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Abstract

In order to develop rich language resources systematically and efficiently, we need not only well-
founded linguistic theories but also software tools that facilitate writing and examining them. This
paper reports on the GENESYS system, which provides an integrated environment for developing
systemic functional grammars (SFGs). GENESYS has a special editor for writing SFGs. Further,
the user can examine grammars by running the GENESYS’ surface generator. The information
of the intermediate states of the generation proress can be monitored through the graphical uscr

interface.

1 Introduction

In the field of natural language generation,
several experimental systems have becn de-
veloped. Most of them, however, can generate
only restricted variations of language expres-
sions since their language resources are insuf-
ficient. Among those systems, the Penman
system [9] is an exception, which has a farely
large English grammar named Nigel [8]. The
current version of Nigel, however, seems too
complicated and difficult to maintain without
help by computers. In any case, rich language
resources are indispensable for practical appli-
cations of natural language generation.

In order to develop such resources system-
atically and efficiently, we need not only well-
founded linguistic theorics but also software
tools that facilitate writing and examining
them. For a linguistic foundation, we rely on
the framework of systemic functional linguis-
tics [5]. For software tools, we developed a
system that provides an integrated environ-
ment for developing systemic functional gram-
mars (SFGs). The system is called GENESYS.
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This paper presents an overview of GENESYS.

Figure 1 illustrates an overview of the task
of developing a lexico-grammar on GENESYS.
First the user writes a grammar on the edi-
tor of GENESYS. Then the user examines it
through actual generation process. GENFSYS
provides an environment in which the user
can monitor gencration processes. The in-
formation of the intermediate states of those
processes is presented through the graphical
user interface (GUI). Such information is of-
ten useful for the user to detect problems
(bugs) in the current grammar. If any prob-
lems are detected, the user modifies the gram-
mar and then examine it again.

In the following, section 2 gives a brief
overview of SFG and a computational frame-
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Figure 1: The flow of the grammar devclop-
ment
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Figure 2: A system network

work for implementing SFGs. Section 3 ex-
plains about each component of GENESYS.
Section 4 shows a worked example, and sec-
tion 5 summarizes the paper.

2 Systemic Functional
Grammar and Functional
Unification Grammar

2.1 Systemic functional grammar

A SFG is a description of the lexico-
grammatical stratum in the systemic func-
tional theory. It declaratively describes the
correspondences between potential meanings
and their language expressions. The potential
meanings are typologically organized accord-
ing to a typology of a set of grammatical fea-
tures. In this typology, each feature is related
with some other features in terms of the sub-
sumption and co-occurrence relations. These
relations are usually represented by a system
network.

Figure 2 shows a simple example of a sys-
tem network. A system network consists of
several kinds of basic elements: systems, si-
multaneity conditions, gates and realization
statements.

A system represents a dimension of the
space of potential meanings, such as AGENCY
and PROCESS TYPE, which has a set of al-
ternative grammatical features as its values.
A simultaneity condition denotes more than
one systems, i.e. dimcusions, are orthogo-

nal. A horizontal link denotes a subsump-
tion relation between two grammatical fea-
tures; for example, passive is subsumed by
effective and doing is subsumed by material.
Note that doing is subsumed by both effective
and material. This is represented by a gate!.
Each grammatical feature is associated
with a set of realization statements. A re-
alization statement is a syntactic (structural)
constraint upon the corresponding language
expression. For example, +Agent means that
there exists a constituent functioning as the
agent of the process. Agent/Actor, which is
referred to by the term conflation in SFG,
means that the Agent and Actor are real-
ized as a single constituent. A statement
such as Subject: RANK:np, which is referred
to by preselection, denotes a constraint on
a co-occurrence relation between a feature
of the current constituent and that of its
daughter.  Subject: RANK:np, for example,
means that the feature np must be chosen in
the RANK system for the constituent Subject
if the current constituent has the feature
sentence. Finally, Subject ” Process denotes a
constraint on ordering constituents, meaning
that Process immediately follows Subject.

! Originally, a system network has two types of
gates: and gates and or gates. The current ver-
sion of GENESYS, however, allows only and gates
because the information represented by an or gate
can also be represented by introducing another
simultaneity condition, and we believe that the
latter would be even better from the theorctical
point of view.
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Figure 3: An example of generation process

It may be worth pointing out here that a
system nctwork includes both the grammat-
ical and lexical knowledge. As shown in fig-
ure 2, grammatical features are primarily or-
ganized in terms of the RANK system. Lexical
features are organized in the parts of the low-
est ranks: noun, verb, etc.

