Text Revision: A Model and Its Implementation

Kentaro Inui, Takenobu Tokunage and Hozum: Tanaka

Department of Computer Science

Tokyo Institute of Technology

2-12-1 Qokayama Meguro Tokyo 152 Japan
{inui,take,tanaka}@cs.titech.ac.jp

Abstract

To generate good text, many kinds of decisions should be made. Mauy re-
searchers have spent much time searching for the architecture that would deter-
mine a proper order for these decisions. However, even if such an architecture is
found, there are still certain kinds of problems that are difficult to consider during
the generation process. Those problems can be more easily detected and solved by
introducing a revision process after generation. In this paper, we argue the impor-
tance of text revision with respect to natural language generation, and propose a
computational moudel of text revision. We also discuss its implementation issues
and describe an experimental Japanese text generation system, WEIVER.

1 Introduction

During the course of text generation, many kinds of decisions should be made. These
decisions are generally classified into two categories: decisions on what-to-say, that is,
topic selection and topic organization, and decisions on how-to-say, that is, decisious
on grammatical choices and lexical choices. Many of the text generation systems
proposed thus far make these decisionsin a fixed sequential order. The order usually
begins with decisions on what-to-say and ends with decisions on how-to-say.

These decisions, however, are interdependent, and a more versatile architecturc is
required to handle these interactions (4, 8, 16]. For example, the number of proposi-
tions contained in a sentence is constrained by 2 sets of decisions, the rhetorical rela-
tions among the propositions (what-to-say) and the complexity of the sentence (how-
to-say). These decisions are interdependent. Furthermore, within each of the sets,
there are other interactions among decisions. To account for this, some rescarchers
have developed devices that allow interactions among decision modules [1, 8, 16, 17].
For example, Hovy proposed an architecture that can dynamically decide the order
of decisions during the generation process {8].

One limitation to these approaches is that the system needs to foresee how a gen-
eration decision constrains subsequent decisions. There are, however, certain kinds of
problems that are difficult to detect before the text is actually generated. Structural
ambiguities, for example, are difficult to detect before lexical choice, word order, and
punctuation decisions are all made. We call these kinds of problems surface problems.




I

2 Kentaro Inui, Takenobu Tokunaga and Hozumi Tanaka

Whatever decision order we adopt, there is the possibility that surface problems will
still remain (see Sect. 3).

This leads us to the idea of revising text once geunerated. We introduce a text
revision process that solves surface problems. In this paper, we argue the impor-
tance of text revision with respect to natural language generation, and propose a
computational model of text revision. We also describe an experimental Japanese
text generation system, WEIVER, which incorporates a revision module.

Since our target language is Japanese, we provide a brief introduction to Japanese
in the next section. In Sect. 3 we give examples illustrating why the revision process
is necessary. In Sect. 4 we provide a summary of our approach to solve the problems
presented in Sect. 3. The implementation issues are discussed in Sect. 5.

2 Brief Introduction to Japanese

A simple Japanese sentence consists of a sequence of postpositional phrases (PPs)
followed by a predicate (a verb or an adjective). A PP cousists of a noun phrase (NP)
followed by a postposition, which indicates the case role of the NP. We say “each PP
modifies the predicate” and call PPs the modifiers and the predicate the modifiee.
For example, both “John-ga”! and “Tokyo-ni” modify “sundeiru” in sentence (1).

(1) John-ga Tokyo-ni sundeiru.
John-NOM in Tokyo lives.

The order of PPs is not strictly fixed, so it is possible to scramble PPs without
changing the meaning of the sentence?. For example, the sentence “Tokyo-ni John-
ga sundeiru.” has the same meaning as that of sentence (1). As with prepositional
phrase attachments in English, one of the important constraints in Japanese is that
no two modification relations cross each other®.

When a sentence has only one modifiee, the modification relation can be uniquely
determined. However, this is not always the case. Sentence (2) is an example in which
the noun “Mary” is modified by the verb “satteike.” In this example, *Poochie-to™
can modify either “satteiku” or “miteits.”

(2) John-ga Poochie-to satteiku  Mary-wo  miteita.
John-NOM with Poochie departing Mary-ACC look at-PAST

Depending on which verb “Poochie-to” modifies, this sentence gives two interpreta-
tions*:

— John looked at | Mary departing with Poochie ].
(the case “Poochie-to” modifies “satteiku™)

! We denote PP in “NP-postposition” form for convenicuce of explanation.

2 Of course, scrambling may change nuances and the naturalness of the sentence.

3 Therc are some exceptions but this is generally considered a rcasonahle constraint.

* It is interesting that the translation in English is also ambiguous. We make the difference
clear by using brackets and inversion.




