- Y 2 T T T T T R TN TR N R T R B

D{.L‘XOCA‘J%MWW U/O"‘A"A‘f’ l72 , gaMué'm, g Al
(Gmwwn - Ja,{\w'g.m W/ e &dﬂ”,’ "],z)

A Family of Generalized LR Parsing Algorithms
Using Ancestors Table

Hozumi TANAKA K. G. SURESH Kouiti YAMADA
Department of Computer Science, Tokyo Institute of Technology

2-12-1 Ookayama Meguro-ku Tokyo 152, Japan
Email : {tanaka, suresh}@cs.titech.ac.jp

Abstract

A family of new generalized LR parsing algorithms are proposed which make
use of a set of ancestors tables introduced by Kipps [5]. As Kipps's algorithm
does not give us a method to extract any parsing results, his algorithm is not
considered as a practical parsing algorithin but as a recognition algorithm (8.
In this paper, we will propose a few of methods to extract all parsing trees from
a set of ancestors tables in the top vertices of a graph-structured stack. For
an input sentence of length n, while the time complexity of Tomita's parsing
algorithm can exceed O(n?) for some context-free grammars (CFGs), the time
complexity of our parsing algorithm is in the order of n® for any CFGs, since
our algorithm is based on the Kipps's recognition algorithm. In order to extract
a parsing tree from a set of ancestors tables, it takes time in the order of n?.
However, by making small modifications in the ancestors table, it is possible to
extract a parsing tree in the order of n. A preliminary experiment suggests our
parsing algorithm seems to be very promising.

1 Introduction

The LR(k) parsing algorithm [6] can parse deterministically and efficiently any input
sentences generated by a LR(k) grammar which is a subset of context-free grammar
(CFG). Tomita extended the LR(k) parsing algorithn to handle a general CFG not
limited to Chomsky normal form [12]. The extended algorithm is called Tomita’s
parsing algorithm which is known as one of the most efficient generalized LR (GLR)
parsing algorithms. Empirically, Tomita's algorithm is faster than Earley's algorithm,
but there are some CFGs for which the time complexity of Tomita’s algorithm is worse
than that of Earley’s [3] and for general CFGs, the order of parsing time crosses over
n? for the input sentence of length n [5]. This is because during the reduce actions on
graph-structured stack (‘GSS), in order to get a set of ancestors vertices, duplicated
traversal of the same edges and the access of the same ancestors occur many times.

iy e

To avoid the above problem during the reduce action on GSS, Kipps introduced an
ancestors table in which the ancestor vertices are stored [5]. Using only the ancestors
tables in the top vertices (leaves) of GSS, Kipps algorithm can generate a set of ances-
tors vertices in constant time without traversing any edge in GSS, and thus can avoid
duplicated traversals of a same edge and the duplicated access of the same ancestors.
As a result, Kipps algorithin can give the tine complexity in the order of n? for any
CFGs.

However, as Kipps's algorithm does not give us a way to extract any parsing results,
it is not considered as a parsing algorithm but as a recognition algorithm [8]. In this
paper, we propose a family of GLR algorithins which can get all parse trees from
ancestors table without traversing any edge in GSS, and whose time complexity gives
the same order of n? as that of Kipps recognition algorithm. In order to extract a
parsing tree from a set of ancestors tables in the top vertices of GSS, which has been
stored during shift and reduce actions, it takes time in the order of n?, but by making
small modifications in the ancestors table, it is possible to extract a parsing tree in
the order of n. For the family of GLR parsing algorithms, when the parsing result is
highly ambiguous, the experiments confirmns the possibility of tremendous speed up in
the parsing time.

Following Kipps (5], we briefly explain Tomita’s and Kipps's recognition algorithms
in section 2. Section 3 explains a family of the new GLR parsing algorithms using
ancestors table. Section 4 gives an experimental evaluation of the family of GLR
parsing algorithms which reveals the facts that our GLR parsing algorithm is more
efficient than Tomita's parsing algorithm. Finally in section 5 we give our conclusion
and future works.

