1994 AT AMERSLEXRE (B8 E)

long ill-formed inputs with multiple errors.

1 Introduction

Recently, there have been many attempts to develop
parallel algorithms for time-consuming tasks in sev-
cral areas. Especially. for natural language area. sev-
eral works tried to introduce both shared-memory and
loosely-coupled parallel machines to improve the speed of
parsing grammatical inputs such as PAX, parallel chart
parsers, PLR. However, several reports showed that peo-
ple usually use their own language ungrammatically.
Among the previous works on parsing ill-formed in-
puts. Mellish{2] introduced a chart-based parsing method
in which both left and right syntactic contexts could
play a role to determine the best interpretation of ill-
formedness. The method is superior to other early re-
searches in the following points: (1) the consideration
of full syntactic context during parsing (2) the approach
firstly tries to parse the inpnt according to the given
grammar (a context frece grammar) and then starts the
recovery process when the input cannot be recognized as
a grammatical one. Then, this approach will cause the
system not to be slowed down in any way when a gram-
matical input is parsed. However, Mellish’s method lacks
the control for avoiding duplication of cffort to recover
ill-formedness. and remains to be scen how the perfor-
mance will scale up for a real grammar and parser as de-
scribed in [2]. Morcover, in order to parse an ill-formed
input, some particular mechanisms to detect the cause
of ill-formedness and correct it, have to be embedded to

*Dept. of Computer Science, Tokyo Inatitute of Technology,
2-12-1 Ookayama Meguro-ku Tokyo 152 Tel: (03)3734-2837 Fax:
{03)3734-2915

Analysing Ill-formed Inputs
with Parallel Chart-based Techniques

Thanaruk Theeramunkong®
Hozumi Tanaka

20-5

Dept. of Computer Science, Tokyo Institute of Technology

In this paper, we describe a parallel implementation of chart-based parser which performs
robustness to analyse grammatical ill-formed inputs in loosely-coupled environment. The parser
is composed of parallel bottom-up process which parses the inputs under the grammar rules and
parallel top-down process which tries to recover the existing ill-formedness when the bottom-up
process fails to find a complete parse. The top-down process resembles a resolution of tree searching
problem, utilizing the intermediate parsing information generated in the bottom-up process. We
propose a method to use a dynamic task distribution as a core mechanism to control distributing
tasks during the parsing process. Our parser is implemented on a parallel inference machine.
named PIM. Using 256 processors, it ran 60-170 times faster than a serial version in the case of

treat the ill-formedness. This causes an ill-formed input
to take much more time to be parsed than a grammatical
input.

This paper proposes a parallel parser hased on Mel-
lish's chart-based techniques in the loosecly-coupled en-
vironment. The parser is composed of parallel bottom-
up process which parses the input under the grammar
rules and parallel top-down process which tries to recover
the existing ill-formedness when the bottom-up process
fails to find a complete parse. The recovery process(top-
down) resembles a resolution of tree searching problem.
Yll,ilizing the intermediate parsing information generated
in the bottom-up process. We introduce on-demand dy-
namic task distribution as a core mechanism to control
distributing tasks during the parsing process. We im-
plement the parallel parser in a lnosely-coupled parallel
machine named PIM. We also showed some experimen-
tal results of our parser’s efficiency. With 256 processors
the parallel parser could perform 60-170 times faster than
the serial version in the case of long inputs or inputs with
multiple errors.

2 Chart-based Parsers for Ill-
formed Input Analysis

In [2]. Mellish shows how to combine the advantages of
bottom-up and top-down chart parsers for dealing ill-
formed input. The basis algorithmn is to run bottom-up
parser with no top down filtering. over the input and if
it fails. then to execute top-down parser to find exist-
ing errors and construct the interpretations of the input.

