ATHHEESPIR S EE
S1G-FAI-9401-3(6/6)

Incorporation of Phoneme-Context-Dependence in LR Table
through Constraint Propagation Method

TANAKA Hozumi, LT Hui and TOKUNAGA Takenobu

Department of Computer Science
Tokyo Institute of Technology

2-12-1 (f)okayama. Meguro Tokyo 152 Japan

Abstract

It is obvious that successful speech recognition requires
the use of linguistic information. For this purpose, a
generalized LR (GLR) parser provides an exceptionally
competent and flexible framework to combine linguistic
information with phonological information.

The combination of a GLR parser and allophone
models is considered very effective for enhancing the
recognition accuracy in a large vocabulary continuous
speech recognition. The main problem of integrating
GLR parsing into an allophone-based recognition sys-
tem is how to solve the word juncture problem, that
is, how to express the phones at a word boundary with
allophone models.

This paper proposes a new method called CPM
( Constraint Propagation Method ) to generate an
allophone-based LR table, which can effectively solve
the word juncture problem. In our method, by intro-
ducing the allophone rules into the CFG and lexical
rules, an LR table is generated, then the LR table is
modified on the basis of an alloplione connection ma-
trix by applying the constraint propagation method.
With this modified LR table, precise allophone predic-
tions for speech recognition can be obtained.

1 Introduction

It is obvious that successful speech recognition requires
the use of linguistic information. For this purpose, a
generalized LR (GLR) parser provides an exceptionally
competent and flexible framework to combine linguistic
information with phonological information.

One difficulty with large vocabulary continuous
speech recognition is to reduce the search space. The
GLR parser can meet this requirement[4](3] by ap-
plying linguistic constraints to speech recognition. In
the phone-based speech recognition system, the GLR

parser has been employed as a phoneme predictor,
which provides efficient search of phones in the process
of speech recognition. The GLR parser is guided by
an LR table automaticaily generated from context-free
grammar (CFG) rules and proceeds left-to-right with-
out backtracking. In order to make phone predictions,
the lookalhiead symbols in the table are phones instead
of the usnal grammatical categories. Thus, lexical rules
are cxpressed as follows:

<grammatical category> — <a sequence of phones>.

Several experiments(3][6](7][8] have shown that the
performance of speech recognition systems could be im-
proved by using allophones as recognition units instead
of phones. Allophone models (such as triphone mod-
cls) are context-dependent plione models that take into
consideration the left and the right neighboring phones
to model the major coarticulatory effects in continuous
speech.

The combination of allophone models and a GLR
parser is desirable to achieve better performance in
continnous speech recognition. The main problem of
integrating GLR parsing into allophone-based recogni-
tion system is how to solve the word juncture problem,
that is, how to express the phones at a word boundary
with allophone models.

In this paper, we propose a new method to generate
an allophone-based LR table that can solve the word
juncture problem. This method, by introducing a set
of allophone rules into the CFG and lexical rules, gen-
erates an LR table, then modifies the LR table on the
basis ofasallophone connection matrix by applying the
constraint propagation method (CPM). )

The organization of this paper is as follows: Sec-
tion 2 provides an overview of the past allophone-based
GLR parsing methods and points out problems in those
methods; after discussing the advantages of using the
canonical LR table for speech recognition, Section 3
describes our method to generate an allophone-based

_.1 5_




LR table by applying CPM; Scction 4 provides com-
parisons between the LR tables before and after CPM;
and Section 5 concludes with future works.