2 An Overlook of Tomita and Kipps Recognition
Algorithms

In this section after a brief explanation of Tomita’s algorithm as a recognition algo-
rithm, we will explain Kipps recognition algorithm. The position number used in these
algorithms is defined as follows.

Let Tt is a set of a sequence of terminal symbols (words) more than 1 aud let W
= W) W3 ... W, € T* be an input sentence. The number i between the word w; and
w,41 is called the position number of the word w;. The special position number 0 and
n represents the left and right hand side position of w, and w, respectively.

2.1 Tomita's Method As a Recognizer

Following Kipps, we will explain Tomita's algorithim as a recognition algorithm [5].
Each vertex shifted to a stack will have a state and an edge towards its parents. In
Tomita’s method, several stacks are combined and packed into a graph structured stack

2

(GSS). GSS is constructed from a set of vertices and edges. Since GSS forms edges
from a vertex towards its parents, it becomes a DAG. There may be several leaves in a
GSS. Leaves represents top-of-stack (top vertices of GSS) and the state of each leaves
represents currently active states. The leaves of GSS grows in stages. Each stage U;
corresponds during the processing of the i-th word w; of the input sentence with the
next look-ahead word wy;.

Figure 1 shows a schematic example of GSS. Here v; represents a vertex and w;
represents i-th input word. Thus the vertex vg in stage Ug covers wg and ws wg. vs in
stage Us covers wyws. In the same way, v, in stage Ug covers wg and wiw,. In real
situation, each vertex of the GSS in U; is a triple < 1,3, L >, where s and L represents
the parse state and a set of parent vertices respectively.

W v W, Y w Ve
Uo U, Uz Us Us Us Us
@We—W- ¢ v, ()
Vs) L

Fig 1: An Example of GSS

The Tomita's recognition algorithm works as follows. A GSS is initialized by push-
ing < 0,50, {} > in stage U, which becomes the root of the GSS with w, as a look-
ahead word (scanning word), whose preterminal will be used to determine the parsing
actions in the LR table. The input sentence is parsed stage by stage for each word
from left to right thus changing the GSS.

Upon scanning w;,; as a look-ahead word, the recognition algorithm carries out the
following four actions in stage U;. What kinds of actions (shift; reduce; accept; error)
are to be carried out is determined by the leaves in U;, LR table, and the preterminal

of the scanning word wi4;.

1. Reduce : The recognizer pops the number of vertices (corresponding to the right
hand side (rhs) of the production rule specified by the reduce action) from the
top of the stack and then creates a new leaf in U; which becomes active and the
state of which will be determined by the Goto field.

2. Shift : A new leaf corresponding to a look-ahead word w;4, is pushed in U;; ;. The
state of the leaf is determined by the shift action. Note that the newly created
leaf in U;4, is not active until there is no active leaf remained unprocessing in U;
and the look-ahead word becomes w;;.

3. Error : The leaf with error action will be truncated.

4. Accept : Recognition process will end with success.

Only after all the leaves in the stage U; has been processed, the recognizer proceeds to
the stage U;,, scanning the next word wi;s. '

In case of 1 and 2, a new leaf is added in U; and U;;, respectively and edges are
formed from the new leaf to its parents. If there exists a leaf with the same state as
that of a newly created leaf in U; in case of 1, or U;;, in case of 2, then they will be
merged into one. The leaf after merge will have several parents. Merging of leaves with
same state avoids the duplicated processing of the input sentence and also it makes
sure the number of vertices in each stage to be within the number of total states in LR
table. Hence the order of the number of vertices in each stage beconies constant.

