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Abstract

This paper describes a parallel parsing method for
analysing ill-formed inputs with consideration of
full syntactic context. The method is developed
to handle ill-formed inputs using tree searching
scheme which is flexible to utilize any kind of task
distribution to gain parallelism. We choose dy-
pamic task distribution as a core mechanism to con-
tro! distributing tasks during the parsing process.
Our parser is implemented on a parallel inference
machine, named PIM®. The result of the experi-
ments demonstrates that using 256 processors, our
parser is 60-170 times faster than a serial version
in the case of long ill-formed inputs with multiple
errors.

1 Introduction

In decades, there have been many attempts to develop
parallel algorithms for time-consuming tasks in sev-
eral areas. Especially, for natural language area, sev-
eral works tried to introduce both shared-memory and
loosely-coupled parallel machines to improve the speed
of parsing grammatical inputs such as in [4]{7}{11}. How-
ever, in real situation (e.g., daily conversation), natural
language is frequently used ungrammatically. Several re-
ports showed that people usually use their own language
ungrammatically, for instance, in Thompson’s extensive
study (1] with a database query system, 33% of inputs
that users made, was unparsable due to vocabulary prob-
lem, punctuation errors, ungrammaticality and spelling
errors. Owing to these phenomena, a practical system
should have potential to deal with such ill-formedness
instead of rejecting the analysis.

Many early works on parsing ill-formed inputs were
based on different formalisms, such as ATNs(8][9],
chart parsing(2](10], GLR[3]. Among these formalisms,
left-right parsing like ATNs or GLR, deals with ill-
formedness in two different means: (1) trying to analyse
the input from left to night and then performing a spe-
cial mechanism to apply some types of extra-condition

! A loosely-coupled system developed under the Fifth Gen-
eration Computer Project (ICOT) in Japan and the language
used on the machine is a concurrent logic programming lan-
guage named KL1

rules to allow making progress in the parsing state at
the interrupted point (2) hypothesizing some errors at
each stages of parsing and then processing all of them.
However, the systems of type (1) might fail to indicate
minimal error due to the left-right bias which cannot
consider right context to handle ill-formedness, and ones
of type (2) faces with the problem that parsing gram-
matical inputs may be slowed down.

Recently, Mellish[2] introduced a new chart-based
technique in which both left and right syntactic con-
texts could play a role to determine the best interpre-
tation of ill-formedness. However, Mellish also pointed
out that his method lacks the control for aveiding du-
plication of effort to recover ill-formedness, and remains
to be seen how the performance will scale up for a real
grammar and parser. Generally, to parse ill-formed in-
put, some particular mechanisms to detect the cause of
ill-formedness and correct it, have to be embedded to
treat the ill-formedness. This causes an ill-formed input
to take much more time to be parsed than a grammati-
cal input. There are several previous works showing the
advantage of parallel processing on parsing grammatical
inputs, however it could be expected that more advan- .
tage is gained when ill-formed inputs are parsed.

This paper focuses on parsing ill-formed input using
loosely-coupled parallel environment. The parsing al-
gorithm proposed in this paper stands on the following
objectives: (1) the consideration of full syntactic context
during parsing (2) the approach firstly tries to parse the
input according to the given grammar (a context free
grammar) and then starts.the recovery process when the
input cannot be recognized as a grammatical one. This
approach will cause the system not to be slowed down
in any way when a grammatical input is parsed.

This paper describes a technique to construct a pars-
ing method by using tree searching scheme. This scheme
is flexible to allow any kind of task distribution to place
on the parsing method to gain parallelism. We choose
dynamic task distribution as a core mechanism to con-
trol distributing tasks among processors. We also report
here a series of experiments to determine that parsing
grammatically ill-formed input with the consideration of
the full syntactic context can be successfully sped up on
loosely-coupled environment (PIM) with 256 processing
elements(PEs). The result shows our parser could per-
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form 60-170 times faster than the serial version in the
case of long inputs with multiple errors. Finally, the
limitations on our method are also discussed.