In the following sections, we will use several exam-
ples from Japanese, but the method we propose is not
langnage specific - it can be applied to many spoken
languages. '

2 Qverview of Allophone-Based
GLR Parsing Method

The main problem of integrating GLR parsing into an
allophone-based recognition system is solving the word
juncture problem. Consider the Japanese word “a k i”,
which is a sequence of three phones in the lexical rule
that follows: .
noun — a ki
(autumn)

The allophone of “k”, within the word, can be deter-
mined by the left and right context, which are known
in advance, namely “a” and “i” respectively. On the
other hand, the phones “a” and “i” are located at the
word boundary. For the beginning plione “a”, there is
no left context and for the end phone “i”, there is no
right context and, thus, with phones at word bound-
aries, it is difficult to know the left or right context
beforchand. To solve this problem, several allophone-
based GLR parsing methods have been proposed(3][7).

Itou et al.[3] have used the lexical rules that follow:

noun — af*,k) kI if(kx)

where kl is an allophone of “k™, which has the lcft
and the right context “a” and “i”; a(x,k) is a special
phone of “a” whose right context is known, and i(k,*)
is a special phone of “i” whose left context is known.
The LR table is constructed from a CFG and lexical
rule set. The allophones at word boundaries are de-
termined dynamically in the recognition process when
the succeeding and preceding words are obtained.

Some changes in a GLR parsing algorithm are
required to take account of the phoneme-context-
dependence at word boundaries. Furthermore, for the
end phones i(k,x) in the above example, the system
makes needless allophone predictions because of no
right context.

Nagai et al.[7] have proposed the three approaches
that follow :

(1)Grammar level realization

As well as Itou’s method, phones within a word are
changed into allophones. Phones at a word boundary
are changed into possible allophones, which generate

_1 6._

new grammatical categories. For instance, if “a(,k)"
and “i{k,*)" both have two allopliones, “al™ and “a2”,
“i1” and “i2" respectively, then the four lexical rules
are created from a word such as “a k i” are as follows:

a2_noun_il — a2 k1 il
a2.noun_i2 — a2 k1 12

al_noun_il — al k1 i1,
al.noun.i2 — al ki1 i2,

Therefore, too many lexical rules are created from each
word. The creation of new grammatical categories will
produce many new CFG rules. Furthermore, nonter-
minal symbols of RHS (right hand side) in the CFG
rule must take account of the word juncture prob-
lem considering newly created nonterminal symbols.
For example, the nonterminal symbols, “i_cat_j” and
“j-cat’ k” can be adjacent in this order, and so on.
Thus, phoneme-context-dependence is expressed by a
large number of lexical and grammar rules. Although
this method requires no change of a GLR parsing al-
gorithm, the explosion of states.in an LR table may
occur. '

(2) Table level realization

From a set of CFG and phoneme-context-
independent lexical rules, this method generates an
LR table, then it introduces a set of allophones step
by step by adding new states and new nonterminal
symbols in the LR table to incorporate phoneme-
context-dependence. The table modification process
is complex and requires changes to the parsing algo-
rithm to keep the left and right context of allophones.
Thus, phoneme-context-dependence must be dynami-
cally recognized in the parsing process. This method
results in the increase of the number of states in the
LR table and brings inefficiency to the parsing process.

(3) Parsing level realization

In this method, the phoneme-context-dependence is
not incorporated in an LR table. The recognition of
allophones is completely handled by a GLR parser,
which has to include a method of the phoneme-context-
dependence in a procedural way. This makes the orig-
inal GLR parsing algorithm more complex and ineffi-
cient.

3 Allophone-Based LR Table
after Applying Constraint
Propagation Method

In this section, we propose a new mecthod called

CPM (Coustraint Propagation Mcthod) to generate an
allophone-based LR table that can solve the word junc-




ture problem and enabls precise allophone predictions.
This method consists of the four steps:

(1) Construction of an allophone connection matrix
that provides the connectability between adjacent al-
lophones.

(2) Pliones within a word in lexical rules are changed
into allophones. g

(3) In addition to the above lexical and CFG
rules, allophone rules are introduced to generate an
allophone-based LR table.

