,v) and (v.n). that is, dependency relations
between noun(pastpositional) phrases and verb phrases. Thus,
classes of phrases are not explicitly shown, hecause the meaning
of phrases expressed in English will reveal them. We think other
classes of phrases ean he treated similarly in our framework if other
uscful knowledge is incorparated into it.

We do not use grammar rules for dependency analysis of
Japanese syntax for the reason that we do not think it is so use-
ful in resolving the ambiguity of Japanese dependency relations,
because the relatively free word order and widespread ellipsis in
Japanese might cause more ambiguity in grammar rule applica-
tion during grammar-based dependency analysis. Instead, we use
mainly semantic knowledge(case frames) for structural disambigna-
tion, but also some syntactic knowledge. Next, we describe how
GDN-represented case frames resolve dependency ambiguity incre-
mentally during the analytical process.

3.3 Earlier Semantic Checking with Generalized
Discrimination Networks

In analyzing dependency relations incrementally, semantic check-
ing needs to be executed during the analytical process, in which se-
mantic appropriateness of a potential dependency relation(that is,
whether a modifier satisfies a sclectional restriction of a modifyee)
is checked and structural ambignity is resolved. In the ordinary
integrated approach, semantic checking hetween a modifier and a
modifyec is not executed until hoth are analyzed. That is, it is
exccuted only in pop operation. So this approach determines that
the phrases ‘kawa wo(in the river) and ‘sakana ga(fishes)' modify
the verb ‘oyogu(swim)’ in Figure 3 at the time when the verb is
analyzed.

As described in the last section, however, GDN enables earlier se-
mantic checking between a postpositional phrase and a verb when-
ever a postpositional phrase appears in a sentence. GDN also en-
ables earlier semantic checking of a dependency relation hetween a
modifier and a modifyee(before the modifyee appears). and rejec-
tion of semantically inappropriate dependency relations as soon as
two modifiers that might modify the same modifyee are analyzed.

To perform this, we introduced the ‘merge’ operation, which
combines arrows from multiple modifiers(as shown in Figure 5),
regarding the multiple modifiers as modifying the same modifyeec.
For example, in Figure 4, arrows from the phrases ‘kawa wo' and
‘umi ni’ are merged when the phrase ‘umi ni’ is analyzed. regarding
the two phrases as modifying the same modifvee.

The hypothesis that two modifiers might modify the same mod-
ifyee is made as soon as they are analvzed. They are checked for
semantic appropriateness in terms of case frames, and the seman-
tically inappropriate one is rejected at this time. Using GDN for
representing a set of case frames, semantic cheeking of the hypoth-
esis is naturally realized hy the further traversal of GDN from the
current state(the result of the traversal using the former modifier)
using the latter one, as described helow.

As described in the last section. incremental semantie analy-
sis using GDN corresponds to a downward traversal of the net-
work from the current state(the result of the traversal using the
previously analyzed phrases) using information of the newly ana-
lyzed phrase. This traversal hypothesizes that the phrase modifies
the same verb as the previously analyzed ones because the further
traversal from the current state using the phrase means that the
phrase is checked for semantical appropriateness using the same
case frame as hefore.

Therefore, the hypothesis that fwa madifiers modify the same
modifyce naturally corresponds to the trial of the further traver-
sal from the current state(carresponding to the previons maodifier)
using the newly analyzed modificr. If the traversal sneeeeds. the

hypothesis is proved semantically appropriate. Failure means that
the hypothesis is semantically inappropriate, and the merge oper-
ation fails.

As a resuit, the diserimination state of GDN makes the element
of the stack. In the merge operation, the result of the further
traversal from the state of the stack top using the newly analyzed
phrase makes the new stack top. [n the push operation, the result
of the traversal from the raot node makes the element of the stack
fO]\,

For example. in the senienee “kawa wo umi ni sumu sakana ga
avogu,” when the phrase ‘umi ni’ is analyzed, the stack top is state
122 i f gafanimal, which corresponds to the analysis result of the
phrase ‘kawa wo.” The further traversal from the current state
using the constraint ‘nifplace,’ which the phrase ‘umi ni’ satis-
fies, fails because the identifier of the current state is not in a
prefix relation with the identifiers 123 and 132 corresponding to
the constraint. Thus, the merge operation fails, and the potential
dependency relation in which the phrases 'kawa wo’ and ‘umi ni’
modify the same phrase can be rejected. As a result of the dis-
ambiguation, the stack only remains for the structure in which the
phrases ‘kawa wo’ and ‘umi ni’ modify a different phrase, such as
the left one in Figure 4.