()

O

Text Revision: A Model and Its Implementation 3

— With Poochie, John looked at Mary departing.
(the case “Poochie-to™ modifies “miteita™)

Given no contextual information, both interpretations are equally acceptable. De-
termining the correct modification relation is one of the major problems of natural
language understanding. In natural language generation, it is important to avoid
generating such an ambiguous sentence.

3 Why Revision?

In this section, we argue that to solve surface problems, text generation should
exploit the revision process.

Consider sentence (2) again. Assume that we want to generate a sentence repre-
senting the second meaning, “With Poochie, John looked at Mary departing.” If the
system made a decision on the word order as that in sentence (3), then “Poochie-
to” could only modify “miteita,” and we would obtain a desirable sentence. This is
because modifiers can only modify succeeding elements in Japanese.

(3) John-ga saltetku  Mary-wo  Poochie-to  miteita.
John-NOM departing Mary-ACC with Poochie look at-PAST
(With Poochie, John looked at Mary departing.)

The ambiguity of sentence (2) could also be resolved by inserting a comma (sen-
tence (4)). This is because a modifier preceding a comna will not modify the element
immediately following the comma.

(4) John-ga Poochie-to,  sattetku  Mary-wo  mateita.
John-NOM with Poochie departing Mary-ACC look at-PAST
(With Poochie, John looked at Mary departing.)

In the same way, we can avoid structural ambiguities through proper decisions
on word order and punctuation. This seems to imply that you have only to make
these decisions at the end of the process. This strategy, however, does not work for
the following reasons:

— It is not always possible to find a proper word order that does not cause any
ambiguities.

~ Word order should not be decided only with respect to avoiding structural am-
biguities. There are many factors that decide word order, such as old/new infor-
mation, focus, etc.

The following example demonstrates this difficulty®.

(5) John-wa, |[[Tom-ga & d yokyisita node |
John-TOP Tom-NOM (John-DAT) (position of request-PAST because
president-ACC)

® We enclose subordinate clauses with brackets. ¢ denotes an ellipsis.




4 Keataro Inui, Takenobu Tokunaga and Hozumi Tanaka

kare-ni syatyo-wo yuzuru-to | kéhydsita.
him-DAT position of transfer-COMP anounce-PAST
(Tom) president-ACC

Due to the structural ambiguity, sentence (5) also has two possible interpretations:

— John made an announcement that in response to Tom's request, John would
transfer the position of president to Tom.
(the case “Tom-ga yékyisita node” modifies “yuzuru”)

— John made an announcement, in response to Tom’s request, that John would
transfer the position of president to Tom.
(the case “Tom-ga yékyisile node™ modifies “kéhydsita™)

Assume the first interpretation is the intended meaning. To avoid the ambiguity,
try an alternative word order, as in sentence (6), taking the same tactic as in sen-
tence (3). Note that “kare-ni” has been moved in front of “Tom-ga,” and compare
with sentence (5).

(6) John-wa, [kere-ni [Tom-ga & yokyisite node |
John-TOP him-DAT Tom-NOM (position of request-PAST because
(77) president-ACC)
syatyé-wo yuzuru-to | kéhyésita.
position of transfer-COMP announce-PAST

president-ACC

This word order, however, causes another problem. Although “kare” should refer
to “Tom” as in sentence (5), “kare” in sentence (6) instead refers to “John.” This
problem arises because all of the lexical choices had already been decided before
deciding on the word order.

In this example, the intended meaning can be attained, however, by adopting
another syntactic structure, like that in sentence (7). The subordinate clause in
sentence (5) is realized as a coordinate clause.

(7) John-wa, [ Tom-ga & yokyisita node |
John-TOP Tom-NOM (position of request-PAST because
president-ACC)

syatyo-wo yuzurukoto-wo kim e, sore-wo kohydsite.
position of transferring-ACC decide and it-ACC announce-PAST
president-ACC '

From this we can see that, for certain sentences, some syntactic structures inherently
have structural ambiguities. This suggests that at the decision point on the syntactic
structure you have to foresee whether, or not, your decision will cause any structural
ambiguities. This task, however, is very difficult unless the text is actually generated.
In this sense, it is a surface problem.

The complexity of a sentence, e.g. length, depth of embedding, etc., is also a kind
of surface problem. For example, consider the case when a proposition "My car is




(9

Text Revision: A Model and Its Implementation 5

new.” is embedded into the other proposition “My car is French.” You can produce
“My new car is French.” as well as “My car, which is new, is French.” 19]. There
is no syntactic embedding in the first sentence. Therefore, the depth of (syntactic)
embedding can be measured only after lexical and grammatical choices are made.