2 Parsing Ill-formed Input Considering
Full Context

Mellish [2] showed how to combine the advantages of
bottom-up chart parser and top-down chart parser to
deal with ill-formed input. The basic algorithm is to
run firstly bottom-up parser with no top down filter-
ing and if it fails, then to execute top-down parser that
recovers existing errors exploiting the edges generated
during bottom-up parsing and constructs the interpreta-
tions of the input. The advantages of this strategy are:
(1) the recovery process (top-down parsing) is executed
after bottom-up parsing fails to find a complete parse of
the input, without causing existing work to be repeated
or affecting the original parsing (bottom-up parsing) to
be slowed down in any way, (2) it allows the full syntac-
tic context to be considered to detect ill-formedness in
the input.

Thereafter, Kato [10] proposed a modified version of
Mellish's method. Kato introduced an intermediate step
between bottom-up and top-down parser, named edge
completion phase which exploited more edges generated
in bottom-up fashion to reduce searching space in top-
down parsing.

However, these methods have an important problem
in the computation time when it is scaled up to be used
in realistic situation; especially, when a large grammar is
used or when a long ill-formed input with multiple errors
is analysed.

3 Our Paralle] Parsing Algorithm

In this section, we describe a parallel chart-based pars-
ing algorithm that can inherit the advantages of Mel-
lish's method[2] and Kato’s method[10). The chart pars-
ing paradigm has properties suitable for parsing natural
language in both views of ill-formed analysis and paral-
lelisation. In particular, it has two excellent following
properties:

o It occupies a book-keeping mechanism that the re-
sults of partial analysis of an input will be kept in
the form of edges (the ‘chart’). When the parser
fails to analyze the input(due to ill-formedness),
this mechanism allows the possibility of utilizing the
‘chart’ already created, during the ill-formed analy-
sis.

o It allows the analysis to be occurred at any word
in the input. That is, unlike the left-right parsing
where the analysis is occurred in the order from left
to right, it is possible for the parsing process to be
done individually for each word of the input in par-
allel.

Our parallel parser is composed of three constituents:
(1) parallel bottom-up parser (P-BU), (2) parallel ex-
tended top-down parser (P-ETD), (3) parallel edge com-
pletion process (P-EC), which is the intermediate pro-
cess between P-BU and P-ETD. P-BU finds all complete
parses of the input. If there is no possible interpretation
of the input, the input is recognized to be ill-formed.

Then, P-EC starts generating all edges that were blocked
by P-BU due to its left-right characteristic. At the same
time, P-ETD runs to find all possible interpretations of
ill-formed input exploiting the information (in the form
of a set of edges) generated by P-BU and P-EC. Our
parallel parser handles three types of errors: extra (un-
known/known) word error, omitted word error, substi-
tuted (unknown/known) word error.

3.1 Parallel Bottom Up Parser

P-BU is a parallel version of conventional bottom-up
chart parsing without top-down filtering. The parser
tries to construct complete parses of the input, and even
if the input is ill-formed, edges generated by this parser
can be utilized later in the recovery process to avoid
duplication of existing work. We have explored the ap-
proach of distributing the chart among the processors
in several implementations on a loosely-coupled system,
named PIM. As the result, we found out that the way to
distribute the chart among the processors on a vertex?
by vertex basis, appeared to be the better way than the
others.
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Figure 1: Processor distribution

Figure 1 shows the assignment of processors and
streams to vertices. Here, each vertex is assigned a pro-
cessor and a stream. The communication between pro-
cessors is done through stream communication. In chart
parsing, the basic actions are extending the edge and
creating the edge and the two data structures are active
edges and inactive edges. Let the sets of active edges and
inactive edges which have i as their starting positions, be
denoted by AEDGE; and JEDGE; respectively. PE;?
executes the two actions which are rclated to AEDGE;
and JEDGE;. More precisely, each edge in AEDGE;
is a process in PE; while JEDGE; is a set of the data
which the processes of PE; produce and it is put into
the stream. Each process in PE; consume the data in
streams at every j th vertex.(where, j > i).

In this approach, there is only one message producer
per each stream while there are multiple consumers that
consume the messages(edges) and use them to extend the
edges. Thus communication cost can be dramatically re-
duced. With our several experiments on PIM, the result
indicated that the approach did well on PIM’s architec-
ture, while the early work done by Henryl|d) showed that

2 A vertex is a position in the input, as shown in Figure 1.
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the approach gained no speed-up in the Intel Hypercube
architecture due to slow network but fast processors.
This indicates that the achievement of the approach also
depends on the system architecture.

