B R E HE L FE 139-15
(2000. 96. 22)

SEROURZEICH T D HRE L EOF &
Timothy Baldwin, B 8
I TERY EHRETHHER
T 152-8552 REERE RX KL 2-12-1
{tim,tanaka}@cl.cs.titech.ac.jp

M=

AT, ERAOEFRAT) -V AT LARNRIZ, EBIEESMNEEZNRE
BEICEOISTFELTWIONERIETS. Z0xD, XFEFELESER
DREF|Z, EEEEETI2HDEEBLZVHOICHOITTEETOREL, Z
NENELER—RAEBER-ADA VF I 70 ETESES. HRHEA
DOEE - FETML, BEREOFERRE WO EEEB LI NEZTEICES
TERT?. EROWBE, BER-ADAIFII I TEOBLERN—ZADT
FrO T OAENEE, DEVOMEEEZEIRLE, EWIBRICELE. &5
WA, BIEEZETIEHEROANZELABZNDOIDERENTNSZ
EONY, bo bR FEERE 3SREREERTHS 2NN
7. BMERTIE, AFAFRERLUET—YICH LU TERETY, BE, XF
N—=2ADA T T DESEEERTEL 7=,

Balancing up Efficiency and Accuracy in Translation Retrieval

Timothy Baldwin and Hozumi Tanaka

Dep. of Computer Science, Tokyo Institute of Technology
2-12-1 Qokayama, Meguro-ku, Tokyo 152-8552

{tim,tanaka}@cl.cs.titech.ac.jp

Abstract

This research looks at the effects of segment order and segmentation on trans-
lation retrieval performance for an experimental Japanese-English translation
memory system. We implement a number of both bag-of-words and segment
order-sensitive string comparison methods, and test each over character-based
and word-based indexing. The translation retrieval performance of each sys-
tem configuration is evaluated empirically through the notion of segment edit
distance between the translation output and model translation. Our results
indicate that character-based indexing is consistently superior to word-based
indexing, suggesting that segmentation is an unnecessary luxury in the given
domain. Segment order-sensitive approaches are demonstrated to generally
outperform bag-of-words methods, with 3-operation edit distance proving the
most effective comparison method. We additionally reproduced the same ba-
sic results over alphabetised data as for lexically differentiated data containing
kanji characters.

—109—

1 Introduction

Translation memories (TM’s) are a well-established
technology within the human and machine transla-
tion fraternities, due to the high translation precision
they afford. Essentially, TM’s are a list of trans-
lation records (source language strings paired with
a unique target language translation), which the TM
system accesses in suggesting a list of target language
translation candidates which may be helpful to the
translator in translating a given source language in-
put.!

Naturally, TM systems have no way of accessing
the target language (L2) equivalent of the source lan-
guage (L1) input, and hence the list of target lan-
guage translation candidates is determined based on
source language similarity between the current input
and translation examples within the TM, with trans-
lation equivalent(s) of maximally similar L1 string(s)
given as the translation candidate(s). This is based
on the assumption that structural and semantic simi-
larities between L2 translations will be reflected in the
original L1 equivalents.

One reason for the popularity of TM’s is the low
operational burden they pose to the user, in that
translation pairs are largely acquired automatically
from observation of the incremental translation pro-
cess, and translation candidates can be produced on
demand almost instantaneously. To support this low
overhead, TM systems must allow fast access into the
potentially large-scale TM, but at the same time be
able to predict translation similarity with high accu-
racy. Here, there is clearly a trade-off between ac-
cess/retrieval speed and predictive accuracy of
the retrieval mechanism. Traditionally, research on
TM retrieval methods has focused on speed, with little
cross-evaluation of the accuracy of different methods.
We prefer to focus on accuracy, and present empir-
ical data evidencing the relative predictive potential
of different string comparison methods over different
parameterisations.

In this paper, we focus on comparison of differ-
ent retrieval algorithms for non-segmenting languages,
based around a TM system from Japanese to English.
Non-segmenting languages are thoss which do not in-
volve delimiters (e.g. spaces) between words, and in-
clude Japanese, Chinese and Thai. We are particu-
larly interested in the part the orthogonal parame-
ters of segmentation and segment order play in the
speed/accuracy trade-off. That is, by doing away
with segmentation in relying solely on character-level
comparison (character-based indexing), do we sig-
nificantly degrade match performance, as compared
to word-level comparison (word-based indexing)?
Similarly, by ignoring segment order and treating each
L1 string as a “bag of words”, do we genuinely lose
out over segment order-sensitive approaches? The
main objective of this research is thus to determine
whether the computational overhead associated with
more stringent approaches (i.e. word-based indexing
and segment order-sensitive approaches) is commen-
surate with the performance gains they offer.