Even if the system has the ability to decide the order of decisions dynamically, it
does not alleviate this problem. By introducing the revision process, we can easily
find and solve such kinds of problems. This is one of the most important motivations
of our research.

4 Our Approach
Text generation consists of two processes: initial generation process, followed by

revision process. The revision process solves the surface problems, which are difficult
to consider during the initial generation, as we discussed in Sect. 3.

ﬂ Evaluation
Revision
History//* = Draft
Syntactic
Structure
Revision n Surface Generatiqn
Planning (Sufcace Change)

Surface
Generator

Revision
Planner

Input
v a » H .
Revision PC pair Lexico- Heuristi
Rules History grammar euristics

Fig. 1. Model of text generation

Figure 1 illustrates our model of text generation. At the moment we focus on
how-to-say decisions, so we assume that the input to the system is a rhetorical
structure, that represents what-to-say information. The system has three modules:
surface generator, eveluator and revision planner.

In the initial generation, the surface generator makes decisions on grammatical
and lexical choices to generate a text from the input by referring to the two kinds of
resources: the lezico-grammar and the heuristics. The lexico-grammar provides the
grammatical and lexical constraints [14]. The heuristics provide the pragmatic and




03

6 Kentaro Inui, Takenobu Tokunaga and Hozumi Tanaka

textual preferences, such as referring expressions and topicalization. The heuristics
are used at each decision point where the surface generator has inore than one choice
that satisfies the grammatical and lexical constraints. The output of the surface
generator is called the draft, because it may not be the final (optimal) version of the
text, as a result of surface problems.

The revision process consists of repetitions of the revision cycle. Each revision
cycle consists of evaluation, revision planning, and surface change. In a revision
cycle, first the evaluator evaluates the current draft to detect surface problems.
Then, the revision planner selects one of them, and suggests a change that will solve
the problem. The surface generator actually changes the draft. A revision cycle ends
when the surface change is successfully accomplished. By repeating revision cycles,
the draft can be gradually improved into the final version of the text.

4.1 Evaluation
Here we focus on the following two surface problems.

~ structural ambiguity

— sentence complexity
o the length of sentences, clauses and phrases
e the depth of embedding and modification relations
o the depth of center embedding

The evaluator evaluates the draft, which is an actual text rather than some inter-
mediate representation. The draft is represented as its syntactic structure, which
provides helpful information for the evaluation.

Even with the state-of-the-art techniques of natural language understanding, it is
difficult to find structural ambiguities. The evaluator has to detect the structural am-
biguities that even humans cannot disambiguate. For example, the examples shown
in Sect. 2 and 3 may not be ambiguous if proper contexts are given. At the moment.
our system requires human assistance to detect structural ambiguities.

The complexity of the sentence mainly affects the readability. Several criteria for
measuring the complexity of the Japanese sentence have been proposed in research
on machine translation systems and text revision support systems. We focus on
the criteria itemized above regarding sentence complexity. In the current system,
we establish upper and lower bounds for each criteria. An example of the values is
shown in Table 1.

Table 1. An example of the criteria regarding senteunce complexity

Criteria Upper bound|Lower bound
Length of sentence (words) 40 5
Depth of clause embedding 3 0
Depth of modification relation in NP 3 0
Depth of center embedding 1 0




O

Text Revision: A Model and Its Implementation 7

4.2 Revision Planning

The revision planner selects one of the problems detected by the evaluator, and
suggests a change to solve it using heuristics. We call these heuristics the revision
rules. The rules are assigned static preference. The revision planner chooses the most
preferable rule from the rules of which preconditions are satisfied. Then the revision
planner sends the surface generator a message that describes the change in the
chosen revision rule. When the change cannot be realized because of a reason such
as grammatical constraints, the surface generator requests an alternative message
from the revision planner. If the revision planner cannot suggest any alternative
change for the problem, it tries another problem. The revision planner manages the
history of the drafts and the changes (revision history). By monitoring the history,
the revision planner keeps the revision process from falling into an infinite loop.

Our model repeats the revision cycle until we produce an acceptable text. There-
fore, even if a surface change introduces new problems, these can be detected and
solved in the subsequent cycles. This means that the revision planner need not seri-
ously consider the side effects of the changes. At this point, our model is significantly
different from previous one-pass generation models, in which the system has to fore-
see the effects of each decision on the subsequent processes.