In this bottom-up parsing, one possible alternative de-
composition of the parsing task would be to distribute
active edges into different processors. These active edges
are processes that consume streams of inactive edges and
makes progress in the parsing state. However, in this ap-
proach, the communication between processors becomes
large. According to our experiments, the result showed
that there was no speed-up gained by this approach.

3.2 Parallel Edge Completion Process

P-EC, the intermediate process, relaxes the restriction of
left-right order of bottom-up parser and generates some
active edges. For instance, toward the grammar (C —
Cs,C1,C2), an active edge (C— Co[C:1]C,) is generated
by this process if C; is found, and (C — [Co},C1,[C2]))
is generated if there is an active edge (C — [Co),C;,C2)
and C; is found. The category in parenthesis means that
it has already been analysed. These edges are helpful
for hypothesizing errors during parsing ill-formed inputs
and also useful to reduce searching space in P-ETD. P-
EC runs after P-BU had determined that the input was
ill-formed. Each processor of P-EC generates some other
active edges which are not generated before by P-BU by
relaxing left-right restriction. To denote what is done in
each processor, the following notation is introduced to
represent an edge:

{SP,EP,Cat,Unparsed}

where, SP is an integer number or a variable (denoted
by ‘*') specifying the starting position of the edge in the
sentence, EP is an integer number or a variable spec-
ifying the ending position of the edge in the sentence,
Cat is the category of the edge which is being parsed,
Unparsed is the unparsed part of the edge. Unlike items
in Early’s algorithm (5], in this notation, parsing state is
represented by two elements, Cat and Unparsed, instead
of a dotted rule. Cat is LHS of the rule while Unparsed
is a list showing the unparsed part of RHS. Each ele-
ment of Unparsed is denoted by (S;,E;,CatList;), where
CatList; is a list of categories; S;,E; are positions in the
input(sentence); and (S;,E;,CatList;) means CatList; is
needed between S; and E;. Here, an inactive edge oc-
cupies a null list as its Unparsed. The following rules
show what is done in processor i.

Processor 1 :

¢ Modified Bottom-up Rule:
If there is an edge, {1,5,C1,[ ]} and a rule,
C—...C5,,C;,Cs3... (..Cs; is not empty)
then generate an edge,
{*,B,C,[(%,...C51),(7,E2,Cs2)]}. Here, if
Cs, is empty then E;=j otherwise E,=+*.
¢ Modified Fundamental Rule:
If there is an active edge,
{S,E,C,[..-,(Sl,e),[---,051,01.052])]}
in the processor and an inactive edge
{5,,E;,C1,| ]} in other processors,
then generate an active edge,
{S,E,C,[...,(S]_,S1,C$1),(E1,6),C$2)]}.
Here, s;<S5) or sy=+ and E,<e; or e;=x

3.3 Pargllel Extended Top Down Parser

The backbone of ill-formedness recovery is parallel aug-
mented top down parser(P-ETD). This parser exploits
the information(the set of edges) generated by P-BU
and P-EC, and tries to find the interpretation of the.
ill-formed input in top down style by starting from the
assumption that the input is a sentence.

3.3.1 The Algorithm

We introduce a strategy to reconstruct top down pars-
ing as tree searching process exploiting the information
(the set of edges) generated by P-BU and P-EC. This
strategy has the advantage that it allows existing paral-
lelisation methods for any tree-searching problem to be
applied directly in the parsing algorithm. To illustrate
our augmented top down parsing in detail, we utilize the
following notation for each searching state:

< hole:N erm:M (81, By, CatList,),. ..
ey (Sk, By, CatLiStk)] >

where N is the total number of categories in
CatListy ...CatList; ; M-is the number of errors de-
tected before reaching this state.

The initial searching state is < hole:1 err:0 [(0,n,[S]))
>, where n is the final position in the input sentence
(sentence length). One possible interpretation of the ill-
formed input is found when the parser reaches the state,
< hole:0 err:Err [ | >. P-ETD occupies five following
objects to find errors in the input. The first two objects,
Top Down and Active Edge Fundamental, are for refin-
ing the unsatisfied portions*, and the remaining three
objects are for determining 3 kinds of primitive errors:
extra (known/unknown) word error, omitted word error
and substituted (known/unknown) word error.

