#HEBEA BFANBEFS (E¥xH
THE INSTITUTE OF ELECTRONICS, TECHNICAL REPORT OF [EICE.
INFORMATION AND COMMUNICATION ENGINEERS NLC93- 2 (1993-05)

—fig{t LR & % A\ R RESRAE AT C IRERRAT DI S

HEEE R, fEoKEfh, BPIEia
RRIFKF 25

takeQcs.titech.ac.jp
H5% L
AL TS, TERERBIT & BRI & — AL LR U OB A THEL T 2 FEERET
B, FRERMT L BRI EHA L TB I %) 2 LIk o T, TREMAIH & HEEMHIH & FB
CHATAIEHTE D FFHETR, BET L EFEROBRGETREMEREY LR BB 5%
GiAEBE Y, EHER LY LR RICHARATVS., THICL), BENANSKBLELIC
LR RIZL A BRBEN B 2bh .

X F—7 -8 TEREEMAT, MARRRAT, HAGE, —XLLR i

Integration of Morphological and Syntactic Analysis
on LR Parsing Algorithm

Aizawa Michio, Tokunaga Takenobu and Tanaka Hozumi
Department of Computer Science, Tokyo Institute of Technology
(2-12-1 Ookayama Meguro-Ku Tokyo 152 Japan)

Abstract

This paper proposes a method to integrate morphological and syntactic analysis based on LR
parsing algorithm. Integration of the two analysis enable us to utilize both the morphological
and syntactic constraints at the same time. In our method, an LR table that is derived from
given grammar rules is modified on the basis of a connectability matrix between two adjacent
words. Thus the both constraints are represented in a uniform manner, that is an LR table.
With this modified LR table, efficient morphological and syntactic analysis is possible.

&I key words morphological analysis, syntactic analysis, Japanese analysis,
generalized LR parsing

1 Introduction

Morphological analysis of Japanese is very different
from that of English, because no spaces are placed be-
tween words. This is also the case in many Asian lan-
guages such as Korean, Chinese, Thai and so forth.
In the Indo-European family, some languages such as
German have the same phenomena in forming complex
noun phrases. Processing such languages requires the
identification of the boundaries of words in the first
place. This process is often called segmentation which
is one of the most important tasks of morphological
analysis for these languages.

In segmentation, many ambiguities arise and they
should be resolved correctly using various kinds of in-
formation. This is a very important process, since
the wrong segmentation causes fatal errors in the later
stages such as syntactic, semantic and contextual anal-
ysis. However, correct segmentation is not always pos-
sible only with morphological information. Syntactic,
semantic and contextual information may help resolve
the ambiguities in segmentation.

Over the past few decades a number of studies have
been made on the morphological and syntactic analysis
of Japanese. They can be classified into the following
three approaches:

Cascade: Separate the morphological and syntactic
analysis and execute them in a cascade manner.
The morphological and syntactic constraints are
represented separately.

Interleave: Separate the morphological and syntac-
tic analysis and execute them interleavingly. The
morphological and syntactic constraints are rep-
resented separately.

Single Framework: Represent both the morpho-
logical and syntactic constraints in a single frame-
work such as context free grammars (CFGs) and
make no distinction between the two analysis.

Representing the morphological and syntactical con-
straints separately as in the first two approaches, Cas-
cade and Interleave, makes maintaining and extending
the constraints easier. This is an advantage of these
approaches. Many natural language processing sys-
tems have used these two approaches. For example,
Mine proposed a method to represent the morpholog-
ical constraints in regular grammar and the syntactic
constraints in CFG, and interleave the morphological
and syntactic analysis [Mine 90]. Most other systems
use a connection matrix instead of a regular grammar

[Miyazaki 84, Sugimura 89]. The main drawbacks of
these approaches are as follows:

* It may require two different algorithms for each
analysis.

¢ It must retain all ambiguities from the morpho-
logical analysis until the syntactic analysis begins.
This wastes memory space and computing time.

