
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

表層的・構造的対訳対検索の長所と短所

Timothy Baldwin† 岡崎 篤†† 徳永 健伸†† 田中 穂積††

† Centre for the Study of Language and Information (CSLI)
210 Panama Street

Stanford, CA 94305-4115, U.S.A.
†† 東京工業大学 情報理工学研究科
〒 152-8552 東京都目黒区大岡山 2-12-1

E-mail: †tbaldwin@csli.stanford.edu, ††{okazaki,take,tanaka}@cl.cs.titech.ac.jp

あらまし 本研究では、Senseval2の対訳対検索タスクにおいて、2つの全く異なった検索手法を紹介する。1つ目の手法
は表層的類似に基づくもので、文字列を文字バイグラムの集合として扱う。2つ目の手法は構造的類似に基づくもので、構文
解析木および概念的類似を用い文字列間の類似度を計算する。さらに、この 2 つの手法を組み合わせるハイブリッド手法も
提案する。評価実験では、単純でありながらも、表層的類似度計算法が構造的計算法より勝ることを明らかにし、全体ではハ

イブリッド手法が再優良であることを実証している。

キーワード 対訳対検索, 表層的類似, 構造的類似

The Successes and Failures of Lexical and Structural Translation Retrieval

Timothy BALDWIN†, Atsushi OKAZAKI††, Takenobu TOKUNAGA††, and Hozumi TANAKA††

† Centre for the Study of Language and Information (CSLI)
210 Panama Street

Stanford, CA 94305-4115, U.S.A.
†† Department of Computer Science

Graduate School of Information Science and Engineering
Tokyo Institute of Technology

2-12-1 Ō-okayama, Meguro-ku, Tokyo 152-8552, Japan

E-mail: †tbaldwin@csli.stanford.edu, ††{okazaki,take,tanaka}@cl.cs.titech.ac.jp

Abstract This paper describes two distinct translation retrieval methods within the context of the Senseval2

Japanese translation task. The first is based on lexical similarity and models strings as a bag of character bigrams,
whereas the second is based on structural similarity and determines similarity via parse trees and conceptual similarity.
We also discuss a hybrid approach, combining the results of the lexical and structural methods. Despite its simplistic
nature, the lexical method was found to outperform the structural method by a clear margin, but the hybrid method
to be the strongest overall contender.

Key words translation retrieval, lexical similarity, structural similarity

— 1 —

 IEICE Technical Report, .

1. Introduction

Translation retrieval is defined as the task of, for
a given source language (L1) input, retrieving the
target language (L2) string which best translates it.
Retrieval is carried out over a translation mem-
ory made up of translation records, that is L1
strings coupled with an L2 translation. A single
translation retrieval task was offered in Senseval2,
from Japanese into English, and it is this task that
we target in this paper.

Conventionally, translation retrieval is carried out
by way of determining the L1 string in the trans-
lation memory most similar to the input, and re-
turning the L2 string paired with that string as a
translation for the input. It is important to realise
that at no point is the output compared back to the
input to determine its “translation adequacy”, a job
which is left up to the system user.

Determination of the degree of similarity between
the input and L1 component of each translation
record can take a range of factors into consideration,
including lexical (character or word) content, word
order, parse tree topology and conceptual similarity.
In this paper, we focus on a simple character-based
(lexical) method and more sophisticated parse tree
comparison (structural) method. We also touch
on the possibility of a hybrid method combining the
results of the lexical and structural methods.

Both methods discussed herein are fully unsuper-
vised. The lexical method makes use of no exter-
nal resources or linguistic knowledge whatsoever. It
treats each string as a “bag of character bigrams”
and calculates similarity according to Dice’s Coef-
ficient. The structural method, on the other hand,
relies on both morphological and syntactic analy-
sis, in the form of the publicly-available JUMAN
(Kurohashi and Nagao 1998b) and KNP (Kurohashi
and Nagao 1998a) systems, respectively, and also
the Japanese Goi-Taikei thesaurus (Ikehara et al.
1997) to measure conceptual distance. A parse tree
is generated for the L1 component of each trans-
lation record, and also each input, and similarity
gauged by both topological resemblance between
parse trees and conceptual similarity between nodes
of the parse tree.

Translation records used by the two systems were
taken exclusively from the translation memory pro-
vided for the task.