4.3 Surface Change

In addition to the initial generation, the surface change is also handled by the surface
generator. The examples in Sect. 3 show that solving the surface problems involves
various kinds of surface changes, such as changes of word order, punctuation, lexical
choice, syntactic structure, and so on. Moreover, each surface change should produce
an alternative draft that both satisfies the grammatical and lexical constraints, and
is supported by the pragmatic and textual preferences as well as the initial draft.
Otherwise, the draft may becomes worse due to the changes.

5 Implementation

The generation model described in the previous section has been partially imple-
mented as WEIVER. In this section, we discuss implementation issues of WEIVER. In
particular, we focus on the surface change.

5.1 Lexico-grammar

The generation process can be considered as a set of decisions, each of which is made
at a choice point in a decision tree. From this point of view, we can regard a surface
change as a change of decisions. The system is required to change various kinds of
decisions on grammatical and lexical choices to solve the surface problems. It is thus
desirable that both grammatical and lexical knowledge are described in a uniform
representation.

We therefore adopt a phrasal lezicon, which integrates the gramumar and the
lexicon into a unified representation [14]. In addition, the phrasal lexicon contributes




8 Kentaro Inui, Takenobu Tokunaga and Hozumi Tanaka

to the generation of fluent text [11]. Basically, we follow Jacobs' representation,
which represents the phrasal lexicon as a collection of PC pairs (Pattern-Concept
pairs) [10]. In Jacobs’ framework, each PC pair defines a mapping from a part of the
semantic structure to the syntactic/lexical fragments, and the generator constructs
surface sentences from these fragments. Decisions on how-to-say can be considered
as choices among PC pairs. From the viewpoint of revision, a surface change can be
attained by replacing PC pairs with alternatives.

CONTEXT: [ ],
MAP-FROM: | [$1, con:@action,
required-slots:[agt:$2, obj:$3], optional-slots:{ ],
constr:|type:sentence] ],
($2, con:@animate],
(83, con:@concrete-object),
MAP-TO: [ (31, con:@action,
slots:[agt:$2, obj:$3],
constr:[type:sentence, voice:passive, pos:VP, connect:period] ],
[$2, con:@animate],
(83, con:@concrete-object,
constr:[type:TOP, pos:NP, connect:V],
EFFECTS: [current-focus($3), ...}

Fig. 2. An example of extended PC pair

To realize the revision process, we made some extensions on PC pairs. Each PC
pair defines a tree-to-tree mapping. By applying PC pairs, the surface generator in-
crementally transforms the input rhetorical structure into a syntactic structure (see
Fig. 3). We call the structures that are partially transferred the intermediate struc-
tures. Figure 2 shows an example of our PC pair 6. A PC pair consists of four parts:
CONTEXT, MAP-FROM, MAP-TO and EFFECTS. A PC pair can be applied
only if both its CONTEXT and MAP-FROM unify with a subtree of the rhetori-
cal/intermediate structure. If more than one PC pair is applicable at a decision point,
the surface generator refers to the heuristics to choose one of them. After choosing
a PC pair, the surface generator replaces the subtree of the rhetorical/intermediate
structure, specified by MAP-FROM, with the MAP-TO subtree. EFFECTS defines
the effects that will be achieved when the PC pair is applied. The PC pair in Fig. 2
is applied to realize a proposition as a passive sentence when an object of an action
(node $3) is the current local focus.

The extensions to Jacobs' are as follows. First, our PC pair inaps froin tree struc-
tures to tree structures, while Jacobs' maps conceptual structures to linear strings.
Because the result of applying our PC pairs is always a uniform representation, the
generator can treat the various kinds of decisions, such as lexical, grammatical and,
even textual ones, in a uniform manner. Jacobs’ PC pair is only for single sentence

& “$N” and “@X” are typed variables to unify with an identifier of a node and a concept,
respectively.




)

g

Text Revision: A Model and Its Implementation 9

generation. Furthermore, the tree structures provide more information for evaluation
than strings do. Secondly, in selecting PC pairs, the newly introduced EFFECTS
part enables the system to take into account not just semantic constraints but also
pragmatic preferences. The EFFECT part is also used by the revision planner to
suggest the decisions to be changed (see Sect. 5.4).

5.2 An Example

In this section,"we show another brief example. In the following sections we discuss
several features of WEIVER using this example.

The Initial Generation. The rhetorical structure shown in Fig. 3 (a) is the input’.
It has four propositions. At the first step of the initial generation, the surface gener-
ator divides the input propositions into some sentences. This is realized by applying
PC pairs to the subtree near the root node of the input rhetorical structure. If there
is more than one applicable PC pair, the generator chooses one of them by referring
to the heuristics. Scott and Souza (20] proposed the heuristics of organizing propo-
sitions. Their heuristics guide the linguistic realization of the rhetorical structure
including embedding and coordination. Our heuristics follow them.