On the other hand, from a viewpoint of processing,
it is preferable to integrate the morphological and syn-
tactic analysis into a single framework, since some syn-
tactic constraints are useful for morphological analysis
and vice versa. The last approach fulfills this require-
ment. There have been several attempts to develop
CFG that covers both the morphological and syntactic
constraints (Kita 92, Okumura 89, Sano 92]. However,
it is empirically difficult to describe both constraints by
using only CFG. The difficulty arises due to the timing
of connectability checks, but also increases the number
of CFG rules. For example, in figure 1, in order to
check the connectability between adjacent words, w;
and w;y;, the morphological attributes of each word
should be propagated up to their mother nodes B and
C, and the check is delayed until the application of the
rule A — B C. Therefore, problems such as the possi-
bility of delays in connectability checking and propaga-
tion of morphological attributes to upper nodes make
the algorithm of connectability checking more complex
and can cause difficulties in representing morphological
and syntactical constraints by CFG.

B C

NN

Wi Wity

Fig. 1 Connectability check by CFG

However, by using connectability tables for morpho-
logical analysis as in the Cascade/Interleave methods,
connectability checks between adjacent words is per-
formed very easily. Therefore, it is desirable to repre-
sent the morphological and syntactic constraints sep-
arately as in Cascade/Interleave, and to integrate the
execution of both analysis into a single process as in a
Single Framework. In our method, we have captured
these advantages by representing the morphological
constraints in connection matrices and the syntactic
constraints in CFGs, then compiling both constraints

m—um [
g0 i eem be e

C g wm e o

bkt i

i

X3

S ANSIANIITE Sl e me 1 Te i M LT

into an LR table [Aho 86). The already existing, ef-
ficient LR parsing algorithms can be used with minor
modifications, enabling us to utilize both the morpho-
logical and syntactic constraints at the same time.

In the next section, we first give a brief introduc-
tion to Japanese morphological analysis using an ex-
ample sentence. In section 3, we describe the method
of generating an LR table from a connection matrix
and CFG rules, then in section 4 we explain the detail
of our method based on generalized LR parsing algo-
rithm with'an example. Qur algorithm is principally
the same as Tomita’s generalized LR parsing algorithm
(Tomita 86], but the input is not a sequence of preter-
minals, but a sequence of characters.

2 Morphological analysis of

Japanese

A simple Japanese sentence consists of a sequence
of postpositional phrases (PPs) followed by a predi-
cate. The PP consists of a noun phrase (NP) followed
by a postposition which indicates the case role of the
NP. The predicate consists of a verb or an adjective,
optionally followed by a sequence of auxiliary verbs
[Morioka 87].

entry cat mcat meaning

KaO n nil face

KaO vs vs4r smell sweet

Ru ve vedr3 (connect to nominal)
KaORu |(n n1 person’s name
Ni p pl (dative)

A vs vs4k open

A vs vs4w meet

Ki ve vedk2 (connect to verb)
I ve vedk2i (connect to verb)
I ve ved4w2 (connect to verb)
Tu ve ve4w2t (connect to verb)
MaSu jax axi polite form

Ta ax ax2 past form

n: noun, p: case marker, vs: verb stem,
ve: verb ending, ax: aux verb

Fig. 2 A simple Japanese dictionary

We illustrate the Japanese morphological analysis
with an example sentence “KaORuNiAIMaSu (meet
Kaoru).” ! We use a simple Japanese dictionary shown
in figure 2, and a connection matrix shown in figure 3
which gives us the connectabilities between adjacent

'Each capitalized one or two character(s) corresponds to a
single Japanese character (Kana character).

morphological categories (mcat). For example in fig-
ure 3, the symbol “o” at the intersection of row 2 (p1)
and column 3 (vs4k) indicates that the morphological
category vs4k can immediately follow the morpholog-
ical category p1.

RI

=
-

NSO ()

-
o'
wabung
Nbong
chnd
NSO
W<
N
HNTHO<
-
NP

nl
pl
vs4k 0o

vs4r 0

vsdw o0
vedk?2 0
vedk2i [
ve4r3]
ved4w?2 [
ve4u2t o
axi o
ax2 [}

> B < B
°
°
o
o

-3

Fig. 3 An example of connection matrx

Using only the dictionary, we can obtain the follow-
ing twelve candidates of segmentation for the sentence
“KaORuNiAIMaSu.”