To preempt what follows, the major contributions
of this research are: (a) empirical evaluation of
different comparison methods over actual Japanese-
English TM data, focusing on four orthogonal re-
trieval paradigms; (b) the finding that, over the target
data, character-based indexing is consistently supe-
rior to word-based indexing in identifying the transla-
tion candidate most similar to the optimal translation

1See Planas (1998) for a thorough review of commercial TM
systems. o

for a given input; (c) verification of this result over
fully alphabetised input, suggesting ramifications for
glyph-based non-segmenting languages such as Thai;
and (d) empirical verification of the supremacy of seg-
ment order-sensitive string comparison methods over
boolean match methods.

In the following sections we discuss the effects of
segmentation and segment order (§ 2) and present
a number of both bag-of-words and segment order-
sensitive string comparison methods (§ 3), before
going on to evaluate the different methods with
character-based and word-based indexing (§ 4). We
then conclude the paper in Section 5.

2 Segmentation and segment order

Using segmentation to divide strings into compo-
nent words or morphemes has the obvious advantage
of clustering characters into semantic units, which in
the case of ideogram-based languages such as Japanese
(in the form of kanji characters) and Chinese, gen-
erally disambiguates character meaning. The kanji
character ‘7', for example, can be used to mean
any of “to discern/discriminate”, “to speak/argue”
and “a valve”, but word context easily resolves such
ambiguity. In this sense, our intuition is that seg-
mented strings should produce better results than
non-segmented strings.

Looking to past research on string comparison
methods for TM systems, almost all systems involving
Japanese as the source language rely on segmentation
(e.g. (Nakamura, 1989; Sumita and Tsutsumi, 1991;
Kitamura and Yamamoto, 1996; Tanaka, 1997)), with
Sato (1992) and Sato and Kawase (1994) providing
rare instances of character-based systems.

By avoiding the need to segment text, we: (a) alle-
viate computational overhead; (b) avoid the need to
commit ourselves to a particular analysis type in the
case of ambiguity; (c) avoid the issue of how to deal
with unknown words; (d) avoid the need for stem-
ming/lemmatisation; and (e) to a large extent get
around problems related to the normalisation of lex-
ical alternation (see Baldwin and Tanaka §1999) for
a discussion of problems related to lexical alternation
in Japanese). Additionally, we can use the commonly
ambiguous nature of individual kanji characters to our
advantage, in modelling semantic similarity between
related words with character overlap. With word-
based indexing, this would only be possible with the
aid of a thesaurus.

Similarly for segment order, we would expect that
translation records that preserve the segment (word)
order observed in the input string would provide
closer-matching translations than translation records
containing those same segments in a different order.
Naturally, enforcing preservation of segment order is
going to place a significant burden on the matching
mechanism, in that a number of different substring
match schemata are inevitably going to be produced
between any two strings, each of which must be con-
sidered on its own merits.

To the authors’ knowledge, there is no TM sys-
tem operating from Japanese that does not rely
on word/segment/character order to some degree.
Tanaka (1997) uses pivotal content words identified
by the user to search through the TM and locate
translation records which contain those same content
words in the same order and preferably the same seg-
ment distance apart. Nakamura (1989) similarly gives
preference to translation records in which the con-
tent words contained in the original input occur in
the same linear order, although there is the scope

—110—

to back off to translation records which do not pre-
serve the original word order. Sumita and Tsut-
sumi (1991) take the opposite tack in iteratively fil-
tering out NPs and adverbs to leave only functional
words and matrix-level predicates, and find transla-
tion records which contain those same key words in
the same ordering, preferably with the same segment
types between them in the same numbers. Niren-
burg et al. (1993) propose a segment order-sensitive
method based on “string composition discrepancy”,
and incrementally relax the restriction on the qual-
ity of match required to include word lemmata, word
synonyms and then word hypernyms, increasing the
match penalty as they go. Sato and Kawase (1994)
employ a more local model of character order in mod-
elling similarity according to N-grams fashioned from
the original string.

The greatest advantage in ignoring word/segment
order is computational, in that we significantly reduce
the search space and require only a single overall com-
parison per string pair. Below, we analyse whether
this gain in speed outweighs any losses in retrieval
performance.