(4) The allophone-based LR table is modified with
tlie allophone connection matrix applying CPM, and,
finally, the modified LR table is compressed to reduce
the table size. )

Beforc explaining the details of cach step, we would
like to discuss the types of LR tables. All methods
mentioned in Section 2 have used the SLR or LALR
table. Compared with the canonical LR table, the SLR
and LALR table can not provides the precise phoneme
predictions because the SLR and LALR table have
fewer states due to merging several states in an LR
table [1], and merging several states brings many ac-
tions in a state that produces many predictions.

This is why our method uses the canonical LR table.
Generally, the canonical LR table has more states than
the SLR or LALR table, but by applying Step 4, we
achieve reduction of the table size.

Step 1: Creation of the allophone
connection matrix

The allophone context of an allophone “x” is defined
as:

<left contezt> z <right context>

where <left contezt> and <right context> are a set of
phones. We assume that there is only one allophone
context for one alloplione. An allophone connection
matrix i3 created from a set of allophione contexts.

Let us consider allophone “i12” of phone “i”, allo-
phone “d1” of phone “d”, and the allophone contexts
shown below.

J. : : a
lchizd,icuf

According to tlie above allophone contexts in the
form of triphone, “d1” can follow “i2” because the right
context of “i2" contains the phone “d” and the left
context of “d1” contains the phone “i”.

If a connection matrix is expressed as an array
of Connect[left_allophone, right_allophone], we can fill
Connect|i2,d1] with symbol “1” to indicate that “i2"

and “d1"” are connectable in this order. Therefore, we
can construct an allophone connection matrix from a
sct of allophone contexts. Note: an entry in the ma-
trix, which can not be filled with “1”, is marked by
“0" to indicate the nonconnectability between the cor-
responding two adjacent allophones. '

RIGHT
hith2jat|a2|chlich2|il |i2|d1]d2| $
m 110
h2 010
L aljtl |1 11111
E|a2]0]|0 0]0]0
chl 0]0
F ch2 01
il 010 110
T i2 111 1[0
d1 110
d2 010

Fig. 1 An example of the allophone connection matrix
partially filled

Fig. 1is an example of the allophone connection ma-
trix partially filled. We will use this connection matrix
to incorporate allophone connection constraints into
the LR table at Step 4 by applying CPM.

Step 2: Conversion of the lexical rules

By using an example of simple Japanese CFG and
lexical rules shown in Fig. 2, we can illustrate the con-
version of the lexical rules. The lexical rules are from
(2) to (4).

(1) S — N BE (3) N—=chichi
(father)
(2) N— haha (4) BE - d a
(mother) (be)

Fig. 2 An example of the CFG rules and lexical rules

The phones within a word are automatically con-
verted into the allophones using a set of alloplione con-
texts. We can not, however, change the phones at
word boundaries because of the word juncture prob-
lem. Therefore, the lexical rules in Fig. 2, become those
shown in Fig. 3 after Step 2.

(2)° (4)’ BE — d a

(3’

N — h al hl a
N — ch i2 ch2 i

Fig. 3 Conversion of the lexical rules

._17_.




ACTION GOTO

state] M h2 al a2 chl | ch2 i 2 d1 d2 $ hialch|!l {d BE|S
0 Ish$ [sh6(c) sh2(c) |sh3 4 1 7

1 sh8

2 [ re(n)

3 [ re10

4 Jiory [sne

5 1, red

s}~ re6(a)

7 shll Ishi2(c) 10 13
8 sh21 \

9 |sh17 1

10 sh15 _ |sh16(c) | 14

1 reld_|rel3@) |

12 rc14(a)jrel4(a) ()

13 el

14 (b) rcd

15 re?