Similarly. in the pop operation, the appropriateness of depen-
dency relations is checked in terms of the traversal of GDN. [n
this case, the traversal from the current node(the analysis resuit
of all modifiers) using information of the modifyee completes the
checking of the appropriatencss of all dependency relations between
modifiers and the modifyee.

3.4 Heuristics for the Depth of Embedding

As described in the preceding subsections, syntactic and semantic
constraints can be applicd to merge and pop operations, and inap-
propriate candidates of dependency relations can be rejected. No
constraints, however, are applied to pass and push operations, and
so the depth of stacks might become deeper® and the number of
stacks might become higger, no matter how the constraints earlier
rejected inappropriate candidates. Stack depth is considered the
depth of center embedding of a sentence, and so we think we may
decide the maximum allowable ‘depth of embedding and restrict
the stack depth to that limit. pruning stacks whose depth-exceeds
the limit. ‘The maximal number of allowable center embedding
has heen estimated in psycholinguistic researches(8, 11]. More-
over, where dependency relations between noun(postpositional)
and verh phrases are concerned, we think the maximal number
could be estimated hased on the average number of verb appear-
ances in a sentence.

Further. as described in section 3.1, a set of stacks is packed in
tree-structured form, and the push operation is exccuted only once
when a phrase is analyzed.

3.5 An Example

In this subsection, we illustrate the process of incremental depen-
dency analysis with (G DN using the sentence ‘kawa wo umi ni sumu
sakana ga avogu(Fishes that inhabit the sea swimin the river).” We
use GDN in Figure 1.

First, the phrase ‘kawa wo(in the river)' is analyzed. The ini-
tial stack is empty, so the pop operation fails and only the pass
operation is executed in the In phase. In the Out phase, because
the stack is empty, the merge operation fails and only the push
operation iz exccuted. ‘Uhe result of the traversal from the root
node using information from the phrase ‘kawa wo,’ that is, state
122 if gafanimal, is pushed on the stack top.

[122({kawa-wo)) |

The intermediate state of the process is represented by a set of
stacks. A staek is represented in the list form. where the stack top

& R B .
The aninial depth might e Che sonmbier of plicases in a senteucees,

is the leftmost element. Fach element of a stack consists of the state
in GDN and the semantic representation for a fragment of a sen-
tence in which fixed dependency relations are stored. For hrevity,
however, the if-clause in the state and the semantic representation
are omitted here. The element of a stack is also accompanied hy
a set of phrases, which contribntes to the state or the semantic
representation of the element, where a fixed dependency relation
is indicated by parentheses.

When the phrase ‘umi ni(the sea)’ is analyzed, the stack top
already contains information ahout the phrase ‘kawa wo.' In the
In phase, the pop operation fails hecause of syntactic constraint 3
in section 3.2, that is, the type of possible modifier of the phrase
‘umi ni’ is not equivalent. to the type of the stack top. And the
stack is passed to the Out phase unchanged. In the Out phase, the
merge operation fails between the analyzed phrase and the stack
top because the further traversal from the current state(the state
of the stack top) is impossible using information from the phrase
‘umi ni,” though the syntactic constraint(that the class of the stack
top is equivalent to that of the analyzed phrase) is satisfied. At
this time, the phrases ‘kawa wo’ and ‘umi ni’ are judged to modify
a different phrase. As a result, only the push operation is executed
and the stack becomes as follows:

[{123,132) ({umi-ni}), 122({kawa-wo))]

At the time of the phrase ‘sumu(inhabit),” the pop operation
succeeds in regards to the stack top(the phrase ‘umi ni') because
syntactic constraint 3 is satisfied and GDN can be further traversed
from the current state(the state of the stack top) using informa-

tion from the phrase ‘sumu.” Therefore, the dependency relation

between the phrases ‘umi ni’ and ‘sumu’ is fixed®, and the stack
top is popped. The pass operation is also executed, and so two
stacks are handed to the Out phase. In the Out phase, the merge
operation fails in regards to both stacks because of the class mis-
match between the stack top(either the phrase ‘umi ni’ or ‘kawa
wo') and the phrase ‘sumu.” Only the push operation is executed,
and the set of stacks becomes as follows:

{ 1231, [({(nmi-ni,sumu)}), 122({kawa-wo})].
[({sumu}), {123,132}({umi-ni}), 122({kawa-wo})]]

Two stacks that correspond to the choice of the pop or pass op-
eration are tree-structured. However, the pushed element is not
exactly common in regards to two stacks, becanse the if-clause in
the state and the semantic representation of the pushed element
depends on whether or not the pop operation is execcuted before
the push operation. Herc the difference is implicitly indicated by a
set of phrases which accompanies a stack. The pushed element dif-
fers as follows: when the analyzed phrase(the modifyce) is a verb
phrase, the pushed element differs in the if-clause in the state and
the semantic representation, because the start node of the traver-
sal is different between the state of the stack top and the root
node, and then the dependency relation is fixed in the pop oper-
ation. When the analyzed phrase is a noun phrase, the state in
the pushed element is common but the semantic representation for
the modifier exists when the pop operation is executed, as shown
below. Nonetheless, the identifier of the pushed

element can be shared, and so whether the traversal from the
pushed element. is possihle is checked only once, and redundant
computation can be avoided. We think such imperfect tree-
structuring is still satisfactory. -

Hereafter we focus mainly on the explanation of a stack that
leads to the semantically appropriate dependency structure(the
meaningful interpretation of a sentence).

Next, at the time of the phrase ‘sakana ga(fishes),” the pop op-
eration succeeds because the further traversal from the state of the
stack top using information from the phrase ‘sakana ga’ '? siec-
ceeds, and the dependency relation is fixed(the case marker can

IWe do not drseribe here the way Lo obtain the setmantic representation.

OWhen a verh phrase inadifies & noun phrase, a case marker of the modi-
fyee('~akana’) to the modifier(amng) is amitted, and any case marker is sup-
plemented and the traversal is altempted.

791

he guessed ta he ‘ga’ as a by-product of the traversal). The pass
operation is alsa exeeuted. In the Qut phase, in regards to the
stacks after the pop operation, hoth the push and merge opera-
tions sneeeed. The merge operation succeeds between the phrases
‘kawa wo' and ‘sakana ga’ hecause hoth syntactic and semantic
constraints(the traversal of GDN) arc satisfied. The following set
of stacks is ohtained(the ‘meaningful’ stack is second from the bot-
tom):

([12, [({sakana-ga}), 1231, [({{umi-ni.sumn)}), 122({kawa-wo})],

(({sumu}). {123,132}({umi-ni}),
122({kawa-wo})]],
(({(Cumi-ni,sumu) sakana-ga)}). 122({kawa-wo})],

[({(smu sakana-ga))), {123,132} ({umi-ni}), 122({kawa-wo})]],

[122({kawa-wo,((umi-ni.sumu),sakana-ga)})],
[123({umi-ni,(sumu,sakana-ga)}), 122({kawa-wo))]]

Note that at this time we have six stacks but only three stack tops
by tree-structuring. Mareover, assuming the maximum depth of
the stack to he three, one of the stacks can he rejected.

At the last phrase ‘oyogu(swim),” the pop operation succeeds
for all three stack tops. However, five stacks which are not empty
after the pop operation are rejected because syntactic constraint 1
in section 3.2 requires a stack, which indicates a set of modifiers
whose modifyecs are not determined, to be empty at the end of
a sentence. We now obtain the dependency structure shown in
Figure 3.

4 Conclusion

We proposed an incremental disambiguation approach for Japanese
structural ambiguity. In our approach, semantic knowledge(case
frames) is used directly to resolve structural ambiguity incremen-
tally during the analytical process. We also showed that by using
a generalized discrimination network(GGDN) as a representation of
a set of case frames, we can resolve ambiguity earlier than by or-
dinary integrated-and-incremental approaches. GDN enables to
resolve word sense and structural ambiguities truly incrementally
whenever a phrase appears in a sentence.

We first proposed GDN for incremental word sense dlsamblgna.-
tion and in this paper we showed that it is also useful for in-
cremental structural disambiguation. We think our GDN-based
framework is well suited for incremenital Japanese analysis in that

o GDN copes well with the Japanese language's flexible word
order and widespread ellipsis, as described in section 2.2;

¢ GDN cnables earlier structural and word sense disambiguation
as a representation of case frames.