KaQ Ru N A 1
(n1)

MaSu
(1) (ve4r3) (p1) (vs4k) (vedk2i) (ax1)
(2) (n1) ve4r3) (p1) (vs4k) (vedw2) (axl)
(3) (n1) (vedr3) (p1) (vs4u) (ve4k2i) (axi)
(4) (n1) (ve4r3) (p1) (vs4w) (vedw2) (axl)
(5) (vs4r) (vedr3) (p1) (vsak) (ve4k2i) (ax1)
(6) (vs4r) (vedr3d) (p1) (vsdk) (ved4w2) (ax1)
(7) (vs4r) (vedr3) (p1) (vs4w) (vedk2i) (axi)
(8) (vs4r) (vedr3) (p1) (vs4w) (ved4w2) (axi)

KaORu Ni A i MaSu
(9) (1) (p1) (vs4k) (vedk2i) (axi)

(10) (n1) (p1) (vsdk) (ve4w2) (axi)
(11) (a1) (p1) (vs4w) (ve4k2i) (ax1)
(12) (nl) (p1) (vs4u) (vedw2) (ax1)

By also referring to the connection matrix, we can
filter out illegal segmentations. From the examples
above, we find (1)-(4) violate the connectability be-
tween “KaO (n1)” and “Ru (vedr)", and that (5)-(8)
violate the connectability between “Ru (ve4r3)” and
“Ni (p1).” Also (9) and (11) violate the connectabil-
ity between “T (ve4k2i)” and “MaSu (ax1)”, and (11)
violates the connectability between “A (vs4w)” and “I
(ve4k2i).” Thus by process of elimination we obtain
the morphologically correct candidate, (12). However,
a long input sentence generally gives many more ambi-
guities which need to be resolved in later stages using
syntactic, semantic and contextual information.

3 Generating A Modified LR
Table

Connection matrices and CFG rules have been used
for morphological analysis and syntactic analysis re-
spectively by most Japanese processing systems. Be-
cause CFG rules were mainly used for syntactic analy-
sis and connection matrices for morphological analysis,
they have been developed independently of each other.

In this section, we propose a method to integrate
morphological and syntactic constraints in the frame-
work of LR parsing algorithm, and thus capturing the
advantages of Cascade/Interleave and Single Frame-
work.

In order to combine connection matrices and CFG
rules, the first step we have to take is to extend the
CFG rules by relating the syntactic categories in the
CFG rules with the morphological categories in a con-
nection matrix. This is realized by adding new CFG
rules called morphological rules with thé left hand side
as a syntactic category, and the right hand side as a
morphological category.

s — vax (1) v —» vs ve (3)

s —pps (2) pp—onp (4

Fig. 4 A simple set of CFG rules for Japanese

From the dictionary shown in figure 2, we can ex-
tract a set of new CFG rules as shown in figure 5,
which are simply added to the CFG rules in figure 4 to
get an extended set of CFG rules with morphological
constraints.

vedk2i (11)

n — ni (5) ve —

p — pl (6) ve — ve4r3d (12)
vs — ysdk (7) ve — vedw2 (13)
vs — vsdr (8) ve — ve4w2t (14)
vs — vs4w (9) ax — axl (15)
ve — vedk2 (10) ax — ax2 (16)

Fig. 5 A morphological rules derived from the
dictionary in Fig. 2

We can generate an LR table as shown in figure 6
from the extended CFG rules (1) through (16) from
figure 4 and 5. Note that the extended CFG rules
do not include any information about connectability
represented in the connection matrix in figure 3. For
example, rules (3), (8) and (13) allow the structure
“v(vs(vsdr) ,ve(ve4w2))" which violates the con-
nectability between vsd4r and ve4w2 as shown in fig-
ure 3.

The second step is to introduce the constraints on
connectability into the LR table by deleting illegal re-
duce actions. This is carried out by modifying the LR
table with the procedure shown in figure 7.

Deleting reduce actions by applying the above pro-
cedure prohibits the application of morphological rules
which violates the connectability between two adja-
cent words, namely the current scanned word and its
lookahead word. Note that given an LR table and a
connection matrix, this procedure can be performed
automatically without human intervention.

For each reduce action A with a morphological rule
in each entry of LR table {
if (Not Connect(RHS(Rule(A)), LA(A)) {
delete A from the entry;
}
}

where each function is defined as follows:
Rule : action — rule,
returns a rule used by the reduce action.
LA : action — symbol;
returns a look ahead preterminal of the action.
Connect : symbol x symbol — {T, F};
returns true or false with respect to
the connectability of the two symbols.
RHS : rule — symbol,
returns a right hand side symbol of the rule.