In the proceeding sections, we briefly review the
Japanese translation task (Section 2.) and detail
our particular use of the data provided for the task
(Section 3.). Next, we outline the lexical method
(Section 4.) and structural method (Section 5.), and
compare and discuss the performance of the lexical
and structural methods, and also a number of hy-
brid methods (Section 6.).

2. Basic task description

The Japanese translation task data took the form
of a translation memory and test set. The trans-
lation memory was dissected into 320 disjoint seg-
ments according to headwords, with an average
of 21.6 translation records per headword (i.e. 6920
translation records overall). The purpose of the task
was to select for a given headword which of the
translation records gave a suitable translation for
that word. The task stipulated that a maximum of
one translation record could be selected for each in-
put (allowing for the possibility of an unassignable

output, indicating that no appropriate translation
could be found). Translations were selected by way
of a translation record ID, and systems were not re-
quired to actually identify what part of the L2 string
in the selected translation record was the translation
for the headword.

Translation records took the form of Japanese–
English pairs of word clusters, isolated phrases,
clauses and sentences containing the headword, at
an average of 8.0 Japanese characters1 and 4.0 En-
glish words per translation record. In some in-
stances, multiple semantically-equivalent transla-
tions were given for a single expression, such as
“corporation which is in danger of bankruptcy” and
“unsound corporation” for abunai kigyō; all such oc-
currences were marked by the annotator. For some
other translation records, the annotator had pro-
vided a list of lexical variants or a paraphrase of
the L1 expression to elucidate its meaning (not nec-
essarily involving the headword), or made a note

1 Based on the count of kana and kanji characters, and in-
dividual digits.

— 2 —

as to typical arguments taken by that expression
(e.g. “refers to a person”). Generally, more fre-
quent/general senses occurred earlier in the trans-
lation memory.

In the test data, inputs took the form of para-
graphs taken from newspaper articles, within which
a single headword had been identified for transla-
tion. The average input length was 697.9 characters,
nearly 90 times the L1 component of each transla-
tion record. In its raw form, therefore, the trans-
lation task differs from a conventional translation
retrieval task in that translation records and inputs
are not directly comparable, in the sense that trans-
lation records are never going to provide a full trans-
lation approximation for the overall input.

For each input in the test data, three disjoint
sets of translation record IDs were provided, dis-
criminated according to translation quality. The
first set of translation record IDs (quality level
1) contained those which provided a high-quality
translation for the headword, from the translation
memory; the second set (quality level 2) listed
those translation records which provided an accept-
able but sub-optimal translation; and the third set
(quality level 3) listed those translation records
which provided a marginally acceptable translation
for the input. In the official system evaluation, an
output which fell into any of the three categories
was taken to be correct.

3. Data preparation

In adapting the task data to our purposes, we first
carried out limited normalisation of both the trans-
lation memory and test data by: (a) replacing all
numerical expressions with a common NUM marker,
(b) normalising sentence-final punctuation, and (c)
standardising in-clause punctuation.

In order to maximise the disambiguating poten-
tial of the translation memory, we next set about
automatically deriving as many discrete transla-
tion records as possible from the original transla-
tion memory. Multiple lexical variants of the same
basic translation record (indexed identically) were
generated in the case that: (a) a lexical alternate
was provided (in which case all variants were listed
in parallel); (b) a paraphrase was provided by the

annotator (irrespective of whether the paraphrase
included the headword or not); (c) syntactic or se-
mantic preferences were listed for particular argu-
ments in the basic translation record (in which case
lexical variants took the form of strings expanded by
adding in each preference as a string). At the same
time, for each headword, any repetitions of the same
L1 string were completely removed from the trans-
lation record data. This equates to the assumption
that the translation listed first in the translation
memory is the most salient or commonplace.

This method of translation record derivation re-
sulted in a total of 152 new translation records,
whereas the removal of duplicate L1 strings for
a given headword resulted in the deletion of 670
translation records; the total number of translation
records was thus 6402, at an average of 20.0 trans-
lation records per headword.

We experimented with a number of methods for
abbreviating the inputs, so as to achieve direct com-
parability between inputs and translation records.
First, we extracted the clause containing the head-
word instance to be translated. This was achieved
through a number of ad hoc heuristics driven by
the analysis of punctuation. These clause-level
instances served as the inputs for the structural
method. We then tested further “windowing” the
inputs for the lexical method, by allowing a max-
imum of 10 characters to either side of the head-
word. No attempt was made to identify or enforce
the observation of word boundaries in this process.
In evaluation, we test the lexical method on both
windowed and full clauses.