3 String comparison methods

Due to our interest in the effects of both segment or-
der and segmentation, we must have a selection of
string comparison methods compatible with the var-
ious permutations of these two parameter types. We
choose to look at a number of bag-of-words and seg-
ment order-sensitive methods which are compatible
with both character-based and word-based indexing,
and vary the input to model the effects of the two
indexing paradigms. The particular bag-of-word ap-
proaches we target are the vector space model (Man-
ning and Schiitze, 1999, p3002 and “token intersec-
tion”, a simple ratio-based similarity method. For seg-
ment order-sensitive approaches, we test 3-operation
and 4-operation edit distance and similarity, and also
“weighted sequential correspondence”.

All methods describe the degree of correspondence
between two input strings TM; and IN,? where we
define TM; as a L1 string taken from the TM and
IN as the input string which we are seeking to match
within the TM. For the edit distance methods, this
correspondence takes the form of a distance, with
more similar strings having smaller distances separat-
ing them and identical strings having an edit distance
of 0. All other methods are scaled similarities in the
range [0, 1], with identical strings having similarity 1.

One feature of all string comparison methods given
here is that they have fine-grained discriminatory po-
tential and are able to narrow down the final set of
translation candidates to a handful of, and in most
cases one, output. This was a deliberate design de-
cision, and aimed at example-based machine transla-
tion applications, where human judgement cannot be
relied upon to single out the most appropriate trans-
lation from multiple system outputs. In this, we set
ourselves apart from the research of Sumita and Tsut-
sumi (1991), for example, who judge the system to
have been successful if there are a total of 100 or less
outputs, and a fair proportion of useful translations
are contained within them. Note that it would be a
relatively simple procedure to fan out the number of
outputs to n in our case, by taking the top n ranking
outputs.

For all string comparison methods, we weight dif-

2Note that the ordering here is arbitrary, and that all the
similarity methods described herein are commutative for the
given implementations.

ferent Japanese segment types according to their ex-
pected impact on translation, in the form of the
sweight function:

Segment type | sweight
punctuation 0
other segments 1

3.1 String comparison methods used in this
research

Vector space model

Within our implementation of the vector space model
(VSM), the segment content of each string is described
as a vector, made up of a single dimension for each seg-
ment token occurring within T'M; or IN. The value
of each vector component is given as the weighted fre-
quency of that token according to its sweight value,
such that any number of a given punctuation mark
will produce a frequency of 0. The string similarity of
TM; and IN is then defined as the cosine of the angle

between vectors TMi and I N, respectively, calculated
as:

TM; - IN W
|TM;||IN|

where dot product and vector length coincide with the
standard definitions.

The strings TM; of maximal similarity to IN are
those which produce the maximum value for the vec-
tor cosine.

Note that VSM considers only segment frequency
and is insensitive to segment order.

cos(TM;, IN) =

Token intersection

The token intersection of TM; and IN is defined as
the cumulative intersecting frequency of tokens ap-
pearing in each of the strings, normalised according to
the combined segment lengths of TM; and IN. Nor-
malisation is by way of Dice’s coefficient:

: 2% min (freqpas. (), 77 ()
mnt(T}V[i!IN) = Zt len(’g"Mi)T:;::n(INiqlN\) (2)

where each ¢ is a token occurring in either T'M; or
IN, freqg(t) is defined as the sweight-based frequency
of token t occurring in string S, and len(S) is the
segment length of string S, that is the swezght-based
count of segments contained in S.

As for VSM, the string(s) TM; most similar to
IN are those which generate the maximum value for
tint(TM;, IN), and segment order does not take any
part in calculation.

3- and 4-operation edit distance

The first of the segment order-sensitive methods is
edit distance (Wagner and Fisher, 1974; Planas and
Furuse, 1999). Essentially, the segment-based edit dis-
tance between strings TM; and IN is the minimum
number of primitive edit operations on single segments
required to transform T'M; into IN (and vice versa).
With 3-operation edit distance, we use the operations
of segment equality (segment s; in string S and seg-
ment t; in string T are identical), segment deletion
(delete segment s; from string S) and segment inser-
tion (insert segment a into a given position in string
§); with 4-operation edit distance, segment substitu-
tion (substitute segment s; in string S for segment a)

—-111—

makes up the fourth operation type. The cost asso-
ciated with each operation over segments s; and a is
defined as:®

Operation ' Cost
segment equality 0
segment deletion sweight(s;)
segment insertion sweight(a)
segment subst. max(sweight(s;), sweight(a))

Dynamic programming (DP) techniques are used to
determine the minimum edit distance between a given
string pair, following the classic 4-operating edit dis-
tance formulation of Wagner and Fisher (1974). For
4-operation edit distance, the edit distance between
strings S = $;52...5;m and T = tstg...t, is defined as
Dyop(S,T):

D4OP(S, T) = d4(m, n)