Fig. 7 A procedure to modify an LR table

For example, in figure 6, the reduce action re7 in
row 7 and column vedr3 is deleted, since the con-
nection between vs4k, the right hand side of rule (7),
and ve4r3, the lookahead preterminal, is prohibited as
shown in the connection matrix in figure 3. Similarly,
reduce action re7 in row 7 and column vedw2 will be
deleted and so forth. These deletions are marked with
asterisks (*) in figure 6. The overview of generating a
modified LR table is shown in figure 8.

H
H
H

(2
syntactic morphological
rules (CFG) rules (CFG)

—
[LRtable] ;

[modified LR table |

connection
matnx

Fig. 8 Outline of generating a modified LR table

.

S N ———

—— e

ACTION GOTO
v v
s v e v v e
t v y vy ¢ 4 e e 4
a s s s 4 k 4 4 v a a
t n P 4 4 4 k 2 r v 2 X X
e 1 1 kK r w 2 i 3 2 t 1 2 $ S Vvax pp vs ven p
0| shé sh7 sh8 sh9 12 3 4 [
1 acc
2 shil shi12 10
3] shé sh7 sh8 sh9 13 2 3 4 5
4 relb rel6 rel7 rei8 reli9 14
5 sh21 20
6 1é5
7 re7 rel rel* re7+* relx
8 re8% re8* re8 reBx re8#
9 Te9* re9* re9* re9 red
10 rel
11 reib
12 relé
13 re2
14 red red
15 rei0 relQs
16 rell* rell
17 rei2* rel2s
18 rei3 rei3s
19 Tel4x relds
20 re4 re4 re4 re4
21 reb re6 re6 reb

Fig. 6 LR table generated from rules (1)—(16)

Generally speaking, the size of the LR table is on
the exponential order of the number of rules in the
grammar. Introducing the morphological rules into the
syntactic rules can cause an increase in the number of
statesin LR table, thereby exponentially increasing the
size of the overall LR table in the worst case. In our
method, the increase of the number of states is equal
to that of the morphological rules introduced. Suppose
we add a morphological rule X — z to grammar G.
Only the items in the form of [A — a - Xf] can pro-
duce a single new item [X — -z| from which only a
single new state {{X — x|} can be created. Thus the
increase of the number of the states is equal to that of
the morphological rules introduced, and the size of the
LR table will not grow exponentially.

4 Algorithm for Integrating
Morphological and Syntactic
Analysis

The LR parsing algorithm with the modified LR

table is principally the same as Tomita’s generalized
LR parsing algorithm. The only difference is that

Tomita's algorithm assumes a sequence of preterminals
as an input, while our algorithm assumes a sequence
of Kana characters. Thus the dictionary reference pro-
cess needs to be slightly modified. Figure 9 illustrates
the outline of our parsing algorithm.

(1) initialize stack
(2) forCS=0...N{
(3) for each stack top node in stage CS {

(4) Look-aheads = lookup-dictionary(CS):
{5) for each look ahead preterminal LA
in Look-aheads {

(6) do reduce while “reduce” is applicable;
(1 if “shift” is applicable {
(8) do shift creating a new node

in stage (CS + length(LA));
(9) }
(10) if “acc” { accept }
{11) if no action { reject }
(12) }
13) }
(14) }

Fig. 9 Outline of our parsing algorithm

In figure 9 the stage number (CS) indicates how
many Kana characters have been processed. The pro-

—

e =

cedure begins at stage 0 and ends at stage N, the length
of an input sentence. In stage 0, the stack is initial-
ized and only the node with state 0 exists (step (1)).
In the outer-most loop (2)—(14), each stack top in the
current stage is selected and processed. In step (4), the
dictionary is consulted and look-ahead preterminals
are obtained. An important point here is that look-
ahead preterminals may have different Kana character
lengths. A new node is introduced by a shift action at
step (8) and is placed into a stage which is ahead of the
current stage by the length of the look-ahead word.

The following example well illustrates the algorithm
in figure 9. The input sentence is “KaORuNiAIMaSu$
(meet Kaoru).” and we assign position numbers be-
tween adjacent Kana characters.