(a) elaborateg1
_-/n// K‘

elaborate#?2 list#1
n s n n
keep#1 location#1 open-time#1 accessiblef#1
agt Yb )] self \\v\a.lue se).f/ value self value
lib#1 doc#l lib#1 loc#1 lib#1 timeft1 Iib% human#l
(b) elaborate#1 (c) 0 elaborate#1 .

V V elaborate'#/Z
location#1 keep#1 - f/ \i

(embeded) (type:sent) . keep#1 locations#1
va.hiy Vflf 39/ \)\b" (type:sent) (type:sent)
loc#1 lib#1 doc#1 / \ / \

Fig. 3. Transformation of Structure

At the decision point (a) in Fig.3, there are two applicable PC pairs, PC pair#101
and PC pair#102. Assume PC pair#101 is chosen by referring to the heuristics. As

7 Actually, the input includes the other information, such as focus.
Ys p




10 Kentaro Inui, Takenobu Tokunaga and Hozumi Tanaka

a result, proposition location#1 is embedded to proposition keep#1 (Fig. 3 (b)), and
these two propositions will be realized as one sentence, as in the first sentence in
draft (8).

(8) siryo-wa, [ tonari-no tatemono-no 4kai-no itiban’oku-ni eru |
document-TOP in the most inner part of the next building on the 4th floor

siryésitu-ni  hokansareteimasu. siryésitu-wa  9zi-kara 5zi-made

library-LOC keep-PASS Library-TOP from 9 to 5

aitei te darede-mo tlukeemasu.
open and everybody accessible.

(The document is kept in the library in the most inner part of the
next building on the 4th floor. The library is open from 9 to 5 and
is open to the public.)

The Revision Cycle. After the initial generation, WEIVER enters the first revi-
sion cycle. First, the evaluator evaluates draft (8) and detects a surface problem; the
modification of the noun phrase “siryésitu,” that is “tonari-no ... aru,” is too deep
according to the criterion shown in Table 1%. Next, the revision planner suggests that
PC pair#101 should be replaced in order to solve the problem. Following this sug-
gestion, the surface generator actually replaces it with PC pair#102 at the decision
point (a) in Fig. 3. As a result, the proposition location#1, which was embedded in
draft (8), will be realized as a separate sentence. The new draft is shown in draft (9).

(9) siryé-wa sirydsitu-ni  hokansareteimasu. sirydsitu-wa
document-TOP library-LOC keep-PASS library-TOP

tonari-no tatemono-no 4kei-no itiben’oku-ni erimasu.
in the most inner part of the next building on the 4th floor

¢ 9zi-kara 5zi-made aitei te  darede-mo tukaemasu.
(siry6situ-TOP) from 9 to § open and everybody accessible

This is the end of one revision cycle. In the following process, WEIVER repeats
revision cycles as well. In the following sections, we explain the following points
using the above example:

~ how to find the PC pair to be replaced,
— how to change the draft with its intended meaning preserved,
— how to change the draft without degrading the quality of the draft.

® This problem is difficult to avoid in the initial generation, because it is difficnlt to foresee
that the referring expression of loc#1 in Fig. RS (a) will be such a loug NP when one
decides the embedding.




)

()

Text Revision: A Model and Its Implementation 11

5.3 PC Pair History

First, we introduce the PC pair history as a resource for the revision planning and
the surface change.

In the initial generation, the surface generator keeps track of the process as a PC
pair history. It is represented as a data structure similar to the dependency network
used in the truth maintenance system (TMS) [5]. From the viewpoint of TMS, we
can roughly regard the input (rhetorical structure) as a set of facts, each decision
(PC pair) as an assumption, and the resultant subtree as a conclusion.

Figure 4 (a) shows a fragment of a sample PC pair history. It shows that PC
pair#72 (see Fig. 2) was applied under the precondition represented as the nodes
above and, as a result, produced the several features represented as the nodes below.
“n;” denotes the identifier of the node in the rhetorical/intermediate structure. The
surface generator records the PC pair history by gathering subnetworks, like those
shown in Fig. 4 (a). In general, the resultant network is a directed acyclic graph (see
Fig. 4 (b)). We also call this the dependency network. In the dependency network.
each node has a state, either in or out. The states propagate along the links as they
do in TMS. This mechanism enables us to reconstruct the intermediate structure,
which is the result of removing a PC pair (see Sect. 5.6).