Although, as mentioned above, a system
network is a purely declarative description of
a language resource, we could employ it as a
set of rules for surface generation. For ex-
ample, given a set of grammatical features
representing the semantic meaning of a sen-
tence to generate, the gencrator would refer
to the system network to accumulate a set
of constraints on the structure of that sen-
tence. This process may be as follows. Let
an example input be a structure as shown
in figure 3 (1), where <Actor>, <Goal> and
<Process> are the constituents of the sen-
tence denoted by <Root>. The generator first
traverses the system network to accumulate
the constraints on the structure of the level
of <Root>. Since the feature to choose in
the RANK system is sentence, the constraints
such as +Process and +Medium come into
consideration. This makes the structure like
in figure 3 (2), where the new constituents,
<Medium> and <Subject>, are introduced
and the order of <Subject> and <Process>
is decided. After traversing the overall net-
work, the structure will be like in figure 3 (3).
Then, the generator traverses the system net-
work for cach of the constituents recursively.
When this process is completed, the resultant
structure will be a fully specified sentence.

The generation process is to enrich an in-
put partial specification of a sentence to gen-
erate a full specification. This can be par-
tially done by the knowledge described in the
rcalization statements. But note that if the
feature passive had not been specified in the
input in the above example, the choice on the
voice would have been arbitrary as long as
the generator had had no knowledge but that
in the system network. Strategies for gram-
matical/lexical choices are out of the scope of
system networks. Then, why are we making
cfforts to develop them? Our answer would
be that we believe exploring the knowledge
as in system networks is the first but essential
step toward exploring the knowledge of strate-
gies for grammatical/lexical choices. It secems
a vain attempt to design a decision scheme
without any considerably clarified knowlcdge
about the organization of the choice points on
which those decisions will be made.

2.2 Functional unification graminar

A system network is a purely linguistic de-
scription of lexico-grammar, which is com-
pletely independent of the ways to implement
it for computational NLP systems. As men-
tioned in section 1, however, when developing
a grammar, the user may want to actually im-
plement and use it for testing.

There have been several proposed meth-
ods to implement system networks for NLP.
Some of them are to translate the descrip-
tion of a system network into constraint-
based formalisms such as functional unifica-
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Figure 4: A part of the translation of the sys-
tem network in figure 2

tion grammar (FUG) (6], typed feature struc-
ture (TFS) {2] and the knowledge represen-
tation language LOOM [7]. The knowledge
represented in those formalisms can be easily
consulted by general unification-based deduc-
tion systems. Furthermore, the declarative-
ness of the system network description is pre-
served in those formalisms. GENESYS adopted
FUG for the internal representation of system
networks.

The data structure handled in FUG is
called a functional description (FD). A FD
consists of a set of attribute-value pairs and
disjunctions of FDs. A value is either an
atomic valuc or a FD. In the FUG framework,
both grammars and inputs are represented in
FDs. In this paper we call them grammar
functional descriptions (GFDs) and working
functional descriptions (WFDs) respectively.
When generating a sentence from an input
WFD, the generator unifics it with the GFD
to enrich it. The unification proceeds recur-
sively with respect to the constituents in the
WFD.

2.3 Translation of SFG into FUG

The algorithm translating SFG into FUG
is based on Kasper’s [6]. Figure 4 shows

the translation of the AGENCY, VOICE and
PROCESS TYPE systems in figurc 2. As
Kasper showed, a system of a system net-
work can be translated into a disjunction of
FDs, where each FD corresponds to an alter-
native in that system. A simultaneity con-
dition of systems is naturally represented by
a list of disjunctions. Translation of rcaliza-
tion statements also follows Kasper’s method.
For example, a preselection constraint is
translated into an attribute-value pair; e.g.,
Actor: RANK:pp into actor: [rank:pp]. A
conflation of constituents is realized by unify-
ing the FDs corresponding those constitucnts.
In figure 4, agent/actor and medium/goal
denote conflations. The existence of a con-
stituent can be represented by a rescrved
attribute pattern; for example, +Agent
is translated into pattern: [...agent...].
“...” in pattern attributes denotes an arbi-
trary sequence of constituents. A constraint
on ordering constituents is also translated into
a pattern attribute.