4. The lexical method

As stated above, the lexical method is based
on character-based indexing, meaning that each
string is naively treated as a sequence of characters.
Rather than treat each individual character as a sin-
gle segment, however, we chunk adjacent characters
into bigrams in order to capture local character con-
tiguity. String similarity is then determined by way
of Dice’s Coefficient, calculated according to:

sim1(IN∗
m, TRi) =

2×∑
e∈IN∗

m,TRi
min (freqIN∗

m
(e), freqTRi

(e))
len(IN∗

m) + len(TRi)

— 3 —

where IN∗
m is the abbreviated version of the in-

put string INm (see above) and TRi is a transla-
tion record; each e is a character bigram occurring
in either IN∗

m or TRi, freqIN∗
m

(e) is defined as the
weighted frequency of bigram type e in IN∗

m, and
len(IN∗

m) is the character bigram length of IN∗
m.2

Bigram frequency is weighted according to character
type: a bigram made up entirely of hiragana charac-
ters (generally used in functional words/particles) is
given a weight of 0.2 and all other bigrams a weight
of 1. Note that Dice’s Coefficient ignores segment
order, and that each string is thus treated as a “bag
of character bigrams”.

Our choice of the combination of Dice’s Coeffi-
cient, character-based indexing and character bi-
grams (rather than any other n-gram order or
mixed n-gram model) is based on the findings of
Baldwin (2001b, 2001a), who compared character-
and word-based indexing in combination with both
segment order-sensitive and bag-of-words similarity
measures and with various n-gram models. As a re-
sult of extensive evaluation, Baldwin found the com-
bination of character bigram-based indexing and a
bag-of-words method (in the form of either the vec-
tor space model or Dice’s Coefficient) to be optimal.
Our choice of Dice’s Coefficient over the vector space
model is due to the vector space model tending to
have a bias towards shorter strings in cases of low-
level character overlap, and the ability of Dice’s Co-
efficient to pick on subtle string similarities under
such high-noise conditions.3

Given the limited lexical context in translation
records (8.0 Japanese characters on average), our
method is highly susceptible to the effects of data
sparseness. While we have no immediate way of
reconciling this shortcoming, it is possible to make
use of the rich lexical context of the full inputs (i.e.
in original paragraph form rather than clause or
windowed clause form). Direct comparison of the
full inputs with translation records is undesirable
as high levels of spurious matches can be expected

2 freqTRi
(e) and len(TRi) are defined similarly.

3 This prediction for Dice’s Coefficient to outperform the
vector space model was validated empirically, and found to
hold for all lexical method parameter settings given in Section
6.

outside the scope of the original translation record
expression. Inter-comparison of full inputs, on the
other hand, provides a primitive model of domain
similarity. Assuming that high similarity correlates
with a high level of domain correspondence, we can
apply a cross-lingual corollary of the “one sense per
discourse” observation (Gale et al. 1992) in stipulat-
ing that a given word will be translated consistently
within a given domain. By ascertaining that a given
input closely resembles a second input, we can use
the combined translation retrieval results for the two
inputs to hone in on the optimal translation for the
two. We term this procedure domain-based sim-
ilarity consolidation.

The overall retrieval process thus takes the form
of first carrying out standard translation retrieval
based on the abbreviated input, and second using
the original test set to determine the full input string
most similar to the current input, and performing
translation retrieval independently using the abbre-
viated form of the maximally similar alternate in-
put. Numerically, the combined similarity is calcu-
lated as:

sim2(INm, TRi) = 0.5
(
sim1(IN∗

m, TRi)

+max
n |=m

sim1(INm, INn) sim1(IN∗
n, TRi)

)

where INm is the current input (full form), IN∗
m

is the abbreviated form of INm, sim1 is as defined
above, and INn |=m is any input string other than the
current input. Note that the multiplication by 0.5
simply normalises the output of sim2 to the range
[0, 1]. For each input INm, the ID for that transla-
tion record which is deemed most similar to INm is
returned, with translation records occurring earlier
in the translation memory selected in the case of a
tie.4

As a slightly-modified alternative to sim2, it is
possible to take the mean overall trans-document
similarity rather than the single highest similarity,
as follows:

sim3(INm, TRi) = 0.5
(
sim1(IN∗

m, TRi)

4 Based on the observation that translation records are
roughly ordered according to commonality. Ties were ob-
served 7.5% of the time, with the mean number of top-scoring
translation records being 1.12.