n;/typesent ... nz/con:lib#l \
f5 fs 7 s fo
n; fcontkeep#l n,/agt:ns \ / l

PC pair#72

oo DY /‘.:..‘ :
n, /voice:passive n,/pos:VP n3/type:TOP

fio : 13",

(a) (b)

Fig. 4. Dependency network

The dependencies among the PC pairs exist not only because of their precon-
ditions but also because of the heuristics. The PC pair history holds both kinds
of dependencies. A number of heuristics on how-to-say have been proposed in the
previous research on text generation, although at the moment we have implemented
only a few of them in WEIVER. The heuristics are used to generate anaphora {3|.
ellipsis [9], exophora {2, 19], connectives [6], etc. They are also used to make the
pragmatic decisions (formality, etc.) (8].

Most heuristics are context sensitive. Consider the focusing heuristics as an ex-
ample. Generating an anaphora is partially dependent on the current focus state




12 Kentaro Inui, Takenobu Tokunaga and Hozumi Tanaka

described as in the rule below [15].

If a noun phrase denotes the “given” information and
it was the previous current discourse focus,
then pronominalize it.

Thus, most heuristics can be represented as production rules. In the PC pair his-
tory, the preconditions of the applied heuristics are also recorded to represent these
heuristics dependencies.

5.4 Suggesting a PC pair to Change

The revision planner suggests an appropriate change and sends the message to the
surface generator. In the above example, the following revision rule will be applied.

If an adjective phrase M, which modifies a noun phrase, is too deep, and
there exists a node in M whose semantic node has a feature “embedded,”
then remove the feature.

Generally, the revision rules suggest which feature should be removed from the
current draft. Sometimes they even suggest which feature should be added in place of
the removed feature. After choosing an applicable revision rule, the revision planner
searches the PC pair history for the PC pair that introduced the features in question.
That is easy because the PC pair history holds the dependencies among the PC
pairs and the features. In this example, the feature “embedded” of location#1 is
in question. Fig. 3 shows “embedded” is introduced by PC pair#101. Therefore,
the message “Remove PC pair#101.” is sent to the surface generator. The revision
planner further refers to the EFFECTS part in the PC pairs if pragimatic constraints
are involved in addition to grammatical features.

5.5 Internal/external Dependencies

Next, the surface generator actually changes the draft with respect to the message. In
this example, the surface generator replaces PC pair#101 with PC pair#102 at the
choice point shown in Fig. 3 (a). As a result, the feature “embedded” in location#1
will be removed, and the first sentence in draft (8) will be divided into two separate
sentences.

Because of this change, some of the PC pairs that were applied after the decision
point (a) to generate draft(8) may now become inapplicable. For example, the PC
pair that realized location#1 as an adjective phrase is not applicable any longer.
Thus, there are dependencies among the PC pairs that are applied together to gen-
erate a draft. Such dependencies can be found by referring to the PC pair history.
Here, we define two types of dependencies: internal and eziernal dependencies.

Internal Dependency. Assume PC pair pq is replaced with PC pair p} in Fig.4 (b).
Since the features f;; and fi; may not be produced by p§, both ps and ps may
not be applicable anymore. In other words, ps and pg are dependent on py. We call
these internal dependencies. The internal dependencies can be found by traversing
the dependency network.




Text Revision: A Model and Its Iimplementation 13

External Dependency. Note that the topicalized subject “siryésitu-wa” was omitted
in draft (9). Such ellipses are introduced not because of the grammatical constraints,
but because of the textual preferences. The heuristic applied in this example is “The
topic in the current sentence should be omitted when it is the same as one in the
latest sentence.” Thus, some PC pairs are dependent on the replaced PC pair not
because of the preconditions of the PC pairs, but because of the heuristics. We call
these ezternal dependencies. The external dependencies can be found by referring to
the preconditions of the heuristics. In general, A PC pair p; depends externally on
the replaced PC pair p; only when p; does not depend internally on p;, and when
p; is included in the preconditions of the heuristics applied to choose p;.

5.6 Generating Alternatives

In this section, we show how the surface generator realizes the surface changes with
respect to the internal and external dependencies. The procedure is as follows:

1. receive the message from the revision planner,

2. make the state of the PC pair in question out, spread the state over the depen-
dency network, and construct the intermediate structure (S) from the features
whose current states are in,

3. invoke the ordinary generation process (apply the PC pairs to S until all the
required decisions are made),

4. make the collection of the PC pairs (C) which depend externally on the changed
parts,

5. if C is empty, terminate the process, otherwise, choose and remove a PC pair
from C that corresponds to the left most part in the draft,

6. if the PC pair chosen in 5 still satisfies the heuristics, go to 5, otherwise go to 2.