0 fi=0Aj=0

da(0,7 — 1) + sweight(t;) ifi=0A7#0

da(i-— 1,0) + sweight(s;) fi#O0Nj=0
da(3— 1,7) + sweight(s;),

n (da(i,j — 1) + sweight(t;),) otherwise
de(i— 1,7 — 1) + ma(s,5)

d4(7:1j) =

(~) — 0 if 8; = Sj
malh)= max(sweight(s;), sweight(t;)) otherwise

We modify this slightly to determine 3-operation
edit distance, formalised over S and T as:

D3OP(S, T) = da(m,n)

0 fi=0A;=0
d3(0, 5 — 1) + sweight(t;) fi=0Aj#0
ds(i — 1, 0) + sweight(s;) fi#0ANF=0

da(i, 7) = ds(z — 1,7) + sweight(ss),
min { ds(z,j — 1) + sweight(t;), | otherwise
ma(i, 7)
) ds(i—1,5-1) ifsi=s5
ms(1,5) = { 0 otherwise

The reason that we distinguish between 3- and 4-
operation edit distance is that the segment substitu-
tion operator is a compound operator, simultaneously
involving a deletion and insertion operation. By main-
taining segment deletion and insertion as separate op-
erations, our intuition is that we should get a stronger
sense of the true effort required to coerce an arbitrary
string pair together, as a translator would have to
do in adapting the final translation candidate to the
needs of the original L1 input.

3- and 4-operation edit similarity

Above, we suggested the use of 3- and 4-operation
edit distance as is without normalisation. This is pos-
sible due to them both explicitly modelling the de-
gree of segment disparity between a given string pair,
and hence capturing the degree of dissimilarity of the
strings, relative to the minimum edit distance of zero.
All other methods targeted herein model string over-
lap, and must be normalised in order to weight off
the actual degree of overlap against the maximum po-
tential overlap, in the form of the segment lengths of
the target strings. While such normalisation is not
obligatory for edit distance, it is certainly possible to
normalise edit distance values to edit similarity val-
ues, scaled to the range [0,1] as for other methods, a
possibility we look to here.

3Note that the costs for deletion and insertion must be equal
to maintain commutativity.

©Sw(S,T) = s(m,n)
0

The 3-operation edit distance between strings S and
T can be translated into scaled 3-operation edit simi-
larity by way of the following equation:

Dsop(S,T)

simsnn(5,T) =1 = 1B

(3)

Note that 3-operation edit similarity computed in this
fashion is identical to the “sequential correspondence”
method of Baldwin and Tanaka (2000), which deter-
mines the maximum sequential substring match be-
tween two strings.

Similarly, 4-operation edit similarity is derived from
4-operation edit distance by:

D40P(S)T)

$4op (5, T) = 1 = en(S), len(T))

4)

Weighted sequential correspondence

Weighted sequential correspondence—the last of the
segment order-sensitive methods—takes into account
not only the sequentiality but also the contiguity of
match. This is achieved by associating an incremen-
tal weight with each matching segment, assessing the
contiguity of left-neighbouring segments, similarly to
the character-based matching method of Sato-(1992).
Namely, the kth segment of a matched substring is
given the multiplicative weight min(Maz, k).

ifi=0Vji=0

i 3) — S(i*‘]‘Yj)a
s(i,7) = max { s(¢,5— 1), otherwise
s(i—1,7—1)+mw(5j)
o _) em(4,5) x sweight(s) if 5s=s;
mw (i, 7) = { 0 otherwise
o Fi=0Vi=0Vs#t
mmd)*{meMmmmﬁ—Lj—D+l) otherwise

This raw similarity is then normalised according to
Dice’s coefficient, similarly to token intersection:

} _ 2%Sw(TM,,IN)
stmy (T'M;, IN) = le-n_w)zTIV\‘//I_.,)+lenW(IN) (5)

where leny is defined for a string S = s;82...5,, as:
lenw (S) = 3 7L, sweight(s;) x min(Maz,j) (6)

3.2 Retrieval speed optimisation

While this paper is mainly concerned with accuracy,
we take a moment out here to discuss the potential
to accelerate the proposed methods, to get a feel for
their relative speeds in actual retrieval.