Let us focus more on a reduce action in the stage U;. A reduce action pops the
number of vertices (say q) equal to the number of nonterminal and preterminal symbols
in rhs of the rule used in the reduce action. Then the ancestor vertices at a distance of
q will tentatively become the top of the stack, and using the Goto field of LR table, a
new leaf is pushed in the stage U; for each ancestor. At the same time new edges are
formed from the leaves to the ancestors and the vertices in the distant stages becomes
the parents of the leaves. In consequence, a vertex < 1,s,L > in U; has at most cxi
parents where c is the number of total states and is constant. We can conclude that
the number of ancestors of each vertex is in the order of i.

The ancestors at a distance of q from a leaf in the stage U, will be obtained by
traversing every edge from the leaf to them. As the number of parents is in the order of
i, the number of edges between the leaf and the ancestors at a distance of q becomes at
most i9. Therefore, the time of Tomita’s recognition algorithm is in the order of n'*? (
= ¥4 i#, where p is the number of nonterminal and preterminal symbols in the rhs
of the longest production). If p > 2, the order crosses over n®. For the grammars in
Chomsky normal form p = 2 and hence the order of recognition time becomes n®.

2.2 Kipps Recognizer

Due to the time consumed in getting the ancestor vertices, the time complexity of
Tomita’s recognition algorithm crosses over the order of n® for general CFGs. As
explained in 2.1, although the number of ancestors at a distance of q from a leaf in
the stage U, is in the order of i, the time needed to extract them is in the order of if.
The reason is that, to get the ancestor vertices, an edge once traversed might be again
traversed repeatedly and an ancestor vertex once accessed might be again accessed
repeatedly.

For example, in the GSS shown in figure 1, in order to pick up an ancestor vertex,
say vy, at a distance 2 from the top-of-stack ve, we have to traverse two paths from vg
to v3, namely vg-vs—v3 and vg—v4-vj, resulting in accessing the same one ancestor vy
two times. This means that in case of Tomita’s algorithm, the same ancestors and/or
the same edges might be accessed many times.

If the access to the same ancestors more than once is avoided, the time to get the
ancestors can be reduced. For this purpose, Kipps changed the data structure of the

4

—® ® *® % % (" (%

vertex as < 1,5, A > (see fig.2). Here i represents the stage number, s the state and 4 is
the ancestors table which consists of a set of tuples such that {< k, L, > [k =1,2,. -,
p} where L, is a set of ancestors at a distance of k from the vertex < i,s,4 >. From
the above discussion, we know that the ancestors table is formed by at most p (see 2.1)
tuples and the number of ancestors in Ly is in the order of i.

In figure 2, we elaborate the figure 1 when p = 3, by showing the contents of each
vertex along with the contents of ancestors table.

<1, (Ve . V5)>
<2, (V2 \j)>
<3.{\Mb .M }>

<, (M)
<2, (MM)>

A4\ <3, (W)>

Fig 2 : An Example of GSS showing Ancestors Table

When a new leaf is created during shift and reduce actions, each ancestors table
can be formed in a constructive way by using the ancestors tables formed in the past.
Concretely, on using the ancestors table A’ of the parent vertex of a leaf, the tuple
< k,L} > in A’ can be used to form the tuple < k+1, L4, > of the ancestors table A
of the leaf (see fig. 2). According to Kipps, time taken to fill all entries in an ancestors
table is in the order of i2. Once an entry in an ancestors table is filled, the time to
reget that entry is constant thereafter. Therefore it is possible to get ancestor vertices
from the entry in constant time. From the above arguments, for a sentence of length
n, it is proved that the time complexity of Kipps recognition algorithm will become in
the order of n® (= T, i?).

3 A Fafnily of Generalized LR Parsing Algorithms
Using Ancestors Tables

At first, we will introduce Drit parsing algorithm which is one of a family of GLR
parsing algorithms using ancestors table and then we will introduce two other parsing
algorithms, called Ancestors table based GLR (AGLR) parsing algorithm, which are
faster than Drit parsing algorithm. The most important feature of Drit and AGLR
parsing algorithms is that, the partial parsing results can be obtained from ancestors
tables in the top vertices alone. Thus during reduce actions, as well as Kipps recognition
algorithm, the traversal of edges in GSS is completely avoided. Due to this feature,

) e e e = L e

the time complexity for parsing limits to n® for any CFG.