18 rc8(a)

17 sh19  ish20(b) 18

18 l re2  |re2d)

19 | w?  |re7ayJ[@

20 \ re8(u) re8(a)

21 \sh23(b) [sn24 0

22 el [redid)

2 (0 T—sfel}(Dlrel 1(a)

24 rcl2 {rel2(a)

25 acc

Fig. 4 Canonical LR{CLR) table generated from rules in Fig. 6
Step 3: Generation of the allophone- (1) S - NBE (8) a— a2

based LR table

The allophone rules are derived by pairing a phone
with the corresponding allophones:

<phone> — <allophonel> | < allophone2 > | ---°

Assume the following: {h1, h2} for “h”, {al, a2} for
“a”, {ch1, ch2} for “ch”, {i1, i2} for “i", {d1, d2} for
“d", a sct of allophone rules from (5) to (14) in Fig. 5
can be produced.

(5) h —» hi (10) ¢ch — ch2
(6) h — h2 (11) i — i1
(7) a — at (12) i — i2
(8) a — a2 (13) d = 41
(9) ch — chl1 (14) d — d2

Fig. 5 A set of the allophoue rules

Now we have a sct of CFG rules, lexical rules, and
allophone rules as shown in Fig. 6

(2)N—halhla
(3 N —=chi2ch2i

(9) ch — chl
(10) ch — ch2

(4BE—da (11)i— il
(5) b — hl (12) i — i2
(6) h — h2 (13) d — d1
(7) a— al (14) d — d2

Fig. 6 A sct of the CFG, lexical and allophone rules

From Fig. 6, we generate a canonical LR table (see
Fig. 4). Note: all lookalicad symbols in this table are
allophones.

Step 4: Constraint Propagation

The canonical LR table in Fig. 4 does not include any
allophione connection constraints as shown in Fig. 1.

In order to incorporate these connection constraints
into the LR table, we combine our CPM with the
method developed by Tanaka et al.[9] and modify the
original canonical LR table. Initial constraints are im-
posed on the LR table by the allophone connection ma-
trix, then these coustraints propagate throughout the
table to produce a modified allophone-based LR table.

_18_




The outline of our method is shown in Fig. 7.

CFG lexical allophone
rules rules rules
- T —
connection
| canonical LR table] matrix
h 4
“initialization
(a), (b)
)
coustraint propagation
(c) ~ ()
compression of LIt table

{g)
¥

| modified LR table |

Fig. 7 Outline of CPM

(a). Deletable reduce actions with allophone
rules

The constraint propagation starts checking every re-
duce action with allophone rules by employing the con-
nection matrix in Fig. 1. According to the method
developed by Tanaka et al.[9], the illegal reduce ac-
tions, which violate connection constraints, are marked
“deletable”. Fig. 8 shows this procedure.

connectability between the left allophone and its suc-
ceeding end phone. In this case, after shifting the-left
allophone, we have to immediately shift all the possible
allophones belonging to the end phone. Consecutive
shift actions will occur.

Consider a Japanese word “ch i2 ch2 i”, and assume
that there are two possible allophones “i1” and “i2” for
the end phone “i". The left allophone of the end phone
“i” is “ch2”. After shifting “ch2” by sh21 in state 8, we
have to shift “i1” and “i2". In Fig. 4, sh23 in state 21 is
to shift “i1”. Connect[ch2, i1]=0 means, hiowever, that
shifting “i1” is not allowed. Therefore, sh23 in state
21 is not allowed and is marked “deletable”. On the
contrary, sh24 with lookahead symbol “i2” in state 21
is not “dcletable”, because Connect[ch2, i2]=1. Fig. 9
shows this procedure.

for each shift action S in ecah entry of LR table {
if (the action prior to S is a shift action) {
if (Connect|x, y] = 0) {
mark S “deletable”;
)
)
}

where

x: the lookahead symbhol of the shift action prior to S.
y: the lookahead symbol of S.

Connect: the allophone connection matrix.

for each reduce action R with an allophone rule
in ecah entry of LR table {
if (Connect{x, y) = 0) {
mark R “dcletable”;
)
)

where
x: the RHS of the allophone rule used by R.
y: the lookaliead symbol of R.
Connect: the allophone connection matrix.