First, an “inverted file” can be used to gain an in-
sight into the optimal attainable match for a given
string pair. An inverted file is simply a list of each
segment type contained in the TM, and an index of
those translation records containing that token (in-
cluding a frequency count for each). By determining
the token frequency for each segment type contained
in the input, we can plug the data from the inverted
file straight into the equations for the bag-of-words
methods, and simply return the translation record(s)
which produced the highest score. For the segment
order-sensitive methods, on the other hand, the in-
verted file allows us to determine the optimal match
achievable with each translation record, by assum-
ing that overlapping segments occur in identical order
in the two target strings. By then working through

—112—

the translation records in descending order of optimal
score, we can halt the search process once the opti-
mal score for the top-ranking translation not yet pro-
cessed, falls below the best score actually observed to
that point. For both indexing paradigms, we are also
able to completely rule out strings with no segment
overlap with IN, greatly reducing the string search
space.

One further mechanism we can rely on with the
segment order-sensitive methods, is to use the cur-
rent top-ranking score in establishing upper and lower
bounds on the segment length of strings which have
the potential to better that score. For both edit dis-
tance methods, for example, we make the observation
that for a current minimum edit distance of «, the
following inequality over len(TM;) must be satisfied
for TM; to have a chance of bettering o

len(IN) —a < len(TM;) < len(IN)+a (7)

Through these two methods, we were able to greatly
speed up the string comparison process for word-based
indexing and all methods other than weighted sequen-
tial correspondence (due to artificially high optimal
match scores for translation records, under the as-
sumption of full contiguity). The degree of reduction
for character-based indexing was not as marked, due
to the greater numbers of translation records sharing
some character content with IN.

4 Evaluation

4.1 Evaluation specifications

Evaluation was partitioned off into character-based
and word-based indexing for the various string com-
parison methods. For word-based indexing, segmen-
tation was carried out with ChaSen v2.0b (Mat-
sumoto et al., 1999). No attempt was made to post-
edit the segmented output, in interests of maintain-
ing consistency in the data. Segmented and non-
segmented strings were tested using a single program,
with segment length set to a single character for non-
segmented strings.

As our dataset, we used 3043 unique transla-
tion records deriving from technical field reports
on construction machinery manually translated from
Japanese into English.? Translation records varied
in size from single-word technical terms taken from
a technical glossary, to multiple-sentence strings, at
an average Japanese word length of 14.4 and charac-
ter length of 27.7, and average English word length
of 13.3. All Japanese strings of length 6 charac-
ters or more (a total of 2512 strings) were extracted
from the dataset, leaving a residue glossary of tech-
nical terms (531 strings) as we would not expect to
find useful matches in the TM. The retrieval accuracy
over the 2502 full-length strings was then verified by
10-fold semi-stratified cross validation, including the
glossary in the TM data on each iteration. By 10-
fold semi-stratified cross-validation, we mean that the
dataset was partitioned into 10 equally-sized subsets
of roughly equivalent L1 segment length distribution.
The TM system was then run over 10 iterations, tak-
ing one partition as the held-out input set, and the
remaining 9 partitions as the TM data on each itera-
tion.

Note that the test data was pre-partitioned into
single technical terms, single sentences or sentence
clusters, each constituting a single translation record.
Partitions were taken as given in evaluation, whereas

4A superset of the dataset used by Baldwin and Tanaka
(2000).

for real-world TM systems, the automation of this pro-
cess comprises an important component of the over-
all system, preceding translation retrieval. While ac- -
knowledging the importance of this step and its in-
teraction with retrieval performance, we choose to
sidestep it for the purposes of this paper, and leave
it for future research.

While the different methods are generally capable of
focusing in on a small set of translation candidates for
a given input, we enforce the constraint that a unique
translation candidate (possibly the empty string - see
below) must be generated for each input, in order to
avoid any bias to methods with high output fan-out.
This is done by breaking ties in translation potential,
by randomly selecting one translation candidate from
the set of outputs.

In an effort to make evaluation as objective and
empirical as possible, appropriateness of the final
translation candidate proposed by the different meth-
ods was evaluated according to the 3-operation edit
distance between the translation candidate and the
unique model translation. In this, we transferred the
3-operation edit distance method described above di-
rectly across to L2 (English), with segments as words
and the following experimentally-validated sweight
schema:

Segment type | sweight
punctuation 0
stop words 0.01
other words 1

Stop words are defined as those contained within the
SMART (Salton, 1971) stop word list.> The (unique)
system output was judged to be correct if it was op-
timally close to the model translation, i.e. that there
was no other translation candidate closer to the model
translation in terms of 3-operation edit distance; the
average optimal 3-operation edit distance from the
model translation was 3.72.