3.1 Drit Parser

During shift and reduce actions, from the ancestors table in the leaves alone, it is
possible to create dot reverse items (drit) {10} which is dual to that of the Earley’s
items. By modifying Kipps recognition algorithm we propose a parsing algorithm
called Drit parsing algorithm which creates drits during shift and reduce actions.
The meaning of a drit [A — a - 8,j] in a drit set R; is as follows. The position
number just after the is j and that of dot is . Thus 3 represents the portion of the
input sentence from w;;; to w; which have been processed. In case of Earley’s items,
a is the portion processed. The drit [A — -7,] in the drit set R; represents, the part
of the input sentence from w;y; to w; which is analyzed as 7 and then recognized as

A.
"’ /\ /\
Yb

f w, w wg f + Wy W, wg W
s

Fig 3 : Example of Input sentence covered by grammar rule
X—=Y Z lor Vgin fig. 2

The reasons for creating drits instead of Earley’s items are explained by using figure
2 and figure 3. Suppose the reduce action X - Y Z is épplied to the top-of-stack (leaf)
vs, namely <6,s,A6>.

Where A6 = {<1, {vq,vs}>, <2, {v2,va}>, <3, {vo,v1}>},

vs = <5,85,A5>, vy = <4,54,Ad>, v3 = <3,83,A3>, vy = <2,52,A2>, .-

From the ancestors table A6 in vg alone, we can know the following facts.

(1) Vertex vg corresponds to Z which covers wswg and weg, since the vertices at a
distance 1 from vg are vs and v4 whose position numbers are 5 and 4 respectively.

(2) As the vertices at a distance of 2 from vg are vy and vz, Y Z covers wywswg and
w3w,WsWg respectively, since the position number of v3 and v, is 3 and 2 respectively.

Note that from the ancestors table A6 of the top-of-stack alone, it is impossible to

know whether there is an edge connecting v with vs and vy, or an edge connecting v,
with vs and v4. In other words, the only thing we know from A6 is that there exists
some vertices at a distance 1, 2, etc from the top-of-stack vs. Even though we are

able to know the existence of proper edges between the vertices if we traverse through

the GSS, we do not want to do so, because it leads to the same inefficiency problem
as Tomita's algorithm. In case of Earley’s items we have to know the exact portion
of input sentence covered by Y, but from the ancestors table A6 alone, we are unable
to know it. From the above considerations, we conclude that fromm A6 alone, it is not
guaranteed to create necessary and sufficient Earley’s items.

On the contrary, we can create the following drits using A6 alone, because in drits
the exact portion of input sentence covered by Y is not necessary to know.

Drits from (1):

Rs3 (X —-Y 2,6, R3[X—-Y: 26
Drits from (2): '

Rid2[X—-YZ6], R3[X—-YZ,6

The reason why we can create necessary and sufficient drits is that GLR parsing is
based on the right-most derivations which drits reflects. Another bonus in using drits
is the localization of duplication checks for newly created drit. The position number
inside the drits will remain the same throughout the processing of a stage. This enables
us to limit the scope of duplication check of drits within that stage.

Let us consider that the parser is going to enter in the stage U;y, from the stage
U; by shifting a look-ahead word w,;,. If we assume C be the preterminal of the word
Wi, during the shift action a drit [C — - w4y, i + 1] is created in R;.

Ri:=RU {[C — - Wiy, i + 1]} ‘

The reason for including the newly created drit in the set R, is that, at the time jost
before shifting of word w4, the active leaves have the position number 1. Only after
shifting the word w;,, for all the leaves, the top position number will be incremented
by one and the processing enters the new stage Uiy;.

