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Abstract

In this paper, we present a framework for ellipsis resolution that
aims at the cooperative integration of syntactic, semantic, and
pragmatic strategies. Our framework is based on a generalized
discrimination network(GDN), which we proposed for incremen-
tal word sense disambiguation. GDN is a variant of a discrimi-
nation network that can solve a big problem of a discrimination
network that it can only be traversed in an a priori-fixed order
of obtained constraints. GDN-represented case frames easily ex-
ecute the detection of the places of gaps, while GDN-represented
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commonsense knowledge, together with GDN-represented case
frames, execute coherence-directed inference, which enables the
filling of the gaps as a by-product. Our approach is based on
Halliday and Hasan’s notion of cohesion, and reflects our view
that overtly underspecified types of cohesion, such as ellipses and
pronominal anaphora, have less information to resolve in them-
selves and are handled by coherence-directed inference in terms
of overtly specified types of cohesion, such as lexical cohesion and

conjunction.




1 Introduction

Ellipses occur frequently in Japanese sentences whenever a hearer(reader)
can easily predict the gaps and understand the sentences mainly through the
contextual information. And so the ellipsis resolution process is indispensable
for Japanese understanding systems.

The ellipsis resolution process can be divided into two phases: detection
of the place of gaps in a sentence, and filling the gaps. Detection of the place
of gaps has often been accomplished using case frames[5, 24] on the basis
that all obligatory slots should be satisfied by phrases in a sentence, and so
unsatisfied slots must be gaps. Then, semantic constraints are imposed on
gaps because they are supposed to satisfy slots of a frame that have their own
selectional restrictions. In the phase of filling the gaps the most appropriate
phrase is found from the contextual information that satisfies the semantic
constraints.

Ellipsis resolution, especially the phase of filling the gaps, might be in-
fluenced by a combination of syntactic, semantic, and pragmatic knowl-
edge. Previous researches on ellipsis resolution, however, have emphasized
syntactic[26] and semantic strategies[5] or have concentrated on using prag-
matic knowledge[4]. In this paper, we present a framework for ellipsis res-
olution that aims at the cooperative integration of syntactic, semantic, and
pragmatic strategies!.

Our framework is based on a generalized discrimination network(GDN),
which we proposed for incremental word sense disambiguation[18]. GDN
is a variant of a discrimination network[7] that can solve a big problem of
a discrimination network that it can only be traversed in an a priori-fixed
order of obtained constraints.

First, we show that as a representation form of a set of case frames,
GDN can easily detect which phrases are omitted, and can check the possi-
ble substitutions for the missing phrases by means of the selectional restric-
tions(detection phase). !

Next, we present an inference directed by ‘coherence,” which makes a
relation between two sentences based on explicit information in the sentences
and background knowledge, and fills the gaps in the sentences as a by-product
of establishing coherence. Our approach is based on Halliday and Hasan’s

1We treat only ellipses of postpositional phrases.




notion of cohesion[9], and reflects our view that overtly underspecified types
of cohesion, such as ellipses and pronominal anaphora, have less information
to resolve in themselves and are handled by coherence-directed inference in
terms of overtly specified types of cohesion, such as lexical cohesion and
conjunction. We show that as a representation form of both a set of case
frames and a set of rules(commonsense knowledge), GDN is suitable for the
coherence-directed inference mechanism(filling phase).

In section two, GDN is outlined. In section three, we describe how GDN
can detect the place of gaps. In section four, we first present a coherence-
directed inference, and then show merits of GDN as a coherence-directed
inference mechanism. Finally, we describe how GDN can fill the gaps as a
by-product of coherence-directed inference.

2 Outline of generalized discrimination net-
works

In this section, we outline the principles of GDN to make comprehensible the
explanation of the mechanism for ellipsis resolution using GDN, described in
sections three and four. For formal details, please refer to [18].