— 4 —

+
1

|IN |−1

∑

n |=m

sim1(INm, INn) sim1(IN∗
n, TRi)

)

Here, IN is the set of all inputs.
One advantage to having such a fine-grained nu-

meric representation of similarity, is that we are able
to take the similarity value as being indicative of the
quality of the associated translation. We are thus
able to set an arbitrary threshold value, for example,
to filter off more questionable translation outputs,
and by tailoring the threshold value to the needs of
the task at hand, can be more or less conservative
in our provision of translation candidates.

5. The structural method

The structural method contrasts starkly with
the lexical method in that it is heavily resource-
dependent, requiring a morphological analyser,
parser and thesaurus. It operates over the same
translation memory data as the lexical method, but
uses only the abbreviated forms of the inputs (to the
clause level) and does not make use of domain-based
similarity consolidation.

JUMAN (Kurohashi and Nagao 1998b) is first
used to segment each string (translation records and
inputs), based on the output of which, the KNP
parser (Kurohashi and Nagao 1998a) is used to de-
rive a parse tree for the string. The reason for ab-
breviating inputs only as far as the clause level for
the structural method, is to enhance parseability.
Further pruning takes place implicitly further down-
stream as part of the parse tree matching process.

KNP returns a binary parse tree, with leaves cor-
responding to optionally case-marked phrases. Each
leaf node is simplified to the phrase head and the
(optional) case marker normalised (according to the
KNP output).

As for the lexical method, all translation records
corresponding to the current headword are matched
against the parse tree for the input, and the ID of
the closest-matching tree returned. In comparing a
given pair of parse trees T 1 and T 2, we proceed as
follows in direction d ∈ {up, down}:

（ 1） Set p1 to the leaf node containing
the headword in T 1, and similarly initialise
p2 in T 2; initialise n to 0
（ 2） If p1

m |= p2
m , return (n, 0)

（ 3） If p1
f |= p2

f , return (n, concept sim(p1
f , p2

f))
（ 4） Increment n by 1, set p1 and p2

to their respective adjacent leaf nodes in
direction d within the parse tree; goto step
2.

Here, pi
m is the case marker associated with node

pi, pi
f is the filler associated with node pi, and the

|= operator represents lexical equality. concept sim
calculates the conceptual similarity of the two fillers
in question according to the Goi-Taikei thesaurus
(Ikehara et al. 1997). We do this by, for each sense
pairing of the fillers, determining the least common
hypernym and the number of edges separating each
sense node from the least common hypernym. The
conceptual distance of the given senses is then de-
termined according to the inverse of the greater of
the two edge distances to the hypernym node, and
the overall conceptual distance for the two fillers as
the minimum such sense-wise conceptual distance.

We match both up and down the tree structure
from the headword node, and evaluate the com-
bined similarity as the sum of the individual ele-
ments of the returned tuples. That is, if an up-
ward match returned (i,m) and a downward match
(j, n), the overall similarity would be (i + j, m + n).
The translation output is the ID of the translation
record producing the greatest such similarity, where
(w, x) > (y, z) iff w > y or (w = y ∧ x > z). As
a result, conceptual similarity is essentially a tie-
breaking mechanism, and the principal determining
factor is the number of phrase levels over which the
parse trees match. In the case that there is a tie
for best translation, the translation record with the
longest L1 string is chosen, and in the case that this
doesn’t resolve the stalemate, one of the tied trans-
lation records is chosen randomly. In the case that
all translation records score (0, 0), we deem there to
be no suitable translation in the translation mem-
ory, and return unassignable.

As mentioned in Section 2., crude selectional
preferences (of the form Person or Building)
were provided on certain argument slots in trans-
lation records. These were supported by semi-
automatically mapping the preference type onto the
Goi-Taikei thesaurus structure, and modifying the

— 5 —

|= operator to non-sense subsumption of the transla-
tion record filler by the input selectional preference,
in step 3 of the parse tree match algorithm. Selec-
tional preferences were automatically mapped onto
nodes of the same name if they existed, and manu-
ally linked to the thesaurus otherwise.