In summary, drit parser creates a set of drits during shift and reduce actions. By
considering the duality of a drit and an Earley’s items, from a set of drits it is possible
to generate all the possible parsing trees using an algorithm similar to that of Earley’s
tree generation algorithm. The time taken to generate one parse tree is in the order of
n2.

Let us consider the computational complexity of a Drit parser. As drit parsing
algorithm is based on Kipps recognition algorithm, the time complexity of drit parser
is in the order of n?, since the creation of drits does not affect the time complexity. The
only thing which affects the time complexity of Drit parser is the time consumed by
filling up ancestors table. As mentioned before in 2.2, in stage i, it takes in the order
of i2. Thus summing up i from ! to n, the time complexity of the Drit parser becomes
nd.

To find the space complexity of Drit parsing algorithm, we have to consider the

memory space consumed by GSS and by the total number of drits created. It is
obvious that the space consumed by GSS is in the order of n2. The total number
of drits created is in the order n3. Since each vertex of the GSS can have at most i
parents, the number of drits created at one reduce action is psi where p is the length
of the longest production. For a stage U;, reduce actions will occur for i times and
hence the number of drits created at one stage U; is px i * i, which is in the order of
i2. Summing from i =0, 1, -+, n gives the order as n®. Thus the space used by Drit
parsing algorithm becomes in the order of n*.

3.1.1 An Example of Drit Parsing

In this section we give a trace of Drit parsing algorithm using the grammar and the
LR table in figure 4 and 5 (12].

State Action field Goto field
(1) s — NPVP det n v p $ [NP|PP}VP]|S
(2) S - SPP 0 shd | sh4 2 1
(3) NP — n 1 sh6 acc 5
(4) NP — detn 2 sh? sh6 9 8
() NP — NPPP 3 sh10
(6) PP — pNP 4 red red red
(1) VP — vNP 5 re2 re2
Fig. { : Simple English grammar 6 sh3 | shd4 11

7 sh3 | shd 12

8 rel rel

9 red red red

10 red red re4

11 re6 | re6/sh6 | re6 9

12 re7/sh6 | re? 9

Fig. § : LR table of the grammar in fig. §
Each step in the trace is shown below. Note that an ancestors table has two entries
because, the rhs of rules in fig.4 has atmost two non-terminal/preterminal symbols.
At the beginning, the GSS contains only one vertex labelled v in the stage U,. By
looking at the action table, the next action “shift 4 [sh, 4]” is determined from the LR
table given in fig. 5, and a drit corresponding to the shift action is created.

Next word : | (n)
Ug ~e———— Stage

@ (sh, 4] Where Vg =<0, 0, AO>
* ‘ Ancestors Table
Slate
Pasition number
Unique pointer A0 = (<>} create [n—=+1, 1]in ly

On shifting the word “I", the parser enters into the stage U, and pushes a vertex
v, with position number 1, the state 4 and an ancestors table A1. The next action
“reduce 3 [re, 3]" is determined from the action part of the LR table, because the state

of v, is 4 and the preterminal of the next word is “v”.

Next word : saw {v)

' At = (<1, (%)5) create (NP —= -n, 1] in Iy

..
...................................

Before reducing, drits corresponding to the reduce actions are created from the
ancestors table Al of the top vertex v,. As [re, 3] is performed using the rule number
3, NP — n, whose rhs has only one symbol and so, the ancestors table Al is looked
for the parent vertex at distance 1 to get vy. Thus during the reduce action we are not
actually traverse through GSS, instead we look for the ancestors table Al of the top
vertex v, alone. The parser looks for the Goto part of the LR table and a new vertex
labelled with v, with state 2 is pushed into the stage U, of GSS. For the top vertex vy,
“shift 7" has been determined as the next action.

Uo U

Where V, = <1, 2, A2>
[5h-7] A2’(<1:{\b’>l create(v—-l--saw. 2][" l]

After executing “shift 7" we have the GSS as shown below with the top vertex v;.