2.1 Characteristics of discrimination networks

A discrimination network is a generalization of a decision tree[3] and has been
used for various problem solving systems[7], especially in natural language
processing to represent multiple word meanings compactly[11, 15, 13, 1].
A discrimination network is considered to be a directed acyclic graph with
one root node and many leaf nodes. Figure 1 is a sample discrimination
network?. Each branch of the network has a constraint as its label. Each
leaf node of the network points to a solution. Other nodes represent a set of
possible solutions that correspond to leaf nodes below them, because further
traversal along branches to multiple nodes are possible from them. The root
node corresponds to the set of all solutions.

The problem solving process using discrimination networks is a step by
step downward traversal of the network from the root node to a leaf node,

2For expository clarity, we use only tree-form examples in this paper.
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Figure 1: A sample discrimination network

guided by branches which satisfy the obtained constraints. In this process,
inappropriate alternatives are rejected and appropriate solutions are selected.
Reaching a leaf node means that a solution is found.

A discrimination network has the following advantages:

e in the discrimination network, a unique node can represent multiple
solutions that correspond to the leaf nodes below it. Therefore, the
downward traversal of the network corresponds to the continuous re-
finement of a solution into a more specific one. This is what the con-
straint programming paradigm(8] will achieve;

e compared with a linear search, the discrimination network’s search al-
gorithm is more efficient because the downward traversal is guided by
constraints that are labels of branches, and the search space can be
gradually narrowed down. This search takes time O(l) in the worst
case, where [ = logn is the height of the network, while the linear
search takes time O(n) in the worst case, where n is the number of all
possible solutions|[2];

e we can compact a set of rules, because some of the same precon-
ditions(constraints) can be merged into one branch in the network.
Therefore, the amount of checking on whether a constraint is satisfied
is reduced, and wasteful repeated computations can be avoided.




Although a discrimination network has the excellent characteristics men-
tioned above, it has two critical problems. The first one is that it cannot
be traversed unless constraints are entered in an a priori-fixed order. Be-
cause the order in which constraints are obtained cannot be a priori fixed
in general, the process of traversing the network downward may often have
to be suspended until the constraint in the right order is obtained. Because
the network is traversed downward from the root node, constraints immust be
entered one by one from constraints that are labels of branches connected
to the root node. The second problem is more serious. If some constraints,
which are necessary for traversing the network downward, are not obtained,
the problem solving process will not be able to traverse the network, and a
deadlock will occur. In this situation, the constraints that have already been
obtained will cease to contribute to the problem solving process.

To solve the above problems, we proposed a ‘generalized discrimination
network(GDN).” The problem solving process can traverse the GDN imme-
diately whenever any constraints are obtained.

2.2 Principles of generalized discrimination networks

Consider the discrimination network shown in Figure 1. To represent the
network as a table, we make stages of preparation. First, a numerical string
is assigned to each node as a unique identifier. To the nodes in Figure 1,
identifiers are assigned, as shown in Figure 2.

Second, constraint-identifier pairs are extracted from the network in the
following form: a branch, and a subordinate node that is directly connected
by the branch. This correspondence between constraint and identifier means
that if a constraint is satisfied, the nodes of corresponding identifiers can
be reached in the network. For example, if constraint ¢/c, is satisfied, the
network can be traversed downward to the node of corresponding identifier
122.

Here, we must pay attention to the other constraints in the path from
the root node to the reached nodes. In the case of the node of identifier 122
mentioned above, constraint a/a, exists and is unsatisfied. Therefore, the
reachability of node 122 is ‘conditional,” because node 122 can be reached if
constraint a/a, is satisfied.

Hence, from Figure 2, pairs of constraints and ‘conditional identifiers,’
that is, identifiers of the conditionally reached node, are obtained in Table
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Figure 2: Discrimination network with identifier-assigned nodes

1. A conditional identifier consists of an identifier of the reached node, fol-
lowed by an ‘if-clause’ which represents a list of unsatisfied constraints. An
identifier with no if-clause means that a node of the identifier can be reached
unconditionally.