Fig. 8 Checking the reduce actions with allophone rules

Cousider, for example, re6 in state 6 and column
“al” in Fig. 4. The allophone connection matrix indi-
cates that the connection between “h2” (RHS of rule
6) and “al” is not allowed(Connect[h2,al] = 0), so this
reduce action re6 is illegal, and is marked “deletable”.

In Fig. 4, all the deletable reduce actions found by
this substep are marked (a).

(b). Deletable shift actions whose predecessors
are shift actions

Let us consider the left of the end phone of a word. If
the left phone is an allophone, we can easily check the

Fig. 9 Checking the shift actions whose predecessors
are shift actions

Tu Fig. 4, all the deletable shift actions found by this
substep are marked (b).

(c). Deletable shift actions that lead to empty
states

An empty state is a state whose actions are all
marked “deletable”. After the above two substeps, (a)
and (b). if there is an empty state the shift actions that
lead to this empty state shionld be marked “deletable”.

For example, in Fig. 4, sh6 in state 0 with the looka-
hiead symbol “h2” should be marked “deletable”, since
state 6 is an empty state. All the dcletable actions
found by this substep are marked (c).

(d). Deletable reduce actions that lead to
deletable shift actions

If a sequence of the reduce actions reaches a specific
shift action, each reduce action in the sequence is called
“reachable” to this shift action. The reachability of a
rechice action is examined by consulting a goto graph,
whicl is reconstructed from an LR table. '

..] g_



Using the procedure provided in Fig. 10, we can de-
termine the deletable reduce actions that lead to the
“deletable” shift actions.

reachable” to this shift action, arc marked “deletable”,
this shift action should be marked “deletable”. Fig. 12
shows this procedure.

for each reduce action R in each entry of LR table {
if (cvery shift action which R is “reachable” to,
has already been marked “deletablé”) {
mark R “deletable”; 7

}
}

Fig. 10 Checking all reduce actions with goto graph

Fig. 11 illustrates a part of the goto graph recon-
structed from the LR table in Fig. 4.

Fig. 11 A part of the goto graph from Fig. 4

Consider re7 in state 19 with a lookahead symbol
“d2” in Fig. 4. According to the above goto graph,
the parscr will transfer to state 18 after re7, applying
rule 7 (a — al) in state 19. Note: the lookahead symn-
bol, “d2”, remains the same during the reduce action.
Thus, in state 18, the next reduce action becomes re2
(N = hal bl a) with the same lookahead symbol “d2”.

After re2, the parser will transfer to state 7, since
from state 18 we can traverse the goto grapl in reverse
such as “a", “hl1"”, “al”, “h" and reaches state 0 from
where it transfers to state 7 by shifting N. In state 7,
with the same lookahead symbol “d2”, we find that
sh12 has already been marked “deletable” by the sub-
step (c), and, thus, re7 (in state 19) and re2 (in state
18) are “reachable” to sh12 (in state 7). As these re-
duce actions always end with sh12, we will mark both
re7 and re2 “deletable”.

In Fig. 4, all the deletable reduce actions found by
this substep are marked (d).

(e). Deletable shift actions whose predecessors
are goto actions

In this substep, we incorporate the context con-
straints into the shift action whose predecessors are
goto actions.

If a scquence of the reduce actions reaches a specific
shift action, the reduce action that finally appears in
the sequence is called *immediately reachable” to the
shift action.

To the shift action whose predecessors are goto ac-
tions, if all the reduce actions, which are “immediately

for cach shift action S in each cutry of LR table {
if (all the reduce actions which are
“immediately reachable” to S
have been marked “delctable™) {
mark S “delctable”;

)
}

Fig. 12 Checking the shift actions whose predecessors
are goto actions

Unfortunately, this case does not happen in Fig. 4.

(f). The other deletable actions

After above substeps, if there is a state whose pre-
decessors are “deletable” shift actious, all the actions
in this state should be marked “deletable”.