543

19U4FRATAEFRSLERS (F8E)

The advantages of this strategy are: (1) that the recov-
ery process (top-down parsing) exccutes after a standard
parser {bottom-up parsing) fails to find a complete parse
of the input (when it is ill-formed). without causing ex-
isting work to be repeated and the standard parser to
be slowed down in any way (2) that it allows the full
syntactic context to be considered in the interpretation
of ill-formed input. Thereafter. Kato [1] proposed an
improved version of Mellish's parsing method. Kato in-
troduces the intermediate step between bottom-up and
top-down parser. named edge completion phase which ex-
ploits more edges generated in bottom up style by vio-
lating the counstraint of left-right order to reduce search-
ing space of top-down parser. Kato's method occupics
a simple algorithm instead of using complicated scarch-
ing controls which applied in (2], and also dissolves the
duplication of effort to recover the ill-formedness.

3 The Parallel Parser

Our parallel parser is based on the serial algorithm pro-
posed in [1). The parser is composed of three con-
stituents: parallel left corner bottom-up parser (P-LC-
BU). parallel non-left corner hottom-up process (P-NLC-
BU) and parallel extended top-down parser (P-ETD). P-
LC-BU executes to find all complete parses of the input.
If there is no possible interpretation of the input found.
the inpmt is recognized to be ill-formed and P-NLC-BU
gets ~turt to generate all edges that were blocked in P-
LC-BU due to left-to-right characteristic of the parser
and simultancously P-ETD runs to find all of the possible
interpretations of ill-formed input using the information
(a sct of edges) generated in P-LC-BU and P-NLC-BU.
Our parallel parser can handle three types of errors: ex-
tra (uuknown/known) word error. omitted word error
and substituted (unknown/known) word error.

3.1 Parallel Bottom Up Parser

The P-LC-BU is a left corner bottom-up chart parser
without top-down prediction. Among early works on
parallel bottom-up parsing. the way to construct a left
corner bottom-up chart parser on looscly-coupled system
is firstly explored by Henry[3]. Henry tried to implement
a parser on the Intel Hypercube architecture but his sys-
tem could not take encouragement duc to slow networks
but fast processors. The parallelisation of chart parsing
can be viewed as the way to distribute the chart among
the processors. Following Henry's work, we explored the
approach of distributing the chart in some implemen-
tations on PIM. Similar to Henry's system, the result
shows that the way to distribute the chart among the
processors on a vertex! by vertex basis, seemed to be
the better way than the others. For instance. ith proces-
sor will hold a set of edges starting at i position in the
sentence. By this method, once a new edge is delivered
to its 'home’ processor, that processor has all the edges
required to exccute the fundamental rule with respect
to that new edge. Communication hetween processors is
limited to be one-to-many type. Therefore, the commu-
nication cost decreases.

1A vertex in a position in the input

Wilen the P-LC-BU cannot find out a complete parse
of the input due to some ill-formedness, the P-NLC-
BU rclaxes the restriction of left-right order of P-LC-
BU parser and gencrates some active edges. For in-
stance, toward the grammar (C — C;.C,.C>). an active
edge (C — Cy[C,1]C2) is generated by this process if C; is
found. and (C —[Cy).C,.[C2]) is generated if there is an
active edge (C — [Co].C;.C,) and C, is found. The cate-
gory in parcnthesis means that the category has already
been analysed. Thesc edges are dramatically useful for
hypothesizing errors during parsing ill-formed inputs and
also helpful to reduce searching space in P-ETD parser.
In the P-NLC-BU. the processors in the P-LC-BU are
reactivated to generate more edges as described above.

3.2 Parallel Extended Top Down Parser

The backbone of ill-formedness recovery is parallel ex-
tended top down parser(P-ETD). This parser exploits
the information(the sct of edges) generated by P-LC-BU
and P-NLC-BU, and tries to find the interpretation of
the ill-formed input in top down style by starting from
the assumption that the input is a sentence. The top-
down parsing is viewed as a searching process using a set
of active and inactive edges generated in P-LC-BU and
P-NLC-BU. To illustrate this parser, we introduce the
following notation for representing each scarching state.