For example, assume the PC pair to be replaced is p4 in Fig. 4 (b). The PC pairs and
the features enclosed by the dotted line are set to out, and the intermediate structure
is constructed of the features with in states. Then the surface generator applies the
alternative PC pairs to generate an alternative draft. Our procedure ensures that
the new draft does not degrade, by also considering the external dependencies as
described in steps 4 through 6.

Although this procedure often works successfully, it still has drawbacks. Assume
PC pair ps was introduced in the previous revision cycle, that is, at that time
WEIVER replaced a PC pair with PC pair ps to solve a surface problem. If WEIVER
now removes py, ps may also be removed and the previous surface problem may be
introduced again. To avoid this problem, step 3 in the above procedure should be
extended as follows:

3’. if the PC pairs depending internally on the PC pair to be replaced include a
PC pair (p;) that was introduced in the previous revision cycle, upgrade the
priority of p; and invoke the generation process, otherwise, invoke the ordinary
generation process.

In our method, because the surface generator generates an alternative draft from
the same rhetorical structure, it is ensured that the new draft keeps the intended




§--— - —

14 Kentaro Inui, Takenobu Tokunaga and Hozumi Tanaka

meaning intact. Moreover, because the surface generator also considers the exter-
nal dependencies, the new draft satisfies not only the grammatical and lexical con-
straints, but also the pragmatic and textual preferences. Thus, it is guaranteed that
the surface change will not worsen the quality of the draft.

5.7 From the Viewpoint of Backtracking

Our method is very similar to a dependency-directed backtracking (DDB) in a
justification-based TMS (JTMS). Actually, we believe that the text revision can
be realized naturally in this line. As mentioned in Sect. 5.3, each decision can be
regarded as an assumption that is justified by its preconditions. That is, replac-
ing 2 PC pair can be seen as retracting an assumption and adding an alternative
one. Thus, with respect to efficiency, our method has the advantage over a naive
depth-first backtracking, as discussed in Doyle's paper [5].

However, there needs to be some extensions to JTMS for text revision. Because
the heuristics make it difficult to specify the dependencies (see Sect. 5.3), one cannot
utilize the JTMS algorithm for the dependency propagation. In our method, the
surface generator starts the generation process from an intermediate structure, and
then sees if the heuristics are still satisfied. Furthermore, the surface generator prefers
the previous surface changes, as discussed in Sect. 5.6.

6 Related Work

We have discussed text revision as a means of solving surface problems. The im-
portance of text revision has also been argued from other points of view. Those
arguments are summarized by Wong as follows [21]:

— Revision has psychological reality [22].

— Revision enables feedback from how-to-say to what-to-say. This is unportant
because some factors are detectable only after realization [18].

— With revision, the giant step of the whole generation task can be divided into
smaller tasks [22].

Our model also inherits these advantages.

Mann and Moore’s KDS [13] and Gabriel's Yk [7] are examples of systems that
have implemented the revision component. They are different from WEIVER in two
ways. First, they never change the decisions, and second, instead of the surface text
they evaluate the intermediate representation. Because of these differences, they
have difficulties in detecting and solving the surface problems.

Several models have been proposed that evaluate the surface text in revision.
Mann’s Penman [12] and Wong's blackboard model [21] evaluate the draft, referring
to information such as the syntactic structure. Meteer (18] and Yazdani [22] propose
models that parse the draft. Our model is very similar to these four models. However,
the implementation issues of these models have not yet heen fully discussed.




Text Revision: A Model and Its Implemnentation 15

7 Concluding Remarks

In this paper we argued the importance of text revision with respect to natural
language generation, and proposed a model that incorporated a revision module.
Although we focused on the revision in terms of solving the surface problems, we
believe that the revision plays important roles in the other aspects of improving
text, as discussed by Meteer [18]. We also discussed the implementation issues of our
model. We adopted the JTMS-like approach to keep several constraints consistent
in changing the draft.

At present, there is little documented research on text revision. This is due,
in particular, to the difficulty of text evaluation. There is no consensus on criteria
for evaluation and improvement. Observing the human writing process may pro-
vide valuable insight into this problem, as Meteer has indicated [17]. We have also
conducted a psychological experiment to extract criteria for the evaluation and im-
provement. The collected data is now under analysis. We will feed the result back
into the system. At the same time, we will extend the current system, and evaluate
its performance with more examples.

Acknowledgments

The authors would like to thank Dr. Christian Matthiessen for his fruitful discussions
on realization of lexico-grammar, and the reviewers for their helpful comments on
the early version of this paper. The authors owe a great debt to Craig Hunter and
Megan Withycombe, who patiently read the draft and contributed to improving the
how-to-say of this paper.