( CS = Current State, GR = Grammar Rule,
IE = Inactive Edge, AE = Active Edge,
NS = New generated State)

Top Down Rule Activation Object :

CS : < hole:N err:M [(s1,€1,[C1,C2, --.)), ---
v (5n:€n,Csn)] >

GR: C1 — RHS
NS : < hole:(N+(length of RHS)-1) err:M
[(51,81 a[RH8102| .. -])1 .- .,(sn,en,Cs,,)] >

Active Edge Fundamental Object :

CS: < hole:N ern:M [(s1,61,[C1,C2, .. ]}, -] >
AE: {s',E,C1,[(51,E1,Cs1), -+ -, (SniEn,Csn)]},
here, s'=51 or s =+
NS : < hole:(N+Z(length of Cs;)-1) err:M
[(Sl,El,CS'l), ooy (S".E,.,Cs,,),
(Eer[Coy .- ) -] >

Extra Word Finder Object :

CS: < hole:N err:M [(s1,61,[C1.Ca, .. ), .. ] >

IE N {Sl,El,Cl,[ ]}

NS : < hole:(N-1) err:(M+(S:-51))
[(EI,C].[Cz,. . ]), .. ] >

‘clements within the parenthesis [ ... | of a searching state
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Figure 2: An example of top down parsing

Substitued
word

<hole:0.em1,(]>

Empty Category Finder Object :

CS: < hole:N err:M [(s,5,Cs,),(s2,62,C82), ...] >
NS : < hole:(N-(length of Cs,))
err:(M-+(length ofCsy)) [(s2,€2,Cs2),
] >
Substituted Word Finder Object :
Pl >

CS: < hole:N err:M [(s,61,[C1,Ch, ..
If No Edge : {31’31 + 1101’[ ] )
where C} is a terminal category
NS: < holiz:(N-l) err:(M+1) ((s1+1,e1.[C2, - - .]),
L >

3.3.2 An Example:

To illustrate top down parsing, let’s consider an ex-
ample grammar and an ill-formed input, ‘Elephant is
ep animal shown in Figure 2. Inactive edges (1)-(5)
and active edges (6)-(8) are generated by P-BU. Active
edges (9)-(10) are generated by P-EC. Top down pars-
ing corresponds to a searching process starting from the
initial state, < hole:1 err:0 [(0,4,[S])] >, using the ex-
isting edges. Firstly, Active Edge Fundamental object
refines the initial state by applying edge (6). In the next
step, with the same object, the result state, < hole:l
err:0 [(1,4,[VP])] > is refined by applying edge (7) and
edge (8). Note that there are conflicts occurred at this
point and it is possible to process them individually in
parallel. Finally, both of possibilities are refined by Sub-
stituted Word object to the final state, < hole:0 err:1 [ ]
> and the error detected is that the word‘ap’ is an un-
known word with either preposition or determiner as its
category.

3.3.3 Dynamic Task Distribution

In this section, we describe how to parallelize the
searching process efficiently in loosely-coupled systems.
Since there is no general task distribution that works
well in every task, it is necessary to construct a suitable
task distribution for this framework. In certain tasks
where communication patterns and dependency of tasks
can be estimated before the execution, the best task dis-
tribution can be decided statistically. However, in this
framework, it is not such a case and we consider that
on-demand dynamic task distribution is a good method
to balance this parsing task. The idea is that when each

processor finishes the current task, it sends a demand for
another task to do at the next step.
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Figure 3: Task distribution scheme

Figure 3 shows the scheme of our task distribution. A
master processor(MP) is established to control the task
distribution by using a task queue. -Other processors,
called the working processors(WPs), have the five objects
(as shown earlier in this section) as their basis routines.
Each of WPs gets a task from the master processor and
performs these five routines. As the result of these rou-
tines, some new states(tasks) may be generated. One of
the new states(a task) is executed in the processor while
the remainder of them is transferred back to the master
processor and restored in the queue. If there is no new
state generated, the current WP has no work to do in the
next step and then it sends a request to the master pro-
cessor to get another task(state) and then'a task in the
top of the queue of the master processor is distributed to
that processor. This procedure occurs recursively until
the queue is empty. In our implementation, the master
processor also executes searching but the priority of per-
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forming task distribution is higher than the priority of
executing searching.