Ka O Ru Ni AI Ma Su §
3 456 7 89

Input:
Position: 0 1 2

In the following trace, the numbers in circles denote
state numbers, and the numbers in squé.res denote the
subtree number shown to the right in the diagrams.
The symbols enclosed by curly brackets denote a look
ahead preterminal followed by the next applicable ac-
tion, separated by a slash (/). The stage numbers are
shown below the stacks.

Current stage: 0

Dictionary reference: n1(“Ka0O”) at 0-2
vsar(“Ka0”) at 0-2
ni(“KaORu"} at 0-3

We find three look ahead preterminals, ni, vs4r, and
nl by consulting the dictionary in figure 2. A sluft
actions is applied for each of them according to the
LR table in figure 6.

@ {n1/sh6é, vs4r/sh8, ni/sh6}
Lol

After the shift actions, three new nodes are created
at stage 2 or stage 3 depending on the length of look
ahead words. At the same time subtrees 1-3 are con-
structed. The current stage is updated from 0 to 2,
since there is no node in stage 1. The look ahead
preterminals are unknown at this moment.

1:01(*KaO")
2:vs4r(“KaO")
3:n1("KaORu™)

Current stage: 2
Dictionary reference: ve4r3(“Ru") at 2-3

Dictionary reference gives one look ahead preterminal
from position 2. Since the current stage number is 2,
only the first two stack tops are concerned at this stage.
No action is taken of the first stack, because the LR
table has no action in the entry for state 6 and a look
ahead preterminal ve4r3. As the result, the first stack
is rejected. The reduce action (re8) is taken for the
second stack.

[1 (&) {vear3/err}
OH2H®) {ve4r3/res}
BaOR
(RN N 2 1 a J

After re8, a shift action (sh17) is carried out for the
first stack.

O+ H® {ve4r3/sh17}
r!i_-._.‘{ l {7}

(N1 M 2 1

4:vs(2)

After sh17, we can proceed to stage 3.

Ot O 1D (7}
ol

(SR 2

5:ve4r3(*Ru")

Current stage: 3
Dictionary reference: p1(“Ni") at 3-4

We obtain preterminal p1 by consulting the dictionary.
Because the first stack can take no more action, it is
rejected. The reduce action (re5) is then applied to
the second stack. '

) 1 . {p1/re5}

(W 2

The shift action (sh21) is applied to the following
stack.

{p1/sh21} 6:n(3)

23)

After the shift action (sh21), new nodes are created in
stage 4.

© (6 (&) @ {7} 7:p1(“Ni")
1 4 |

L1124 3.

Current stage: 4

Dictionary Reference: vs4kf(“A”) at 4-5
vs4w(“A") at 4-5

‘)

e ik e T T R T R L

s

o—t

ety -

Dictionary reference provides two look ahead preter-
minals for the next word.

1 6 | 0 . {vs4klre6 vs4v/re6)

|0t1121

After the two reduce actions (re6), we get two nodes
with the same state 20, but they are not merged as the
look ahead preterminals are different each other. See
stage 5 for the reason.

| 8 —20) {vsak/re4} 8:p(7)

(o) [6 (&) l (20) {vsdu/rea} 9:p(7)
Lnt112] K}] 4]

[10]—(3) {vs4k/sh7} 10:pp(6,8)

m (3) {vs4v/sh9} 11:pp(6,9)
m 1132131)

10—(3) (7) {7} 12:vs4k(“A")

11 .. () {7} 13:vs4u(“A™)
011213 4] 5 J

Current stage: 5

Dictionary Reference: ve4k2i(“1”) at 5-6
ve4w2(“I") at 5-6

We have two look ahead preterminals and two stack
tops. The reduce actions (re7 and re9) are performed.

(5 —(3) (7) {ve4k2i/re7, ve4u2/err})
[11] 9 (8) {ve4k2i/err,ve4u2/re9}
5

lnlll‘ZI‘n

Note that we can not merge the stack tops with the
same state 4 since the look ahead preterminals are dif-
ferent (ve4k2i and vedw2). 2

10} —(3)—{14—(4) {veax2i/sh6} 14:vs(12)
O [11] 9 - {ve4w2/sh18} 15:vs(13)

La111213¢

After the shift actions (sh16 and shi8), we proceed to
stage 6.