The preparation is finished. The regular order of constraints is a/aa,
¢/es, b/by for traversal of the network in Figure 2 downward to node 1231.
Here, in contrast, the case in which constraints are obtained in the order of
b/by, c/e3 is considered. Notice that in this case, a necessary constraint a/a,
is not obtained and that the order of the obtained constraints is irregular.
The discrimination process in our approach for that case is briefly described
below. Figure 3 shows a ‘state’ transition that represents the discrimination
process. A state is in the form of a conditional identifier. The initial state(a
state in which no constraints are obtained) is 1 with no if-clause(the identifier
of the root node). Informally, after constraint b/b; is obtained, the state is
computed as follows, with the current state(the initial state) and a set of
conditional identifiers {111 if a/a;,1231 if a/as and c¢/c3} corresponding to
the obtained constraint by Table 1:

Both 111 and 1231 include 1 as a prefix-numerical string, so
the longer strings 111 and 1231 are returned. Because the cur-
rent state has no if-clause, the if-clause of the next state be-
comes the same as the if-clause of the conditional identifiers cor-




a/a; 11

afay 12

b/by {111 :f afay,1231 if a/as and c/c;3}
b/bs {112 if afa,,1232 if afay and c/c3}
b/bs {113 if afa1,1233 if a/as and c/c3}
¢/ 121if afas

c/ea 122if afas

c/cz 123if afas

C/C4 124 ’Lf 0,/(13

Table 1: Correspondence between constraint and node identifier

b/b1 c/c3
Initially

@if a/al
O | @iram ] @Difasz

and c/c3

A

Figure 3: The discrimination process using GDN

responding to the obtained constraint. The if-clause of the ob-
tained constraint represents a list of constraints between the root
node(1l) and the reached node({111,1231}) except the obtained
constraint(that is, if afa;,if afa, and c/c;3) respectively. There-
fore, the next state becomes {1114f a/a;,1231if a/a, and c/c;}.

As shown in Figure 2, identifiers of mutually reachable nodes in the net-
work are in a prefix-numerical string relation with each other. Therefore,
the operation between identifiers can easily check whether one node can be
reached from the other in the network. If one node is reachable from the
other, the identifier of the subordinate one is returned. This operation cor-




responds to a downward traversal of the network by satisfying the obtained
constraints. The analysis will fail if one identifier is not a prefix of the other.

Next, constraint ¢/cs corresponds to conditional identifier 123 if a/a,.
When the constraint is obtained, the state has multiple conditional identifiers
{111 if afa,,1231 if afa, and c/cs}, and so operations are performed on
each conditional identifier with the constraint:

As for 111 if a/a;, the identifiers are not in a prefix relation, so
the analysis fails. Therefore, the result is necessary only for con-
ditional identifier 1231 if a/as and c/c;. The resultant identifier
is 1231 from identifiers 123 and 1231. The resultant if-clause is
if a/a,, because constraint ¢/cz in the if-clause of the current
state is obtained and removed from it. Hence, the final result of
traversal for the above case becomes 1231 if a/a», which means
that node 1231 is reachable if constraint a/a, is obtained.

The if-clause allows us to cope with the irregular order of the obtained
constraints and the lack of necessary constraints. The if-clause is the storage
of constraints that must be obtained to reach the destination node but have
not been obtained yet. When constraints are obtained in an irregular order,
the constraints in the wrong order can be found in the if-clause, and are
removed from it.

Thus, constraints in the if-clause are expected to be obtained, and they
can be used as predictions for constraints that will be obtained later. From
another viewpoint, constraints in the if-clause can be regarded as assump-
tions in the abductive reasoning[10, 17}, because the if-clause means that the
conclusion of a rule(corresponding to the leaf node) holds, and so precondi-
tions(constraints) in the if-clause must hold in the future.

3 Detection of the place of gaps using GDN

Figure 4 is a portion of the discrimination network that represents the word
senses(and case frames) of the Japanese verb ‘naosu.” Each branch of the
network has as its label a selectional restriction on surface cases, such as
postpositions ‘ga,” ‘wo,’ and so on. Each leaf node of the network points to
a unique word sense, which is represented by the underlined label. A set of
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Figure 4: A portion of the discrimination network of the word senses of the
verb ‘naosu’

constraints in the path from the root node to a leaf node represents the case
frame for the word sense corresponding to the leaf node.