For example, in Fig. 4, rell in state 23 with a
lookahead symbol “d1” is marked "deletable” because
its preceding action is sh23 in state 21 with a looka-
head symbol “i1”, which has alrcady been marked
“deletable” by the substep (b). In Fig. 4, all the
deletable reduce actions found by this substep are
marked (f).

(g). Compression of the LR table

To reduce the size of a table, we compress the LR
table by:
(1) Delete all the actions that are marked “deletable”,
(2) Compress all the empty states with no action,
(3) Compress all the columus (lookaliead symbols) that
have no action.

CPM()
{
/* initialization */
substep (a) and (b);
[+ constraint propagation =/
while(1) {
substep (c) to (f);
if(no new “dcletable” action comes out)
break;
}
/* compress LR table */
substep (g);

Fig. 13 A top level procedure of CPM

A top level procedure of CPM is provided in Fig. 13.

_20_




The above procedure enables us to introduce the
phoneme-context-dependence into the phones at word
boundaries and solve the word juncture problem.

Fig. 14 is the modified allophone-based canonical
LR(MCLR) table from Fig. 4 after applying CPM.

actions decreases to 61.4%, 38.6%, and 11% of the orig-
inal canonical LR table, respectively. )

Table 1 Comparison of canonical LR tables
before and after CPM (128 allophones)

state | shift | reduce | goto
ACTION GOTO CLR
state] b1 at Jen2f R Jd1 |$ |n|a |en|t [d|N]BE|S (before CPM) | 1775 | 2290 | 10206 | 425
o |shs sh3 a| |1 7] |25 MCLR
; sha (after CPM) | 1090 | 885 1130 | 425
3 1010
4 sh9 Table 2 shows the case of 1024 allophones. After
5 re5 CPM, the number of states, shift actions, and reduce
7 shil 10 13 actions decreases to 11%, 4.9%, and 0.2% of the orig-
8 sh21 inal canonical LR.table, respectively. The more allo-
9 |sh17 plones, the more the table size decreases.
10 shl5 14
1 re13 Table 2 Comparison of canonical LR tables
13 161 before and after CPM (1024 allophones)
14 re4
15 re7 state | shift | reduce | goto
17 sh19 18 CLR
18 re2 (before CPM) | 11157 | 21057 | 701370 | 425
19 a7 MCLR
2 e 2 (after CPM) | 1231 | 1026 | 1328 | 425
re
3 ro12 Reduction of the reduce and shift actions implies
2 = that the allophone predictions in speech recognition

Fig. 14 The modified canonical LR(MCLR) table
after CPM

4 The Effects of CPM

Compared with the table of Fig. 4, the lookahead sym-
bols in IMig. 14 include only “h1”, "al”, "ch2", "i2",
and "d1”. The allophones at word boundaries have
been uniquely determined, since the allophone connec-
tion matrix given in Fig. 1 has very strong constraints.
Generally, the allophones at a word boundary are only
restricted by CPM, but not uniquely determined be-
fore secing the next phones. This very simple example
suggests how the word juncture problem can be solved
by CPM.

For a task with 64 CFG rules, 120 lexical rules, the
canonicid LR (CLR) tables before and after applying
CPM are compared by the number of states and ac-
tions. The CFG rules, dictionary, and allophone mod-
els we used are the same as in 3], which have already
been uscd in a speech recognition system.

Table 1 shows the case of 128 allophones. After
CPM., the number of states, shift actions, and reduce

becomes more accurate.

5 Discussions and Conclusions

We have proposed a new method to generate an
allophone-based LR table that solves the word juncture
problem and enables to predict the allophones precisely
in speech recognition. In this method, by introducing
allophione rules into CFG and lexical rules, an LR table
is generated, then, on the basis of an allophone con-
nection matrix, the LR table is modified by applying
CPM. Advantages of our approach can be summarized
as follows:

(1) No neced to modify the existing LR table genera-
tion algorithms.