16:vedk2i (“I")

21f two stack tops are merged and then different shift actions
(sh16 and sh18) are carried out, we might have invalid combi-
nations of structure such as (14, 17) and (15, 16).

Current stage: 6
Dictionary reference: ax1(“MaSu”) at 6-8

116|—(16) {ax1/err}

(1o—(3)—{14H9)
(113 o @ {ax1/re13}

L01112313¢ 4 | J

18:ve(17)
.—*-—.—'.—.—.—. C18—)—{18]—(19) (ax1/re3)
i1 12131

{axi/shll} 19:v(15,18)

|n|1|2|3|

20:ax1(“MaSu™)

-G.Qm@

Iﬂl]l?l'{l

Current stage: 8
Dictionary reference: $ at 8-9

- 9 EE 0 m {$/re15}

Iﬂl1|9l'!l

0 EE] 6 m 1) {$/re1}

101112:1(21:ax(20)

© L ©)

11123 4

—221—@ {s/xe2}

\ii617) R) 22:5(19,21)

The input sentence is automatically segmented and ac-
cepted, giving a final parse result 23 as shown in fig-
ure 10.

23:3(11,22)

© FB-Q© ts/s<c)
0111213141516 7% R

vls vle
nll p1 vsd4w vedw?2 aJItl
KaORu Ni A 1 MaSu

Fig. 10 An analysis of “KaORuNiAIMaSu”

-t

5 Conclusion [Morioka 87 | Morioka, K., Formation of a Vocabulary,
Meiji-Shoin, 1987 (in Japanese).

We propose a method representing the morpholog-
ical constraints in connection matrices and the syn- [Okumura 89 | Okumura, M., A Study on Computa-
tactic constraints in CFGs, then compiling both con- tional Model of Japanese Understanding, PhD
straints into an LR table. The compiled LR table en- thesis, Tokyo Institute of Technology, 1989 (in
ables us to make use of the already existing, efficient Japanese).

generalized LR parsing algorithms through which in- [Sano 92] Sano, H. and Fukumoto, F., On a Grammar

tegration of both morphological and syntactic analysis Formalism, Knowledge Bases and Tools for Nat-
is obtained. ural Language Processing in Logic Programming,
Advantages of our approach can be summarized as in Proceedings of FGCS92, 1992.
follows:
[Sugimura 89 | Sugimura, R., Akasaka, K., Kubo, Y. \
¢ Morphological and syntactic constraints are repre- and Matsumoto, Y., Logic Based Lexical Analyzer \,
sented separately, and it makes easier to maintain LAX, Logic Programming ’88, Lecture Notes in
and extend them. Artificial Intelligence, Springer-Verlag, pp. 188-
216, 1989.

¢ The morphological and syntactic constraints are
compiled into a uniform representation, an LR ta- [Tomita 86] Tomita, M., Efficient Parsing for Natural
ble, enabling us to use the already existing efficient Language: A Fast Algorithm for Practical Sys-
algorithms for generalized LR parsing and allow- tems, Kluwer Academic Publishers, Boston, 1986.
ing us to utilize both morphological and syntactic
constraints at the same time during the analysis.

We have implemented our method using the EDR
dictionary with 300,000 words [EDR 93] from which
437 morphological rules are derived. This means only
437 new states are introduced to LR table and this does
not cause an explosion in the size of the LR table.

References

[Aho 86 | Aho, A. V., Sethi, R. and Ullman, J. D,
Compilers, Principles, Techniques, and Tools, -
Addison-Wesley, Massachusetts, 1986. .“ i

(EDR 93] EDR Dictionary Manual, 1993.

[Kita 92 | Kita, K., A Study on Language Modeling for
Speech Recognition, PhD thesis, Waseda Univer-
sity, 1992.

(Mine 90] Mine, T., Taniguti, R. and Amamiya, M., A
parallel syntactic analysis of context free gram-
mars, the 40th Annual Convention IPS Japan, pp.
452-453, 1990 (in Japanese).

[Miyazaki 84] Miyazaki, M., An Automatic Segmenta-
tion Method for Compound Words using Depen-
dency Analysis, Transactions of Information Pro-
cessing Society of Japan, Vol. 25, No. 6, pp. 970-
979, 1984 (in Japanese). .