Works such as [11, 15, 13, 1] realize the word sense disambiguation process
as a downward traversal of the discrimination network. In these works, the
merits of such a network are described, as mentioned in section 2.1.

Using GDN instead of a discrimination network adds another advantage,
in that the word sense disambiguation process proceeds incrementally[18].
We think incremental disambiguation[14] is a better strategy for word sense
disambiguation, because a combinatorial explosion of the number of ambi-
guities might occur unless word sense ambiguity is incrementally resolved
as early as possible whenever constraints are obtained during the analytical
process of a sentence.

Here, we describe how GDN deals with ellipsis detection, which finds the
place of missing phrases. Because GDN is a variant representation form of a
set of case frames, the ellipsis detection approach with GDN is case frame-
based[5, 24]. Nonetheless, it can easily detect which phrases are omitted,
and can check the possible substitutions for the missing phrases by means of
the selectional restriction, as described below.
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The positions of the missing phrases are detected in two ways with GDN.
First, they are explicitly indicated by the if-clause mentioned in section 2.2
because constraints in the if-clause are not obtained but are expected. Sec-
ondly, in the case in which the reached node is not a leaf node when the
analysis of the whole sentence is finished, constraints between the current
node and leaf nodes are considered to be the positions of the missing phrases,
because the verb should have a unique word sense®. So in such a case, el-
lipsis resolution enables the further disambiguation of the word sense. By
applying to the candidates for the substitution the selectional restriction that
corresponds to the detected position of the missing phrase, the semantic ap-
propriateness of the substitution is checked, and all candidates that violate
it are eliminated.

Now we illustrate how incremental word sense disambiguation and ellipsis
resolution proceed jointly in Japanese. Consider the sentences:

taro ga nihongo de ronbun wo kaki,
(Taro Japanese a paper  wrote)
eigo ni hanako ga ¢ naosita.
(EnglishHanako  it)

Taro wrote a paper in Japanese, and Hanako translated it into

English.

Here, ‘¢’ indicates the gap. In the example, the word sense of the verb
‘naosu’ is ambiguous, as shown in Figure 4%, and the order of obtained con-
straints ‘ni/eigo(English), ga/hanako(Hanako)' is irregular compared with
the network’s order. Constraint ‘ga/human’ must be obtained earlier than
‘ni/language;unit’ in the network. Additionally, the phrase corresponding to
‘it’ is omitted.

The second sentence is analyzed, and the place of gaps is detected as
follows:

‘Eigo’(English) is a language and satisfies a selectional restriction
of a postposition ‘ni,” and node 1 is reached. The word sense

30f course. another mechanism for checking the syntactic grammaticality is nccessary
in the case of languages such as English, because it is strange to say that ‘T repair.’ is
grammatical, and the object is omitted in the sentence. As for Japanese. such a mechanism
seells unnecessary.

*Only the correct word sense. however, is written in the English translation.
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ambiguity of the verb ‘naosu’ has been reduced from seven to two,
but the word sense is still ambiguous®. Next, ‘hanako’(Hanako)
satisfies a selectional restriction of ‘ga,” and the reachability of
node 1 becomes unconditional. After the verb ‘naosu’ is analyzed,
the further traversal is attempted from node 1, because it does not
point to a unique word sense. As a result, we get the candidate
positions of the missing phrases, that is, {‘wo/language;unit’},
{‘wo/paper;weight’,‘’kara/language;unit’}.

Then, assuming the candidates for filling the gaps are [‘ronbun’(a paper),
‘nihongo’(Japanese), ‘taro’(Taro)] from the first sentence, where the first
element is preferred®, ellipsis resolution is completed as follows:

Because ‘ronbun’(a paper) is a paper and ‘nihongo’(Japanese) is
a language, they satisfy a selectional restriction of postpositions
‘wo’ and ‘kara,’ respectively. Thus, the substitutions are decided
and the word sense of the verb ‘naosu’ is uniquely determined.
The final result for the second sentence is ‘Hanako translated the
paper(which Taro wrote) from Japanese into English.’