Moreover, our truly incremental disambiguation approach is con-
sidered useful not only for real-time natural language processing,
but also for resolving ambiguities at lower levels when this syntactic
and semantic analysis module is integrated with lower level analy-
sis modules, such as morphological analysis or speech recognition,
hecause our earlier decision making hased on syntactic and seman-
tic knowledge contributes to the further suppression of ambiguities
at lower levels which might be caused if the time of disambiguation
is delayed as in the ordinary incremental approach.

Lytinen[14] proposed the semantics-first approach for integrated
analysis. In this approach, semantic analysis is executed first; se-
mantic relationships between constituents are proposed, and then
grammar tules are searched. Note that the semantics-first ap-
proach never considers meaningless parse trees. This is because
semantics does not notice any syntactic relationships between two
constituents which are semantically anomalous. In the syntax-first
approach, however, all possible parse trees must be constructed and
some of them are immediately rejected as semantically anomalous.
We think {14] supports our 'mpronch as it provides circumstantial
evidence that the average case camplexity is empirically suggested
worse for the syntax-first approach than for the semantics-first one.

792

We described onr model for incremental dependency analysis
in quite simplified form, and we have to consider more factors
to implement a practical Japanese dependency analyzer, such as
follows:

¢ The difference between ohligatory and optional cases. GDN
represents a set. of case frames that consist of a set of ohligatory
case slots, and we must consider how to treat optional cases
in our framework;

s The treatment of missing case markers. Clase markers are
sometimes missed in postpositional phrases sieh as the one
which includes the topic marker ‘ha.” The missing case mark-
ers might cause ambiguity during the traversal of GDN he-
cause multiple constraints might be satisfied by such phrases.
We should treat such postpositional phrases in a different way.

We will also have to take contextual knowledge into account in the
future.

References

(1] G. Adriaens and S.L.. Small. Word expert parsing revisited in
a cognitive science perspective. [n S.L. Small, G.W. Cottrell,
and M.K. Tanenhaus, editors, Lexical Ambiguity Resolution

Perspectives from Psycholinguitics, Neunropsychology. and
Artificial Intelligence, pages 13-43. Morgan Kaufmann Pub-
lishers, 1088.

[2] R.J. Bobrow and B.I.. Webher. Knowledge representation for
syntactic/semantic processing. In Proc. of the Ist National
Conference on Artificial Intelligence, pages 316-323, 1980.

[3] G. Brassard and P. Bratley. Algorithmics. Prentice Hall, 1988.

(4] E. Charniak, C.K. Riesheck, and D.V. McDermott. Artifi-
cial Intelligence Programming. Lawrence Erlhaum Associates,
1980. -

[3] K. Church and R. Patil. Coping with syntactic ambiguity
or how to put the block in the box on the table. American
Journal of Computational Linguistics, 8(3-4):139-149, 1982.

[

{6] M. Dincbas. Constraints, logic programming and deductive
databases. In Proc. of the France-Japan Artificial Intelligence
and Computer Science Symposiumn 86, pages 1-27, 1986.

(7] T. Gunji. Japanese Phrase Structure Grammar. Reidel, 1987.
(8

—

K. Hasida. A constraint-based approach to linguistic perfor-
mance. In Proc. of the 13th International Canference on Com-
putational Linguistics, volume 3, pages 149-154. 1990.

[9) G. Hirst. Semantic interpretation and ambiguity.
Intelligence, 34(2):131-177, 1988.

Artificial

[10] P.S. Jacobs. Concretion: Assumption-based understanding. In
Proc. of the [2th International Confercnce on Computational
Linguistics, pages 270~-274, 1988.

[11] P.N. Johnson-Laird. Mental Models.
Press, 1983.

(12) S.L.. Lytinen. Dynamically combhining syntax and semantics
in natural langnage processing. In Proc. of the 5th Xational
Conference on Artificial Intelligence, pages 574-578. 1986.

{13} S.L. Lytihen. Are vague words ambiguous? In S.I.. Small,
G.W. Cottrell, and M.K. Tanenhaus, editors, Lerical Ambi-
guily Resolution : Perspectives from Psycholinguitics, Neu-
ropsychology, and Artificial Intelligence, pages 109-123. Mor-
gan Kaufmann Publishers, 1988.

Cambridge University

(14] S.L. Lytinen. Semantics-first natural language processing. In
Proc. of the 9th National Confervence on Artificial Intelligence,
pages 111-116, 1991.