We set the additional criterion that the different
methods should be able to determine whether the top-
ranking translation candidate is likely to be useful to
the translator, and that no output should be given
if the closest matching translation record was out-
side a certain range of “translation usefulness”. In
practice, this was set to the 3-operation edit distance
between the model translation and the empty string
(i.e. the edit cost of creating the model translation
from scratch). This cutoff point was realised for the
different string comparison methods by thresholding
over the respective scores. The different thresholds
settled upon experimentally for all string comparison
methods are given in brackets in the second column
of Table 1, with the threshold for edit distance meth-
ods dynamically set to the edit distance between the
input and the empty string.

We set ourselves apart from conventional research
on TM retrieval performance in adopting this objec-
tive numerical evaluation method. Traditionally, re-
trieval performance has been gauged by the subjective
usefulness of the closest matching element of the sys-
tem output (as judged by a human), and described by
way of a discrete set of translation quality descriptors
(e.g. (Nakamura, 1989; Sumita and Tsutsumi, 1991;
Sato, 1992)). Perhaps the closest evaluation attempts
to what we propose are those of Planas and Furuse
(1999) in setting a mechanical cutoff for “translation
usability” as the ability to generate the model trans-

Sftp://ftp.cornell.cs.edu/pub/smart/english.stop

—113—

Method Accuracy Bdit Ave. A.ve'
discrep. outputs time
Vector space model (0.5) 51.56 0.85 1.03 (0.97) | 1.77
Token intersection (0.4) 51.44 0.75 1.07 (0.94) | 2.47
CHAR- 3-op edit distance (len(IN)) 58.19 0.50 1.36 (0.81) | 3.11
BASED 3-op edit similarity (0.4) 53.31 0.60 1.08 (0.95) | 11.86
INDEXING 4-op edit distance (len(IN)) 50.24 0.66 1.54 (0.79) | 20.66
4-0p edit similarity (0.3) 51.56 0.59 1.17 (0.90) | 31.82
Weighted seq. corr, Maz = 2 (0.2) 55.67 0.46 1.06 (0.95) | 66.06
Weighted seq. corr, Maz = 4 (0.2) 53.48 0.66 1.06 (0.95) | 142.24
Vector space model (0.5) 50.84 (—1.4%) 0.77 1.10 (0.93) | 0.67
Token intersection (0.4) 51.40 (-0.1%) 0.71 1.17 (0.89) | 0.91
WORD- 3-op edit distance (len(IN)) 54.67 (—6.0%) 0.56 1.78 (0.72) | 1.00
BAsED 3-op edit sim (0.4) 51.92 (—2.6%) | 0.62 | 1.17 (0.89) | 1.83
INBERING 4-op edit dist (len(IN)) 48.08 (—4.3%) | 0.76 | 2.51 (0.66) | 3.47
4-op edit sim (0.3) 49.32 (—4.3%) | - 0.64 1.40 (0.84) | 4.56
Weighted seq. corr, Maz = 2 (0.2) 52.44 (—5.8%) 0.50 1.15 (0.91) | 13.23
Weighted seq. corr, Maz =4 (0.2) 50.08 (—6.4%) 0.65 1.13 (0.93) | 32.25

Table 1: Results for the different string comparison methods under character-based and word-based indexing

lation from a given translation candidate by editing
less than half the component words, and Nirenburg
et al. (1993) in calculating the weighted number of
key strokes required to convert the system output into
an appropriate translation for the original input. The
method of Nirenburg et al. (1993) is certainly more in-
dicative of true L2 usefulness, but is dependent on the
competence of the translator editing the TM system
output, and not automated to the degree our method
is.

4.2 Results

The results for the different string comparison meth-
ods with character-based and word-based indexing
are given in Table 1, with the two bag-of-words
approaches partitioned off from the five segment
order-sensitive approaches for each indexing paradigm
(weighted sequential correspondence was tested twice,
with varying values of the variable cutoff Maz). “Ac-
curacy” is an indication of the proportion of in-
puts for which an optimal translation was produced;
character-based indexing accuracies in bold indicate
a significant® advantage over the corresponding word-
based indexing accuracy, and figures in brackets for
word-based indexing indicate the relative performance
gain over the corresponding character-based indexing
configuration. “Edit discrep.” refers to the mean 3-
operation edit distance discrepancy between the trans-
lation candidate and optimal translation(s) in the case
of the translation candidate being sub-optimal. “Ave.
outputs” describes the average number of translation
candidates output by the system, with the figure in
brackets being the proportion of inputs for which
a unique translation candidate was produced; recall
that a unique translation candidate is randomly se-
lected for final evaluation purposes in the case of mul-
tiple outputs. “Ave. time” describes the average time
taken to determine the translation candidate(s) for
a single output, relative to the time taken for word-
based 3-operation edit distance retrieval; note that
the figures for word-based indexing do not include the
times for on-line segmentation of the input. The best
result in each column for each of character- and word-
based indexing, is underlined.