Next word : a (det)

U A U2 Where Vy = <2, 7, A3>
\v Va) [sh.3) A3 = (<1, (V2)>,
@ g @ <2.{(Vo)>} create { det —~+a, 3] in i

After executing “shift 3" we have the GSS as shown below.

Next word : man (n)
Uo Uy U2

Us
/v\ v\ V sh, 10] Where Vy =<3, 3, Ad>
O——®—W'! VI

<2, {(V2)>} create [n —= «man, 4]ing

After executing “shift 10" we have the GSS as shown below. Note that the ances-
tors table A4 has two entries, which corresponds to the number of non-terminal and
preterminal symbols of the rhs of the longest production rule given in fig.4

Next word : with (p)

Uo U] Ua Us Uy
o\ " Where Vs = <4, 10, A5>
@ \vi/ @ @ @ AS = (<1, (V4]>, create [NP —® detn, 4] inh
: [re, 4] <2,{Va)>) create [NP —» «detn, 4] in b

...

The next action is “reduce 4” and the drits using the rule number 4, NP — det n,
are created from the ancestors table A5. The GSS is reduced and the new vertex vg is

Uo Uy Uz Uz Uq
Whers V. =<4, 12, A6>
(g) Were AG = (<1, [Vg)>, CT6318 [VP — voNP, 4] in Iy

[sh,7/re, 6] <2, (Vg)>) Create [VP —=+v NP, 4] in k

..

At this point, a conflict with “reduce 7" and “shift 6” occurs and both should be
executed. After executing “reduce 7", the new vertex vy is created and the GSS is
as shown below. The top vertex vg is still active since the action “shift 6” is not yet
executed. Thus at this point, we have two active vertices vg and v;.

Ug U . Uz Us Usg
V. <V) [sh, 6] Where V7 = <4, 8, A7>
A7 = {<1, {V3})>,
[fe, 1] <2v(v0]>l '

create (S —P= NP.VP, 4] in |y
create {S —P NP VP, 4] in

..

The action “reduce 1" associated with the top vertex v; is executed and the resultant
GSS is shown below.
Uo Yy Uz Uj Ug

O (6 Eh6l Whero Vg~ <, 1, As>
A8 = {<1, {Vo)>}

(sh. 6]
creale [p —p < with, 5] in 4

Now there are two “shift 6” actions for both top vertex vg and vg with the same
word "in". A merged vertex vy with state 6 is pushed into the GSS, where the first
entry of the ancestors table A9 of vg will have two parents (vg and vg) and, the second
entry at a distance 2 is formed by merging the first entry of the ancestors table A6 and
A8 as shown below.

Next word is : a (det)
Yo Ui

Where Vg = <5, 6, AS>

A9 ={<1, (%M >,
<2, (\.)5}

create [det —»-+a, 6]in kg

The above trace shows all the actions carried out by the Drit parser, such as shift,
reduce, merge, creating drits. During “error" process, the corresponding branch of
GSS will be terminated as an error and during “accept” process it will be terminated
by accepting the sentence.

10

3.2 AGLR Parser

In this section let us consider the other GLR parsing algorithm called Ancestors table
based GLR (AGLR) parsing algorithm.

3.2.1 AGLR Parser - Version 1 (AGLR 1)

Drit parsing algorithm creates a set of drits during shift and reduce actions from which
partially parsed trees can be generated. Since it is possible to create a set of drits from
ancestors table, during reduce action we can think about simply storing the ancestors
table of the leaf vertex as it is. If we do so, the duplication check of drits can be
avoided. For instance, suppose the reduce action X — Y Z is applied to the top vertex
ve in fig. 2,

from A6 = {<1, {vq,vs}>, <2, {VQ,V3}>,)

we store the following information as

[{X — Y 2}, {<0,{6}>, <1, {4,5}>, <2, {2,3}>}].