< lhole:N err:M [(Sy. Ey, CatListy).. ..
.« (Sk. Ey.CatListy)] >

where CatList; is a list of categories: $1.E,..... St .Ey
arc positions in the input(sentence) : (S;.E; CatList;)
means CatList; is nceded between S; and E; ; N is
the total nnmber of categories in CatListy ... CatList; .
M is the number of errors detected hefore reaching this
state.

The initial searching state is < hole:1 err:0 [(0.1.[S]))
>, where n is the final position in the input sentence (sen-
tence length). One possible interpretation of ill-formed
input is found when the parser reaches the state, < hole:0
err:Err [] >. The restriction, N + M < Limit. is used
to limit scarching space. P-ETD parser occupies five ob-
jects (shown in Fig.1) to find errors in the input. The
first two abjects, Top Down and Active Edge Funda-
mental. are for refining the unsatisfied portions. and the
remaining three objects are for determining 3 kinds of
primitive errors: ‘extra word error, omitted word error
and unknown/substituted word crror:

3.2.1 An Example

To illustrate top down parsing, let’s consider an exam-
ple grammar with the ill-formed input, * We bought ap
car’ shown in Fig. 2. Inactive cdges (1)-(5) and active
cdges (6)-(8) are edges gencrated in P-LC-BU parser.
Active edges (9)-(10) are edges gencerated in P-NLC-BU
process. Top down parsing corresponds to a scarching
process starting from the initial state. < hole:l err:0
[(0.4.[S])] >, using existing edges. Firstly, Active edge
fundamental object refines the initial state by applying
the cdge (6). Morcover, with the same object, the re-
sult state, < hole:1 err:0 [(1,4.[VP])] > is rcfined by

544

9UEFATARSSSERS (KB E)

{ C5 = Current State. GR = Grammar Rule.
1E = Inactive Edge. AE = Active Edge,
NS = New gencrated State)

Top Down Activation Rule :

CS: < hole:N ere:M [(27.€3.[C1.C2. ..] -
coo(8n.e,,.Ca,)] >

GR: C; — RHS

NS : < hole:(N+(length of RHS)-1) ern: M
[(s1.€1.[RHS,Cz. .. .]).[84.64.C34)] >

Active Edge Fundamental Rule 1

CS: < hole:N ere: M [(81.1.[C1.Ca. .) -] >
AE: {5 .E.C1.|(5).E,.C8}), ... (§..En.Can)]}.
here. s'=a| or 8 =-
NS : < hole:(N+Z(length of Cs;)-1) err: M
[(S).El .C.i)). e (S,..E...C.',.).
(E.ey[Cq. ...).) >

Extra Word Finder Rule :

CS: < hole:N er: M [(5).69.[C1.C2, ..)0 ..] >

IE : {$1.E1.C1 (]}

NS : < hole:(N-1) err:(M +(S53-91))
(EBy.ey.[Cr...)s .] >

Empty Category Finder Rule :

CS: < hole:N ern: M [(5.5.C1).(92.€2.C82), ...] >
NS : < hole:{ N-(length of Ca;))

err:{ M+(length ofCsy)) ((a3.¢9.C33),

) >

Substituted Word Finder Rule :

CS : < hole:N err: M [(83.01,{C1.Ca. .. }), ...] >
If No Edge : {8;.5) +1,C1.{]}.
where Cy is A terminal category
NS: < hol(]::(N-l) err:{ M+1) [(s141,1,[C2, .-]
B

Fig. 1: Five Rules in P-ETD

applying the cdges (7) and (8). Note that there are con-
flicts occurred at. this point. Finally. both of possibilities
are rcfined by Substitute Word Finder object to the final
state. < hole:0 err:Err [] > and then the word ‘ap’ is
detected to be an unknown word with cither preposition
or dcterminer as its category.