4 Experimental Results and Discussion

The parser was implemented on Parallel Inference Ma-
chine(PIM). The efficiency of the parser was investigated
in the environment of : (1) 256PEs multiprocessors (2)
the grammar containing 393 CFG rules as described in
[6] (3) the ill-formed inputs with the length ranging from
7-18 words. In all cases, the graphs plot the number of
processors vs. the true speed-up (the speed-up relative
to the serial version of the parser).

The tested inputs are of the following types:
one and two extra-known-word(E-K), extra-unknown-
word(E-U), substituted-known-word(S-K), substituted-
unknown-word(S-U) and omitted-word(D). Figure 4 and
5 show speed-up rates of 7-word sentence with one error
and two errors, respectively. Figure 6 shows speed-up
rate of 18-word sentence with one.error. In each fig-
ure, the key denotes the type of errors, following by the
number of edges and states in the form of [Number-of-
edges/Number-of-states] and finally following by compu-
tation time when utilizing one processor and 256 proces-
sors.

Figure 4 shows the speed-up results of a short sentence
with one error. Among five types of errors, the extra-
known-word case gains the highest speed-up since the
number of states (tasks) is much larger and then much
greater opportunity for parallelism is offered. Compared
with extra-word cases, substituted-word cases gain less
speed-up due to a less number of tasks. Figure 5 shows
the result of a short sentence with two errors. The order
of speed-up rates for five types of errors is the same as
in the case of short sentence with one error. However,
this case gains much more speed-up rates in every type of
error than one error case. Figure 6 indicates the result of
a long sentence with one error. In this case, computation
time for every type of errors is larger than the two cases
of a short sentence. However, the highest speed-up is
obtained in this case due to the largest number of tasks
and possibility for more parallelism.
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According to the results mentioned above, we can ob-
serve that speed-up rate depends on the ratio of com-
munication and computation time. Here, communica-
tion time is proportional to the number of states(tasks)
while computation time is proportional to the number
of edges. In the case of multiple error (Figure 5) or long
sentence (Figure 6), the number of states in searching
space is large and both communication and computa-
tion time is also large. However, when we focus on one
state, we can observe that computation time is large {ow-
ing to the large number of edges) while communication
time is constant(one state transferred). In addition, in
the case of short sentence with one error, the number of
states(tasks) is small, so the total idle time of proces-
sors becomes obviously long and then less parallelism is
obtained. .

Our experimental result convinces that the introduc-
tion of parallel approach to parsing ill-formed input with
the consideration for full context is promising. Espe-
cially, in the case of a long sentence with multiple er-
rors, we expect our parallel parser will gain tremendous
(almost linear) speed-up in parsing time.




We also make a series of experiments for checking our
parallel parsing when the input is grammatical. In this
case, P-BU succeeds in analysing the input and thus P-
EC and P-ETD never gets start. In P-BU, the number of
used processors corresponds to the length of each input.
The tested grammatical inputs had the length ranging
from 2-30 words. The speed-up results are shown in
Figure 7. In the figure, it indicates that more speed-
up is gained when the analysed sentence is longer and it
grows up with an increase of 10 %. Though the speed-up
aim of parallel processing is that the analysis time when
utilizing n processors should be n times faster than one
of single processor, this aim cannot be overcome in the
framework of parsing due to the serial operations of this
framework and communication cost.
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Figure 7: Speed-up rate gained when inputs are gram-
matical and their lengths are between 2 and 30 words

5 Conclusion

This paper proposes a new parallel parsing method for
analysing ill-formed input with consideration of full syn-
tactic context. Our parser generates all complete parse
trees for a grammatical input and all possible interpre-
tations of an ill-formed input. We introduced a method
to reconstruct the ill-formedness recovery process (top
down parsing) into a tree-searching framework and uti-
lized dynamic task distribution to acquire parallelism.
The parser was implemented and tested its efficiency on
PIM, a loosely-coupled system. According to the results
of several experiments, we found out that our parser ac-
quired promising result in its performance. It ran 2-14
times faster than the serial version in the case of short ill-
formed inputs and up to 60-170 times faster in the case
of long ill-formed inputs or inputs with multiple errors.

However, more explorations in the efficiency of the
parser have to be done with several other task distri-
bution schemes. Currently, our parser discovers all in-
terpretations of the input, however we are on the way to
consider some issues concerned with (a) how to choose
the best interpretation among them (b) how to cut off
useless interpretations, and (c) how to control the par-
allel parser to accommodate (a) and (b).
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