Note that the rule(s) used for the reduce action and position numbers of the ances-
tors vertices along with their respective distances are stored. The information <0,{6}>
is stored in order to know the right most position of Z. It is obvious that a set of drits
can be obtained from the informations stored above. Since this GLR parsing algorithm
is totally based on ancestors table in top vertices, from now on we call this GLR pars-
ing algorithm as Ancestor table based GLR parsing algorithm, AGLR in short. This
method also has the time complexity the same as that of Drit parsing algorithm, in the
order of n3. The time to extract a parse tree from the informations stored as above, is
also the same as that of Drit parser, namely n?.

3.2.2 AGLR Parser - Version 2 (AGLR 2)

In order to extract a parse tree after Drit and AGLR1 parsing has completed, it takes
time in the order of n2. With a small modification of the contents of ancestors table, it
is possible to reduce this order to n. To do so, at first when a new leaf v is formed, the
ancestors table will record <0, {v(L)}>. Here, L is a set of position number of parent
vertices of v. For example in case of fig. 2, the ancestors table of the leaf vertex v,
<6, s, A6> becomes as shown below.
A6 = {<0, {ve(5,4)}>,
<1, {v4(2),vs(3)}>,
<2, {va(0),va(1)}>,
<3,i}
If the reduce action on the leafl vg specifies X — Y Z, then the above ancestors
table will be stored with a small modification along with a set of rules used by reduce
actions on the leaf.

[{X — Y 2}, {<0,{4(6),5(6)}>, <1, {2(4),3(5)}>, <2, {0(2),1(3)}>}]

11

bd -) ety g ——n —'!"’wuu- :a-r“-.

In storing the above information, we unpack the set of position numbers in A and
reverse the order. This type of data structure will give us a clear and simple image in
finding the complexity of tree generation. Here for instance,

(1) <0,{4(6),5(6)}> indicates that, a sequence of words wsw (the position number
between 4 and 6) and a word wg (the position number between 5 and 6) are covered
by Z.

(2) <1, {2(4),3(5)}> indicates that, wyw, (the position number between 2 and 4)
and a sequence of words wws (the position number between 3 and 5) are covered by
Y.

(3) From (1) and (2) : w,wswg and wyw wswg is covered by Y Z and thus X.

Note that in the case of ancestor tables in leaves, as described in section 3.1, it is
unable to decide the exact portion of input sentence which is covered by Y. This causes
the time complexity of tree generation to be in the order of n2. However, (2) teaches
just the portions covered by Y. From the facts, we are able to extract the parse trees
in a deterministic way. Accordingly, from the modified ancestors table as mentioned
above, to extract one parse tree, the time needed is in the order of n. The parsing
time complexity still remains the same as n?. But the space complexity increases to
n3 because, according to the modification of the contents of ancestors tables it takes i
order in the stage U;.

4 Experimental Results

In this section, we will examine the parsing algorithms discussed so far and compare
them. Two types of grammars were used in our experiment. Gram-1 consists of 3
grammar rules [3]. This grammar has high dense ambiguity. Gram-2 is the second
type of grammar used, consisting of 123 grammar rules. For this grammar, the input
sentence used for testing has PP attachments as, “I open the door with a key with a
key” . We compare Drit parser and AGLR 1 parser with Tomita's parser.

Machine used : Sony News work station (20MIPS).

Programming Language used : C.

Grammar Used (Gram-1) :

S—+888S
S—SS

S—a

Input sentence : aaaaaaaaaa.......

12

T""’""] I"“‘"’] T"_“"] LI LI L R [|

d 1

) N N ! M| R | a_ | w___ | ¥ |

Input Length | Parsing Time in msec
Drit | AGLR 1 | Tomita
10 49 34 140
11 68 | 45 239
12 94 60 399
13 133 83 698
14 178 98 1084
15 231 111 1420
20 - 269 12562
25 530 64163
30 980 246130

Grammar used (Gram-2) : English grammar with 123 rules.
Input sentence : 1 open the door with a key with a

Input Length | Ambiguity | Parsing Time in msec
Drit { AGLR 1 | Tomita

16 84 48 48 61
19 264 65 69 90
22 858 95 83 116
25 2860 122 105 156
28 9724 167 128 190
31 33592 220 166 226
49 430 681
52 511 802