6. Results and discussion

In this section, we evaluate the lexical and struc-
tural methods in the configuration used for the final
Senseval2 data submission, so as to maintain di-
rect comparability with other systems performing in
the translation task. In an effort to justify a num-
ber of design decisions made in the development of
the final formulation of the two methods, we addi-
tionally test an array of close variants of the original
configurations, and also a range of hybrid methods
combining the outputs of the lexical and structural
methods. The translation retrieval accuracies are
given in Table 1, along with a baseline accuracy ar-
rived at through random selection of a translation
record from among the translation records associ-
ated with the given headword.5 Note that as we
attempt to translate all inputs, recall and precision
are equal to the presented accuracy values.

First, the lexical method was tested with and
without windowing of the input (window and clause,
respectively), and with each of sim1, sim2 and sim3.
Of these, the official version used in our data sub-
mission was sim2 with windowing. In all cases,
we used a threshold of 0.02 to filter off more ques-
tionable translation outputs, setting the output to
unassignable in the case that this threshold was
not equalled or bettered.

Next, we experimented with a number of sim-
ple techniques for combining the results of the
lexical and structural methods. First, we com-
plemented the structural method by replacing all
unassignable outputs with the corresponding out-
put from the lexical method (struct>lex). We
then repeated this method preference, complement-
ing the lexical method with the structural method
(lex>struct) by replacing any outputs below a fixed
threshold with the corresponding output from the

5 Not including the unassignable output option.

structural method, given that the structural method
produces an output other than unassignable.

We break down the results for the various system
configurations into three categories, reflecting how
stringent our evaluation of system output transla-
tion quality is. In the first category (“quality level
3+”), the system output is judged to be correct if it
corresponds to any of the three grades of translation
quality given in the solution set (see Section 2.); in
the second category (“quality level 2+”), the output
must be contained in either the quality level 1 or 2
sets; and in the third category (“quality level 1”),
only outputs evaluated as being of quality level 1 are
treated as correct. By subclassifying system perfor-
mance in this way, we gain some insight into the
system’s ability to select the better of the transla-
tions on offer. Given that quality level 3+ subsumes
quality level 2+, and quality level 2+ in turn sub-
sumes quality level 1, system accuracy across the
three levels must be decreasing.6 The lesser the
observed decrease, however, the higher the overall
quality of the translation output.

Looking to the actual results in Table 1, the most
striking feature is that the lexical method has a clear
advantage over the structural method for all quality
levels, and both methods outperform the baseline by
a reasonable margin in all their various incarnations.
In its optimal configuration, (clause-level input rep-
resentation using the sim2 similarity measure), the
lexical method just nudges past the 50% accuracy
mark for quality level 3+; in the system config-
uration used for our official submission of results
(window+sim2), the quality level 3+ accuracy is
49.17%.7 Notice that domain-based similarity con-
solidation (in the form of sim2 and sim3) enhances
the results appreciably, and that the best method
of similarity consolidation is to take the maximum
rather than the mean trans-input similarity.

Obviously, it would be going too far to dis-
count structural methods outright based on this lim-
ited evaluation, particularly as the lexical method

6 Although not necessarily strictly decreasing, as there is
the possibility of constant accuracy across all three categories
in the case that all outputs are of quality level 1.
7 Thresholding was not used with the submitted version,

resulting in an accuracy of 49.08%.

— 6 —

Accuracy (%)
Retrieval method

Quality level 3+ Quality level 2+ Quality level 1
window+sim3 46.25 45.42 41.50
clause+sim3 47.42 46.42 41.50

Lexical window+sim2 49.17 48.25 41.92
clause+sim2 50.08 49.08 42.00
clause+sim1 46.50 45.83 40.92

Structural 41.17 40.25 34.08
struct>lex 44.42 43.42 35.08

lex>struct (0.1) 48.50 47.58 39.67
Lexical + structural lex>struct (0.06) 50.83 49.83 42.00

lex>struct (0.04) 50.58 49.67 42.08
lex>struct (0.02) 50.25 49.25 41.83

Baseline 38.17 37.65 30.72
Table 1 Results for the different system configurations, over varying levels of

translation quality (system configurations used for official submission
are underlined)

has been tested thoroughly over various datasets
whereas the structural method was developed anew
for this task. It is surprising, however, that a tech-
nique as simple as the lexical method, requiring no
external resources and ignoring both word bound-
aries and word order, should perform so well. Per-
haps one conclusion that can be drawn is that the
given simplistic lexical method sets a high standard
for any structural method to better, and the ef-
fort/level of mathematical sophistication required
to equal the performance of the lexical method will
most likely be great.