In the next section, we explain the real mechanism for filling the gaps using

GDN.

4 Filling the gaps using GDN

4.1 Knowledge for filling the gaps

Ellipsis resolution, especially the phase of filling the gaps, might be influ-
enced by a combination of knowledge sources. Other than semantic con-
straints(selectional restrictions) for slots of frames, which help find an ap-
propriate phrase for gaps, syntactic and semantic constraints, such as coin-
cidence of surface or deep cases in main and subordinate sentences, or in a
sentence and the preceding sentence, have been used to fill the gaps|26, 5).

5We think there is a subtle difference between the remaining two word senses because
they have different case frames.

6Here, the naive heuristic ‘recency’ is assumed to find candidates. and to decide the
order of priority among them.

12




As for the example in section three, candidate positions of the missing
phrases are {‘wo/language;unit’}, {‘wo/paper;weight’,‘kara/language;unit’}.
In these, the position of case ‘wo’ is filled according to the above constraints
as follows:

The phrase with case ‘wo’ in the preceding sentence, that is ‘ron-
bun’(a paper), satisfies a selectional restriction of case ‘wo’ of
the missing phrase. Thus, the substitution is decided in that the
missing phrase of case ‘wo’ in the second sentence is filled by the
phrase ‘ronbun’ in the first.

Indeed, some examples are handled, but many examples of ellipses cannot
be handled by syntactic and semantic constraints. Consider the following
example:

taro ga hanako ni denwabangou wo kiitaga,
(Taro Hanako phone number asked)

d1 ¢ d3 osietekurenakatta.

(she it him did not tell)

Taro asked Hanako her phone number, but she did not tell it to
him.

As for this example, the above constraints yield an incorrect substitution in
that Taro did not tell Hanako his phone number, because phrases of case
‘ga’, ‘ni’, and ‘wo’ in the first sentence fill the missing phrases of the same
case in the second, respectively.

To handle such examples problematic for syntactic and semantic strate-
gies, pragmatic knowledge, such as speaker’s plans and goals, has been
used[4].

As for the above example, assuming commonsense knowledge, such as ‘if
someone is asked something by some other person, then s/he will tell it to
the person,’ the missing phrases are correctly filled in that Hanako(who was
asked) is the subject of ‘tell’ and Taro(who asked) is the indirect object of
‘tell.’

One problem of previous approaches to ellipsis resolution is that they have
provided only a mechanism to process a particular kind of knowledge source,
yet they do not insist that only the kind of knowledge source should be used.
In the following sections, we present a unified approach to ellipsis resolution
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that aims to utilize all of the knowledge sources mentioned above, and fill the
gaps uniformly using a single coherence-directed inference mechanism with

GDN.

4.2 Coherence-directed inference

In context analysis, it is indispensable to make connections between two sen-
tences which are implicit on the surface. If it is possible to make connections
between them, they are said to be ‘coherent.” We regard the task to make
connections between sentences as primary and other tasks in context analy-
sis, such as ellipsis and anaphora resolution, as secondary. This is because
more useful information is obtained from surface sentences for making sen-
tences coherent than for ellipsis and anaphora resolution alone. Thus, we
adopt an approach for ellipsis resolution in which filling the gaps is executed
as a by-product of making connections of two sentences.

To make connections between two sentences, inference is necessary based
on both explicit information in them and world knowledge. First, we indicate
what explicit information for inference is available in the sentences. Halliday
and Hasan[9] regard the notion of cohesion as a clue that is available in
surface sentences, and that is useful in making sentences coherent. Cohesion
is divided into the following five categories:

1. Reference

2. Substitution

3. Ellipsis

4. Conjunction

5. Lexical Cohesion

Of these, we use only Conjunction and Lexical Cohesion, as they are
overtly specified in sentences and are useful in making connections between
events in the sentences. The first three of them, however, have less informa-
tion in surface sentences to make an inference. For example, the pronoun
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‘he’ provides only the information of referring to a male, and what is worse,
a missing phrase provides no information”!