Perhaps the most striking result is that character-
based indexing produces a superior match accuracy to

8 As determined by the paired ¢ test (p < 0.05).

word-based indexing for all string comparison meth-
ods, although we must qualify this in saying that none
of the gains were found to be significant. While this
finding is perhaps counterintuitive, it concurs with the
results of Baldwin and Tanaka (2000) for an analogous
TM system and also Fujii and Croft (1993) for infor-
mation retrieval.

Looking to segment order, we see that 3-operation
edit distance outperforms all other methods for both
character- and word-based indexing, peaking at just
over 58% for character-based indexing. The rela-
tive performance of the remaining methods is vari-
able, with the two bag-of-words methods being su-
perior to or roughly equivalent to all segment order-
sensitive methods other than 3-operation edit distance
for word-based indexing, but the relative gain for seg-
ment order-based methods under character-based in-
dexing tending to ‘exceed that for the bag-of-words
methods. It is thus difficult to draw any hard and
fast conclusion as to the relative merits of segment
order-based versus bag-of-words methods, other than
to say that 3-operation edit distance would appear to
have a clear advantage over other methods.

The figures for edit discrepancy in the case of non-
optimal translation candidate(s) are equally interest-
ing, and suggest that on the whole, the various meth-
ods err more conservatively for character-based than
word-based indexing. The most robust method is
weighted sequential correspondence (Maz = 2), at an
edit discrepancy of 0.46 and 0.50 for character-based
and word-based indexing, respectively.-

All methods were able to produce just over one
translation candidate on average, with all other than
the edit distance methods returning a unique transla-
tion candidate around 90% of the time or better. The-
oretically, it should be possible to generate slightly
higher accuracies for methods with higher numbers
of outputs (most notably the edit distance methods)
through more careful selection of the final translation
candidate. Preliminary testing of the scope for im-
provement here, suggests that there is certainly a cor-
relation between the average number of outputs and
the potential for improvement in both raw accuracy
and edit discrepancy, a point we leave for future re-
search.

Turning to speed, word-based indexing was found
to be faster than character-based indexing across the

—114—

Method Accuracy Bdit o Ave.
discrep. | outputs time
Vector space model (0.5) 48.22 1.22 1.03 (0.97) | 3.38
Token intersection (0.4) 49.02 0.97 1.05 (0.95) | 4.68
CHAR- 3-op edit distance (len(IN)) 55.47 0.53 1.35 (0.81) | 44.21
BAsED 3-op edit similarity (0.4) 53.07 0.68 | 1.06 (0.95) | 89.40
INDEING 4-op edit distance (len(IN)) 50.70 0.68 | 1.42 (0.81) | 101.76
4-op edit similarity (0.3) 51.30 0.65 1.17 (0.90) | 143.77
Weighted seq. corr, Maz = 2 (0.2) 55.35 0.62 1.05 (0.96) | 188.48
Weighted seq. corr, Maz = 4 (0.2) 54.35 0.69 1.04 (0.97) | 225.94
Vector space model (0.5) 52.54 (+9.0%) 0.80 1.10 (0.93) | 0.62
Token intersection (0.4) 51.94 (+6.0%) 0.75 1.19 (0.89) | 0.84
WORD- 3-op edit distance (len(IN)) 55.15 (-0.6%) 0.57 1.85 (0.74) | 0.93
BASED 3-op edit similarity (0.4) 52.30 (—1.4%) 0.64 1.19 (0.89) | 1.67
INDEXING 4-op edit distance (len(IN)) 47.93 (-5.5%) 0.75 2.44 (0.67) | 3.05
4-op edit similarity (0.3) 50.26 (—2.0%) 0.66 | 1.41(0.84) | 4.03
Weighted seq. corr, Maz = 2 (0.2) 52.26 (—5.6%) 0.65 1.17 (0.91) | 13.28
Weighted seq. corr, Maz = 4 (0.2) 51.22 (—5.8%) 0.65 1.14 (0.92) | 28.25

Table 2: Results for the different string comparison methods over alphabetised (katakana-based) data

board, for the simple reason that the number of char-
acter segments is always going to be greater than or
equal to the number of word segments. The average
segment lengths quoted above (27.7 characters vs. 14.4
words) indicate that we generally have twice as many
characters as words in a given string. Additionally,
the inverted file-based acceleration technique, has a
greater effect for word-based indexing than character-
based indexing, accentuating any speed disparity. The
exceptionally slow speeds for weighted sequential cor-
respondence under character-based indexing and for
higher values of Maz in particular, is worrying. In-
deed, despite the marginal lead of weighted sequential
correspondence over other methods in terms of edit
discrepancy, we suggest that its sluggish nature makes
it inappropriate for on-line tasks, or that at best, any
effort expended in speeding it up would be better in-
vested in enhancing one of the other methods.