5 Conclusion

For certain CFG it was found that, the time complexity of Tomita’s GLR parsing
algorithm is more than that of Earley's algorithm ({11,12]. Kipps gave a recognition
algorithm in which he made small modifications in Tomita’s algorithm. The time
complexity of the modified recognition algorithm is the same as that of Earley’s (n®
where n is the length of the input sentence) for any CFG [5]. However, Kipps algorithm
only recognizes the input sentence as grammatically acceptable or not and it does not
produce any parsing results such as partially parsed trees or items. For this reason,
Kipps algorithm can not be taken as a practical parsing algorithm (8].

In this paper, using ancestors table introduced by Kipps, we propose a method to
extract the parsing trees. We explain a family of parsing algorithm based on ancestors

13

[B

tables, which confirms the fast performance of compared to Tomita's algorithm. Since
the family of parsing algorithms, Drit, AGLR1 and AGLR2, are based on Kipps algo-
rithm, their parsing time complexity is in the order of n? and space complexity is in

the order of%’ as summerizing in fig. 6.

Tomita | Drit | AGLR-I | AGLR-1I
time n™ n’ nP | . n?
GSS space n? n? n? n?
Tree Extraction n n? n? n

wherem > 3

The followings are our future research works. (1) Further detailed evaluation of
AGLR parsing algorithm is needed along with experimental comparison to Tomita's
method, (2) Developing a parallel algorithm, (3) A parallel algorithm for tree gener-
ation, (4) Developing a tool for natural language processing based on AGLR parsing
algorithm. |

References

(1] Aho, A.V and Uliman, J.D. :
The Theory of Parsing and Compiling, Prentice-Hall, New Jersey (1972).

[2] Earley, J. :
An Efficient Augmented-Context-Free Parsing Algorithm, Comm. of ACM, 13, 1-2,
95-102 (1970).

(3] Johnson, M. :
The Computational Complezity of Tomita's Algorithm, Generalized
LR Parsing, Kluwer Academic Publishers, pp.35-42 (1991).

(4] Kay, M. : '
Algorithm Schemata and Data Structures in Syntactic Processing, Readings in
Natural Language Processing, Morgan Kaufmann Publishers, Inc. pp.35-70

[5) Kipps, J.R. : '
Analysis of Tomita’s Algorithm for General Context-Free Parsing, Generalized
LR Parsing, Kluwer Academic Publishers, pp.43-59 (1991).

[6] Kunth, D.E. :
On the Translation of Languages Left to Right, Information and control, 8(6),
pp.607-639 (1965).

[7] Numazaki, H. and Tanaka, H. :
A New Parallel Algorithm for Generalized LR Parsing, COLING'90 , Vol .2,
pp-305-310 (1990).

14

(8] Schabes, Y. :
Polynomial Time and Space Shift-Reduce Parsing of Arbitrary Context-free
Grammars, Proc. of 29th ACL, 106-115 (1991).

[9] Suresh, K.G. and Tanaka, H. :
Implementation and Evaluation of Yet Another Generalized LR Parsing Algorithm,

Proc.of the Indian Computing Congress, Tata McGraw-Hill, §06-515 (1991).
[10] Tanaka, H and Suresh, K.G. :
YAGLR : Yet Another Generalized LR Parser, Proceedings of ROCLING 1V,
Republic of China, 21-31 (1991).
(11] Tanaka, H and Numazaki, H. :
Parallel GLR Parsing Based on Logic Programming, in Tomita, M ed. : Generalized
LR Parsing, Kluwer Academic Publishers, 77-91 (1991).
[12] Tomita, M. :
Efficient Parsing for Natural Language, Kluwer, Boston, Mass(1986).
(13] Tomita, M. Ed. : '
Generalized LR parsing, Kluwer Academic Publishers (1991).

15