(2) By introducing an allophone connection matrix
and applying CPM, a large number of actions and
states can be deleted, which results in enormous re-
duction of the table size and solves the word juncture
problem. Furthermore, the reduction of actions and
states provides us with accurate allophone predictions
in speech recagnition.

(3) The connection constraint between two adjacent
allophones is incorporated in an LR table, and the

~-21-




change that determines the allophones at word bound-
aries dynamically is not required for a GLR parsing
algorithm.

One disadvantage of our method is related to (1).
The number of states in a canonical LR table often ex-
plodes if the number of CFG rules increses . In order to
rectify this situation, we can modify tlie LR table gen-
eration algorithm slightly in order to incorporate the
allophone connection constraints during the generation
process. In the case of 1024 allophones, the number of
the states before CPM decreases to 1/5 by changing
the LR table generation algorithm. Even though we
can not immediately use an existing LR table genera-
tion algorithm, we should change the LR table gener-
ation algorithm if grammar and lexicon sizes become
large.

The future works will include the following:

(1) Enlarging the grammar and lexical rules and
alloplione models and studying the efficiency of our
method.

(2) Incorporating our method in an actual alloplione-
based continuous speech recognition system.

(3) Applying our method to stochastic context-free
or context dependent grammars [5] [10] and construct-
ing a stochastic allophone-based LR table.

Acknowledgment

The authors are grateful to Dr. S. Hayamizu and
Dr. K. Itou for their valuable discussions and sup-
ports. They are also grateful to Mr. H. Nakajima for
supplying us the program of generating canonical LR
table.

References

(1] Abo,A.V., Sethi,R. and Ullman,J.D. Compilers:
Principles, Techniques, and Tools. Massachusetts,
Addison-Wesley, 1986.

Hayamizu,S., Lee,K.F. and Hon H.W. Description
of Acoustic Variations by Tree-Based Phone Mod-
eling. ICSLP90, pp.705-708, 1990

(2]

Itou, K., Hayamizu,S. and Tanaka,H. Continuous
Speech Recognition by Context Dependent Pho-
netic HMM and en Efficient Algorithm for Find-
ing N-best Sentence Hypotheses. ICASSP92, pp.
21-24, 1992

(3l

[4] Kita,K., Kawabata, T. and Saitou,H. HMM Con-
tinuous Speech Recognition Using Predictive LR
parsing. ICASSP89, 1989

[5) Lari.K. and Young,S.J. The estimation of stochas-
tic context-free grammars using the Inside- Outside
algorithm. Computer Speech and Language, No.4,
pp. 35-56, 1990.

[6] Lee K.F. Automatic Speech Recognition: The De-
velopment of the SPHINX System. Kluwer Aca-
demic Publishers, Norwell, MA, 1989

[7] Nagai,A., Sagayama,S., Kita,K. and Kikuchi,H.
Three Different LR Parsing Algorithms for
Phoneme-Context-Dependent HMM Based Con-
tinuous Speech Recognition. IEICE Trans. Inf. &
Syst., vol. E76-D, No.1, pp.29-37, January, 1993

Schwartz,R., Chow,Y., Kimball,0., Roucos,S.
Krasner,M. and Makhoul,J. Contezt Dependent
Modeling for Acoustic Phonetic Recognilion of
Continuous Speech. ICASSP85, 1985

(8]

[9] Tanaka.H., Tokunaka,T. and Aizawa,M. Inte-
gration of Morphological end Syntactic Analysis
Based on LR Parsing Algorithm. International
Workshop on Parsing Technologies, Tilburg,
pp.101-109, 1993

Wright,J.LH. LR Parsing of Probabilistic Gram-
mars with Input Uncertainty for Speech Recog-
nition. Computer Speech and Language, vol.4,
pp-297-323, 1990

(10]

_22_