Structural or semantic parallelism in Conjunction is a useful clue in mak-
ing sentences coherent. We can infer that two sentences are coherent if they
are located in mutually parallel positions. Consider the following example:

taro ga hanako ni hana wo age,

(Taro Hanako flower gave)

jiro ga ¢ hon wo okutta.
(Jiro toher  book  presented)

Taro gave Hanako a flower, and Jiro presented a book to her.

These two sentences in the example seem coherent because they have similar
constructions and consist of similar event structures(case frames), that is,
their verbs and phrases of mutually corresponding case slots are respectively
synonymous or antonymous. In this case, gaps in one sentence can be filled
by the phrases of the corresponding case slots of the other sentence.

Lexical Cohesion is concerned with connecting events by means of infer-
ence on commonsense knowledge. Briefly, we regard two events as coherent
if there exists an event that is a common precondition or conclusion of them
in a set of rules(commonsense knowledge)®. Consider the following example:

taro ga kabin wo hakondeitaga,

(Taro vase was carrying)
$1 &2 otositesimatta.
(he it dropped)

Taro was carrying a vase, but he dropped it.

We guess that two sentences are coherent because both the events ‘carry’ and
‘drop’ have event ‘hold’ as a precondition. That is, we assume the following
rules as the basis of coherence of the two sentences.

hold(X,Y) A move(X) — carry(X,Y).

"Information of focus(centering)[22. 12, 25] is cousidered useful information for
anaphora and ellipsis resolution available in the context.

#Those cases where one event is a precondition or conclusion of the other. such as the
example in section 4.1. are also included in this category.

15




hold(X,Y) Alet_fall(X,Y) — drop(X,Y).

In this case, gaps can be filled by the phrases that share the same argument
variable in the rules used for making sentences coherent.

The result of inference is more preferable(two sentences are more coher-
ent) if more information for coherence is obtained through inference, such as
similarities or common preconditions of two events. Thus, inference is guided
towards making two sentences more coherent in the above mentioned sense.

In our approach, filling the gaps in ellipsis resolution is executed as a
by-product of the general process of establishing coherence. Priist and van
der Berg[19] adopt the similar approach to ellipsis resolution, and assume
that for two sentences to be coherent, semantic structures of them should
have something in common related to conceptual hierarchy. Their approach,
however, can treat only cases of structural or semantic parallelism. We extend
the notion of commonness, and can treat cases where two sentences have
something in common related to general commonsense knowledge.

Ng and Mooney propose similar metric ‘explanatory coherence’[16] for
abduction applied to natural language processing, and show that it plays a
role in guiding the inference towards plausible solutions. But we think their
metric is weaker for the following reasons:

¢ It does not truly reflect the linguistic notion of ‘coherence.” Their no-
tion of coherence is based on the number of common preconditions of
two observations(events). There is a danger, however, that two obser-
vations in a sentence might be considered, while two observations in
different sentences must be considered to establish coherence between
sentences. It is because the notion of ‘sentence’ is not taken into ac-
count;

o It uses only Lexical Cohesion a la Halliday and Hasan’s notion of co-
hesion. What is worse, it cannot handle cases as follows, in which two
sentences are coherent because the same fact is inferrable(predictable)
from both of them.

John was lost.
He pulled over to a farmer by the side of the road.
(He asked him where he was.)

16




Coherence metric should be applied not only to abduction, where pre-
conditions are assumed to hold because conclusions hold, but to cases
when conclusions are assumed to hold because preconditions hold, which
is called default reasoning|20].

4.3 GDN as a coherence-directed inference mecha-
nism

GDN has good characteristics, as mentioned in section 2.1. In addition to
those, as a coherence-directed inference mechanism, GDN has the following
merits:

o Similarities of two events’ case frames(each having some common slots)
are easily detected by GDN, because GDN represents a common case
slot of some different frames as one branch of the network;

e As described in section 2.2, GDN naturally executes abductive infer-
ence, because constraints in an if-clause can be regarded as assumptions
in the abductive reasoning[10, 17,

¢ Asis clear from the third characteristic mentioned in section 2.1, GDN
can easily detect common preconditions that appear in multiple rules.
This is important because coherence metric is based on the detection
of such common preconditions, which is also used as ‘unify’[10] and
‘factoring’[23] in many abductive systems. Similarly, GDN can also
easily detect multiple rules that share a common conclusion.