A gate requires morc complicated transla-
tion. As pointed out in several papers [3, 6],
gates cannot be straightforwardly represented
in the FUG notation. Kasper modified the
original FUG notation to represent gates. El-
hadad, on the other hand, introduced the no-
tion of type into the attribute-value represen-
tation, which turned out to be close to TFS.
In the current implementation of GENESYS a
gate constraint is simply represented by an
additional disjunction. In figure 4, for ex-
ample, the gate doing is translated the dis-
Junction embedded in the FD corresponding
to material.

3 The components

Figure 5 illustrates the components of
GENESYS and its interactions with the user.
In this environment, the user develops gram-
mars in the following cycle.

1. Editing a grammar: The user draws
a system network on the system network
editor. The specifications of the network
arc translated into the FUG formalism.
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Figure 5: The system overview

2. Detecting problems: The user exam-
ines the grammar by running the unifier.
Observing the gencration process in de-
tail, the user would detect the problems,
if any, in the grammar. If some problems
are detected, the user goes back to the
editing phase to modify the grammar.

The system network editor and the debugger
are tightly coupled and the user can freely
move from one to the other. This is one of
the significant featurcs of GENESYS.

The basic components of GENESYS are
implemented in SICStus Prolog and the
graphical user interface is implemented in
Tel/Tk [11]. We used the ProTcl? library to
make an interface between Tcl/ Tk and Prolog.

3.1 The system network editor

The system network editor is a tool for defin-
ing system networks. As mentioned in the
previous scction, a system network is a typol-
ogy of grammatical features; therefore, what
is important in developing a system network
is to grasp the topology of the overall network.
The system network cditor provides a GUI on
which the user can efficiently define the topo-
logical specifications of a system nctwork.

? ProTcl is a freeware developed by Micha Meier
(micha®ecrc.de)
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Figure 6: The system network editor

An elements of a system network is either
a system, a feature, a simultaneity condition
or a gate. To draw a network, the user first
specifies the locations of systems, simultane-
ity conditions and gates on the canvas through
mouse operations. For each of them, the
user specifies its name® and its entry condi-
tion on the dialog window. The entry con-
dition of an element is a conjunction of its
mother element(s). Further, for each system,
the user specifies its alternative features and
their realization statements®. Figure 6 shows
a snapshot where the user is defining a system
named VOICE. Its entry condition has been
defined to be effective of the AGENCY system.
Entry conditions can be specified by means of
either keyboard typing or mouse operations.

When constructing the network, the user
can utilize the following functions as well.

o It is assumed that the names of the sys-
tems are all identical. When this con-
straint is violated, the editor gives a
warning.

o The user can open a window for writing
comments at an arbitrary place. Using
this function, the user would write down
example sentences for each feature.

The definition of a network is saved in the
Prolog database, which is then translated into
the FUG formalism. The translator was im-
plemented in Prolog.

3 For simultaneity conditions and gates, their
names are not always necessary to be specificd.

* Realization statements can be also associated
with gates




agency(middle,Path,WFD) :-

agency(effective,Path,WFD) :-
unify(Path,WFD,pattern: [dots,agent,dots]),
altribute.value (Path,WFD,voice,Value),
voice(Value,Path,WFD).

voice(active,Path,WFD) :-

voice(passive,Path,WFD) :-
unify(Path ,WFD,process: [voice:passivel),

Figure 7: Precompilation of FUG into Prolog
rules

3.2 The unifier

The unifier unifies an input FD with a GFD.
An input FD is assumed to be a partial spec-
ification of the grammatical features of a sen-
tence to generate. The unification process en-
riches an input FD to produce a full specifi-
cation of the output sentence. An actual sen-
tence is generated by lincarizing lexical spec-
ifications of the output FD.

If the input is under-specified, morc than
one alternatives will be valid. Unification by
the unifier procceds in the depth first fashion.
At each choice point, i.e. in cach system, the
alternatives are preferred in the static order
described in the system network.

Our implementation of the unifier is similar
to that of the PFUF system implemented by
Fasciano et al. [4] in the following respects.

e The system precompiles the descriptions
of a GFD into a set of Prolog rules. Since
Prolog rules for every predicate are dis-
junctive, a disjunction of FDs can be nat-
urally realized as a set of Prolog rules.
For example, the FDs corresponding to
the AGENCY and VOICE systems, shown
in figure 4, are precompiled into the pred-
icates as shown in figure 7.

e As shown in the example, the first argu-
ment of each predicate functions as its in-
dex. These indices make double-hashing
of SICStus Prolog quite cffective.