References

1. D. E. Appelt. TELEGRAM: A grammar formalism for language planning. In the
Proceedings of the International Joint Conference on Artificial Intelligence, pages 595-
599, 1983.

2. D. E. Appelt. Planning natural-language referring expressions. In D. D. McDouald
and L. Bolc, editors, Natural Language Generalion Systems, chapter 3, pages 69-97.
Springer-Verlag, 1988.

3. R. Dale. The generation of subsequent referring expressions in structured discourse.
In M. Zock and G. Sabah, editors, Advances in Natural Language Generation, chapter
vol. 2, 4, pages 58-75. Ablex Publishing Corporation, 1988.

4. L. Danlos. Conceptual and linguistic decisions in generation. In the Proceedings of the
International Conference on Computational Linguistics, pages 501-504, 1984.

5. J. Doyle. A truth maintenance system. Artificial Intelligence, pages 231-272, 1979.

6. M. Elhadad and K. R. McKeown. Generating connectives. In the Proceedings of the
International Conference on Computalional Linguistics, pages 3:97-101, 1990.

7. R. P. Gabriel. Deliberate writing. In D. D. McDonald and L. Bole, editors, Natural
Language Generation Systems, chapter 1, pages 1-46. Springer-Verlag, 1988.

8. E. H. Hovy. Generating Natural Language under Pragmatic Coustruints. Lawrence
Erlbaum Associates, 1988.




16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Kentaro Inui, Takenobu Tokunaga and Hozumi Tanaka

S. Ishizaki. Generation Japanese text from conceptual representation. In D. D. Me-
Donald and L. Bolc, editors, Natural Language Generation Systems, chapter 7, pages
256-279. Springer-Verlag, 1988.

P. S. Jacobs. PHRED: A generator for natural language interfaces. In D. D. McDonald
and L. Bole, editors, Natural Language Generation Systems, chapter 7, pages 256-279.
Springer-Verlag, 1988.

K. Kukich. Fluency in natural language reports. In D. D. McDonald and Leonard
Bolc, editors, Natural Language Generation Systems, chapter 8, pages 280-311.
Springer-Verlag, 1988.

W. C. Mann. Au overview of the Penman text generation system. In the Proccedings
of the National Conference on Artificial Intelligence, pages 261-265, 1983.

W. C. Mann and J. A. Moore. Computer generation of multiparagraph English text.
American Journal of Computational Linguistics, 7(1):17-29, 1981.

C. Matthiessen. Lexico{Grammatical) choice in text generation. In Natural Language
Generation in Artificial Intelligence and Computational Linguistics, chapter 10, pages
249-292. Kluwer Academic Publishers, 1991.

M. Maybury. Using discourse focus, temporal focus, aud spatial focus to generate
multisentential text. In the Proceedings of the Fifth International Workshop on Nutural
Language Generation, pages 70-78, 1990.

K. R. McKeown and M. Elhadad. A contrastive evaluation of functional unification
granunar for surface language generation: A case study in choice of connectives. In
C. L. Paris, W. R. Swartout, and W. C. Maunn, editors, Natural Language Generation
in Artificial Intelligence and Computational Linguistics, chapter 14, pages 351-396.
Kluwer Academic Publishers, 1991.

M. W. Meteer. The Generation Gap: The Problem of Ezpressibility in Tezt Planning.
PhD thesis, University of Massachusetts, 1990.

M. M. Meteer (Vaughan) and D. D. McDonald. A model of revision in natural lan-
guage generation. In the Proceedings of the Annual Meeting of the Association for
Compulational Linguistics, pages 90-96, 1986.

E. Reiter. Generating discriptions that exploit a user’s domain knowledge. Iu R. Dale,
C. Mellish, and M Zock, editors, Current Research in Natural Language Generation,
chapter 10, pages 257-286. Academic Press, 1990.

D. R. Scott and C. S. Souza. Getting the message across in rst-based text genertion.
In R. Dale, C. Mellish, and M Zock, editors, Current Research in Natural Language
Generation, chapter 3, pages 47-74. Academic Press, 1990.

W. C. Wong and R. F. Simmons. A blackboard model of text production with revision.
In the Proceedings of the AAAI Workshop on Tezt Planning and Realization, pages
99-106, 1988.

M. Yazdani. Reviewing as a component of the text generation process. In G. Kempen,
editor, Natural Language Generation, chapter 13, pages 183-190. Martinus Nijhoff,
1987.

This article was processed using the BTEX macro package with LMAMULT style