4.4 Filling the gaps by coherence-directed inference

In this section, we illustrate how coherence-directed inference with GDN fills
the gaps, using examples in section 4.2.
In the first example, a gap exists in the second sentence.

taro ga hanako ni hana wo age,

(Taro Hanako flower gave)

jiro ga ¢ hon wo okutta.
(Jiro  to her book  presented)
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Taro gave Hanako a flower, and Jiro presented a book to her.
Assuming the following case frames for the verbs ‘ageru’ and ‘okuru,’”

ga/human, wo/thing, ni/human, ageru
ga/human, wo/thing, ni/human, okuru

the gap is represented as a constraint in the if-clause ‘i f ni/human.’ So far
as the above case frames are concerned, they are similar in that they share
three case slots for ‘ga’, ‘wo’, and ‘ni,’ and so the two sentences are inferred
as coherent. The shared case slots are merged into one branch in GDN, and
because the case slot for ‘ni’ is shared and is satisfied by the phrase ‘hanako’
in the first sentence, the gap is also filled by ‘hanako.’

In the second example, two gaps exist in the second sentence.

taro ga kabin wo hakondeitaga,

(Taro vase was carrying)
é1 $2 otositesimatta.
(he it dropped)

Taro was carrying a vase, but he dropped it.
Assuming the following case frames for the verbs ‘hakobu’ and ‘otosu,’

ga/human, wo/thing, hakobu
ga/human, wo/thing, otosu

the gap is represented as a constraint in the if-clause ‘if ga/human and
wo/thing.” In this case, the two sentences are inferred as coherent partly
because the two case frames are similar. Moreover, assuming the following

rules,
hold(X,Y) A move(X) — carry(X,Y).

hold(X,Y) A let_fall(X,Y) — drop(X,Y).

both events ‘carry’ and ‘drop,” which correspond to ‘hakobu’ and ‘otosu’
respectively, have event ‘hold’ as a common precondition, and so the two
sentences are also inferred as coherent from this viewpoint. The arguments

°In this explanation. word sense ambiguity of verbs is ignored and all aspectual infor-
mation is omitted.
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X and Y of events ‘carry’ and ‘drop’ correspond to the phrases for cases ‘ga’
and ‘wo’ in the above case frames, respectively, and share the same value
because two rules are merged through event ‘hold.” As a result, the gaps for
cases ‘ga’ and ‘wo’ are filled by ‘taro’ and ‘kabin,’ respectively, because both
viewpoints support the explanation.

In the above examples, the application of the selectional restrictions to
the possible substitutions for the missing phrases is unnecessary, because a
common case slot of some different frames are merged into one branch, and
the satisfiability of the selectional restrictions is not checked twice in GDN.

5 Conclusion

We described a framework for ellipsis resolution that uses GDN uniformly.
GDN-represented case frames execute the detection of the places of gaps,
while GDN-represented commonsense knowledge, together with GDN-represented
case frames, execute coherence-directed inference, which enables the filling
of the gaps as a by-product.

Our framework is imperfect, of course, in that it only employs a portion of
useful knowledge sources; it should be augmented by other useful knowledge
sources, and thus be able to treat more examples. Other factors, such as the
information of focus(centering)(22, 12, 25] and clue words[21], must play a
role too. The focusing rules might be applied to all candidates for the substi-
tution, and contribute to a reduction in the number of surviving candidates
before commonsense inference is carried out[22, 6]. Clue words, such as con-
nectives, might help reduce the search space of coherence-directed inference,
because connectives that mean ‘explanation,’ such as ‘because,’ indicate that
the second sentence causes the first, which makes the direction of inference
clearer. Determining the relative importance of these factors appears to be
an interesting topic. It is our hope, however, that our framework will bring
us closer to an integration of multiple strategies for ellipsis resolution.
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