3.3 The debugger

Unexpected failures of unification are usually
good clues to the locations of the problems
in the grammar. The GENESYS debugger has
two major functions that facilitate monitoring
the generation process:

e controls the trace of the generation pro-
cess, and

o display graphically of the generation pro-
cess’ intermediate states.

3.3.1 Control of the generation pro-
cess

Prolog interpreters provide debugging envi-
ronments in which the user traces resolution
processes. Similarly, in GENESYS, the user
can trace generation processes by the mouse
operations on the debugger windows. The in-
formation of the process is presented by the
system network viewer. The debugger accepts
the following commands.

o creep: to proceed to the next primi-
tive step. A primitive step roughly cor-
responds to unification of an attribute.

e skip: to skip the process of traversing all
the parts subsumed by the current sys-
tem or alternative. For example, given
the skip command when the unifier enters
the PROCESS TYPE system in figure 2,
the unifier continues traversing the whole
part under the current system, such as
doing and doing-material.

« undo: to go back to the latest state.

e leap: to proceed the whole generation
process.

3.3.2 The WFD viewer

The WFD viewer graphically shows the in-
termediate state of WFDs (figure 8). It has
several optional functions that facilitate infor-
mation retrieval from WFDs.

e WFDs are usually much larger than the
size of the window. The window au-
tomatically focuses on the constituent
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Figure 8: The WFD viewer

where unification is proceeding so as to
follow the user’s attention. The path of
the current constituent is shown on the
top; e.g. CP:[].

o The user can close FDs that seem to be
unnecessary for debugging. The values of
goal, process and subject are examples of
closed FDs.

¢ WFDs tend to include a number of
conflation relations between their con-
stituents. The WFD viewer shows which
constituents are conflated. Figure 8 is
a snapshot where the viewer shows that
agent is conflated with actor. While the
mouse cursor is pointing at a feature, the
feature conflated with it is kept highlight-
ened.

3.3.3 The system network viewer

The system network viewer displays the
progress of traversing the network (figure 9).
For each constituent the user can open a win-
dow, which provides information such as:

s the path of the constituent,

e the chosen elements, i.e. systems, fea-
tures, etc., and

e the realization statements associated
with the chosen features.
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Figure 9: The system network viewer

4 Detecting problems: an
example

In this section, we will give an example of de-
tecting problems of a developed grammar. We
will use the grammar given in the previous
section.

Let us go back to the state shown in
figure 9. It is the snapshot where the
unifier is about to merge the constraint
Agent: RANK:pp (highlitened by reversed
characters) with those already in the current
WFD. At this time, the features effective,
passive, material and doing have already been
traversed as shown the figure 9 and the asso-
ciated constraints have been accumulated in
the WFD as shown in figure 8.

Note that in the current WFD the value of
rank in agent is np, while the system network
is to impose the constraint that it must be pp.
This inconsistency causes a failure of travers-
ing and triggers backtracking. If this failure
is unexpected for the user, its cause should be
identified.

A good way to look for the cause is to ex-
plore when the existing constraint rank:np
was imposed. This is easily done by employ-
ing the WFD viewer and the system network
viewer. As mentioned above, the WFD vicwer
facilitates retrieving the existing constraints.
And the system network viewer highlightens
the chosen features and the realization state-
ments associated with them. In this exanple,
the window in figure 8 shows that agent is
conflated with actor, and the window in fig-




ure 9 shows that the constraint rank:np was
imposed when the unifier passed the feature
material. Based on these pieces of informa-
tion, the user would make modifications to
the current grammar such as deletion of the
statement Actor: RANK:np.

5 Conclusion

In this paper we have reported on the
GENESYS system, which provides an inte-
grated environment for developing systemic
functional grammars. In this environment,
the user constructs a system network with
the editor designed for this purpose, and ex-
amines it by running the surface generation
module, i.e. the unifier. The user can easily
monitor the generation process through the
GUI of GENESYS.

There have been several reports about sys-
tems that support devclopment of systemic
grammars: HyperGrammar{10], the Kyoto
University systemic grammar development fa-
cility[1], and so forth. Compared with those
systems, a distinctive feature of GENESYS
is that its components cooperatively support
the user by means of the GUL

We might be able to refine the functions
of the debugger. It would be more helpful,
for example, if the debugger could give the
information about when each constraint had
been imposcd on surface structures.
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