The main area in which the structural method
fell short of the lexical method was inputs where
no translation record displayed even the same case
marking on the headword as the input and were
hence judged to be unassignable. Indeed 130 or
10.8% of inputs fell into this category, despite there
being only 34 or 0.3% of unassignable inputs in
the test set. Ideally, we would like to be able to re-
place the current lexical match mechanism for case
markers with a conceptual similarity measure anal-
ogous to that for case fillers, returning a real value
in the range [0, 1], which remains as a matter for
future research.

For both the lexical and structural methods, there
was a strong correlation between high-quality trans-
lations and higher-scoring matches, and the main
area in which errors arose was more tentative (low-
scoring) matches.

Hybridisation represents one way of overcoming

the coverage problem for the structural method,
and also the relatively depleted performance over
low-scoring matches for the lexical method. Re-
placing all unassignable outputs from the struc-
tural method with the corresponding output from
the lexical method (struct>lex) produces an appre-
ciable gain over the basic structural method. The
resultant system performance still falls short of that
of the various lexical method variations, however.
More encouraging is the finding that it is possible
to boost the lexical method by substituting out-
puts from the structural method (assuming that
an output exists) in the case of a low similarity
score. The results presented in Table 1 are based on
the clause+sim2 version of the lexical method, and
amount to a gain of nearly a percentage point for
quality levels 3+ and 2+. The best overall results
(presented in bold) for the various quality levels
were observed with the similarity score threshold set
to 0.06 and 0.04. That the hybrid methods should
surpass both the component methods suggests that
each has its individual merits, although we clearly
need to have the more robust lexical method as our
system backbone.

In conclusion, this paper has served to describe
a structural translation retrieval method, a num-
ber of instantiations of a lexical translation retrieval
method, and a hybrid method, in the context of the
Senseval2 Japanese translation task. The lexical
method modelled strings as a bag of character bi-
grams, but incorporated a number of novel tech-

— 7 —

niques including domain-based similarity consolida-
tion in reaching a final decision as to the translation
record most similar to the input. The structural
method, on the other hand, compared parse trees
and had recourse to conceptual similarity, but in a
relatively rudimentary form. The results of the lex-
ical and structural methods were then combined in
the hybrid methods, based on simple thresholding
or substitution of unassignable outputs. Of the
lexical and structural methods, the lexical method
proved to be clearly superior, although both meth-
ods were well above the baseline performance. The
best overall performance was observed for the hy-
brid method, combining the results of the lexical
and structural methods.

Acknowledgements

This paper was supported in part by the Research
Collaboration between NTT Communication Sci-
ence Laboratories, Nippon Telegraph and Telephone
Company and CSLI, Stanford University.

References

Baldwin, T. 2001a. Low-cost, high-performance
translation retrieval: Dumber is better. In
Proc. of the 39th Annual Meeting of the ACL
and 10th Conference of the EACL (ACL-EACL
2001).

——, 2001b. Making Lexical Sense of Japanese–
English Machine Translation: A Disambigua-
tion Extravaganza. Tokyo Institute of Technol-
ogy dissertation.

Gale, W., K. Church, and D. Yarowsky. 1992.
One sense per discourse. In Proc. of the 4th
DARPA Speech and Natural Language Work-
shop, 233–7.

Ikehara, S., M. Miyazaki, A. Yokoo, S. Shi-

rai, H. Nakaiwa, K. Ogura, Y. Ooyama,
and Y. Hayashi. 1997. Nihongo Goi Taikei –
A Japanese Lexicon. Iwanami Shoten. 5 vol-
umes. (In Japanese).

Kurohashi, S., and M. Nagao. 1998a. Build-
ing a Japanese parsed corpus while improving
the parsing system. In Proc. of the 1st Interna-

tional Conference on Language Resources and
Evaluation (LREC’98), 719–24.

——, and ——. 1998b. Nihongo keitai-kaiseki
sisutemu JUMAN [Japanese morphological
analysis system JUMAN] version 3.5. Technical
report, Kyoto University. (In Japanese).

— 8 —