3.2.2 Dynamic Task Distribution

During top down parsing, a search tree. where each node
represents a parsing state, is provided. Operationsin the
tree are five rule objects (defined in Fig.1). In this sec-
tion. we describe how to parallelize the scarching process
cfficiently in looscly-coupled systems. Since there is no
general task distribution that works well in every task, it
is necessary to construct a suitable task distribution for
this framework. In some certain tasks where communica-
tion patterns and dependency of tasks can be estimated
before the execution. the best task distribution can be
decided statistically. However, in this framework, it is
not such that case and we consider that on-demand dy-
namic task distribution is a good method to balance this
parsing task. The idca is that when each processor fin-
ishes the current task. it sends a demand for another task
to do in next step.

Fig. 3 shows the scheme of our task distribution. A
master processor(MP) is established to control the task

Grammar :
S — NPVPIPP —» p NP
VP =+ v NP|W —~ v PP
NP «o ponl NP —= del n
NP = n

(1) {0, 1, pron, []}
2) [0, 1.NP.]}
Gyt 2w}

<hole:,0rr 0,
{O.4.ISD] >

@ anll < hole:1.0m0,
{0.AVPD] >

G)(34.NP{)) < hokez1,0r0, N

©10.%,8.(00.". vPD}) i@ PeY '

M {1 VP 2. " PPD1)

(8) {1, " VP.{(2,".[NPD])

(8) (. 4.NP (. 3, [detD])
(10} (. 4. PP, [(*. 3, [pD])

< hole:1.e00,
(2.3.|deiD] >

<holeO.em:, |) > <holeQ,em1.{]>

Fig. 2: An Example of Extended top down parsing

Figurc 3: The scheme of task distribution

distribution by using a task quene. Other processors,
called them working processors(WPs), have the five ob-
jects corresponding to rules in Fig.1 as their basis rou-
tines. Each of WDPs gets a task from the master processor
and performs these five routines. As the result of these
routines. some new states(tasks) may be generated. One
of the new states(a task) is executed in the processor
while the remainder of them is transferred back to the
master processor and restored in the queue. If there is
no new state generated(the current WP has no work to
do in the next step), the processor sends a request to
the master processor to get another task(state) and then
a task in the top of the queue of the master processor
s distributed to that processor. This procedure occurs
recursively until the queue is empty. In our implemen-
tation, the master processor also exccutes searching but
the priority of performing task distribution is higher than
the priority of exccuting searching.

4 Experimental Results and Dis- -
cussion

The parser was implemented on Parallel Inference Ma-
chiine(PIM). The efficiency of the parser was investigated
in the environment of : (1) 256PEs multiprocessors (2)
the grammar containing 393 CFG rules. (3) the iil-
formed inputs with the length ranging from 6-18 words.
In all cases, the graphs plot the number of processors
vs. the true speed-up (the speed-up relative to the serial
version of the parser).

The tested inputs arc of the following types: (one/two)
extra-known-word(E-K), extra-unknown-
word(E-U), substituted-known-word(8-K), substituted-

545

194FFATRRERSLE KRS (EBED)

unknown-word(S-U) anud omitted-word(D). For the short
tested input with one error, our parser ran 1-5 times
faster than the scrial version in average. As the case
of multiple errors and long inputs, Fig. 4 and 5 show
the speed-up rates of G-word inputs with two errors and
the speed-up rate of 18-word input with one error. In
each figure. the key denotes the type of errors, follow-
ing by the nnmber of edges and states in the form of
(Number-of-edges/Number-of-states] and finally follow-
ing by computation time when utilizing one processor
and 256 processors.

Fig. 4 shoas the speed-up results of a short sen-
tence with two error. Among five types of errors, the
extra-known-word case gains the highest speed-up since
the number of states (tasks) is much larger and then
much greater opportunity for parallelis is offered. This
demonstrates that the extra-known-word-typed error is
the most difficult to be parsed. Compared with extra-
word cases, substituted-word cases gain less speed-up
duc to a less number of tasks. Fig. 5 indicates the result
of a long scntence with one error. In this case, the com-
putation time for every type of errors is larger than the
casc of the short sentence. However, the highest speed-
up is obtained in this case due to the largest number of
tasks and possibility for more parallelism.

Original sentence length = 6, Error = 2

65 L] L T L] 1 ! ! T T
60 F ;, : 3 e
55 - : %
S0 - 06237385 (44 :ﬂ\!n ~>d4-3ec.) ~+~f
b 19261‘)!3’1(%5 0.c20.2.506.)..793
7 45 A-U (67477240131 in.->9 séc.) ——]
g 40— |z75nmou28mm~ >185ec) " *
g . 342/888)(14,6->2.5 sec.) i+ 4
& i lingar speed up -
3
&]
v ~
i 1 1

0
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Number of processors

Fig. 4: Speed-up for the analysis of an ill-formed input
with two errors (original sentence length=6)

According to the results mentioned above, we can ob-
serve that speed-up rate depends on the ratio of com-
munication and compntation time. Here, communica-
tion time is proportional to the number of states(tasks)
while computation time is proportional to the number of
edges. In the case of multiple crror (Fig. 4) or long sen-
tence (Fig. 5). the nnmber of states in searching space is
large and both commmnuication and computation time is
also large. However, when we focus on one state, we can
ohserve that the computation time is large (owing to the
large number of edges) while the communication time
is constant(one state transferred). In addition, in the
casc of the short sentence, the number of states(tasks) is
small. so the total idle time of processors becomes obvi-
ously long and then less parallclisin is obtained.

Our experimental result convinces that the introduc-
tion of parallel approach to parsing ill-formed input with
the consideration for full context is promising. Espe-

546

Original sentence length = 18, Frmor = §

180 T Y T
170 |
160 |- . o
15 - B
140 -
10 B
:l'.’O i
nk : J
Y]
2 90 [ooee
o 8k . -
in
[R ~ s - 4
50 poeise E-K 8959/‘899"5](“61"- ->2.64-min)
40 - 1RE.U;{7197/54R21 K 216. l’l'll«>L57 2i6.), 4
wlk- - 2. 11-D{621536801 (131 min.->] .42 hm) i
'20 - |+S- Klﬁ"" 28961 }(104 mm 1.17 min.); o—
ol TS U2 TSRO fin SLI& iin 47)
0 L ‘ H I Imurlpndup

0 20 40 60 30 100 120 140 160 180 200 220 240 260 280

Number of processors

Fig. 5: Speed-up for the analysis of an ill-formed input
with one error (original sentence length=18)

cially. in thic case of a long sentence with multiple errors,
we expect our parallel parser will gain tremendous (al-
most linear) speed-up in parsing time.

5 Conclusion

This paper proposes a new parallel parsing method for
analysing ill-formed input with consideration of full syn-
tactic context. Our parser generates all complete parse
trees for a grammatical input and all possible interpre-
tations of an ill-formed input. We introduced a method
to reconstruct the ill-formedness recovery process (top
down parsing) into a tree-searching framework and uti-
lized dynamic task distribution to acquire parallelism.
The parser was implemented and tested its efficiency on
PIM, a loosely-coupled system. According to the results
of several experiments, we found out that our parser had
a promising result in its performance. it ran up to 60-
170 times faster in the case of long ill-formed inputs or
inputs with multiple errors.

Currently. our parser discovers all interpretations of
the input. however we are on the way to consider some
issues concerned with liow to choose the best interpreta-
tion among them, how to cut off uscless interpretations,
and how to control the parallel parser to firstly find out
the appropriate solutions.

References

[1] T. Kato. Yet another chart-based technique for pars-
ing ill-formed input. In Natural Language Processing,
pp. 83-100. Information Processing Socicty of Japan,
1991. in Japancse.

2

C.S. Mellish. Some chart-based techniques for pars-
ing ill-formed input. In Proceeding of 27th Annual
Meeting of the ACL, pp. 102-109. 1989.

(3] H.S. Thompson. Chart parsing for loosely cou-
pled parallel systems. In International Workshop on
Parsing Technologies, pp. 320- 328, Carnegic Mellon,
Pittsburgh .PA, 1989.

et