One interesting point to come out of the presented
figures is that 3-operation edit distance is superior to
4-operation edit distance and similarity in all respects,
and also that we lose out by normalising 3-operation
edit distance to a similarity.

4.3 The impact of kanji on the results

An immediate explanation for character-based index-
ing’s empirical edge over word-based indexing is the
semantic smoothing effects of individual kanji char-
acters, alluded to above (§ 2). To take an example,
the single-segment nouns #{E [sdsa] and {EE) [sads]
are synonyms and both translated as “operation” in
the given domain, but would not match under word-
based indexing. Character-based indexing, on the
other hand, would recognise the overlap in character
content, and in the process pick up on the semantic
correspondence between the two words.

To test the effect of kanji characters (i.e. ideograms)
on translation retrieval performance, we used ChaSen
to convert all kanji and hiragana into katakana, gener-
ating an essentially alphabetic version of each string,
analogous to the case of Thai. In one version of this
alphabetised data, the original segmentation was re-
tained, and in a second version, each string was seg-
mented off into individual characters. We then ran
the same methods over this modified input, using ex-
actly the same technique as for the original experi-
ment. The results are presented in Table 2, with times

calculated relative to 3-operation edit distance in the
first experiment.

Here, we find that for word-based indexing, most
methods performed marginally better over the alpha-
betised data than over the original data preserving
the full heterogeneity of hiragana, katakana and kanji.
As for the original experiment, the segment order-
sensitive methods perform better under character-
based indexing than word-based indexing, to a level
of statistical significance for weighted sequential cor-
respondence (Max = 2). This trend was reversed for
the bag-of-words methods, with both VSM and token
intersection suffering a significant degradation in ac-
curacy under character-based indexing. Once again,
3-operation edit distance proved the clear victor on all
fronts, with the only blemish being its running time
under character-based indexing.

One immediate conclusion which can be drawn from
this is that, in the absence of segment sensitivity,
segmentation is required in order to maintain per-
formance levels under character-based indexing, when
operating over homogeneous alphabetised data. Per-
haps more importantly, that the same smoothing ef-
fect was observed for character-based indexing when
operating over both lexically differentiated and alpha-
betised script, would tend to suggest that smoothing is
not tied to kanji characters to the degree we had orig-
inally predicted. Having said this, returning to our
“operation” synonym example from above, we notice
that the overlap in kanji is reflected in overlap in pro-
nunciation, which is retained in the katakana version.
In this sense, the smoothing effect for katakana-based
input can be said to draw on the same basic mecha-
nism as for the original lexically differentiated data.

As an aside, it is important to pick up on the
blowout in running times for character-based index-
ing in the second experiment. The slowdown for
the edit distance and similarity methods is particular
marked, and relates to the inverted file-based accel-
eration method failing to a large degree due to the
homogeneity of the data. This does not occur for
word-based indexing because segmentation produces
segment differentiation. The relatively lesser degree
of slowdown for weighted sequential correspondence
when compared to the original experiment, is largely
because the running time is bounded by the size of
the TM, and a large portion of the TM being searched

—115—

over in the original experiment.

4.4 Miscellaneous reflections

One way in which ChaSen could conceivably have af-
fected retrieval performahce is that technical terms
tended to be over-segmented. Experimentally com-
bining recognised technical terms into a single seg-
ment (particularly in the case of contiguous katakana
segments in the manner of Fujii and Croft (1993)),
however, degraded rather than improved retrieval per-
formance for both character-based and word-based in-
dexing. As such, this side-effect of ChaSen would not
appear to have impinged on retrieval accuracy. Ad-
ditionally, over-segmentation was consistent on the
whole, such that parts of the same whole could be
matched together under word-based indexing as well
as character-based indexing.

One other plausible reason for the unexpected re-
sults is that the dataset could have been in some way
inherently better suited to character-based indexing
than word-based indexing, although the fact that the
results were cross-validated would tend to rule out this
possibility.

Interestingly, weighted sequential correspondence
consistently performed better with Maz set to 2. This
contradicts the finding of Sato (1992) that a setting
of 4 was optimal for character-based indexing.

To return to the original question posed above of re-
trieval speed vs. accuracy, the segment order-sensitive
edit distance approach would seem to hold a genuine
edge over the other methods in terms of accuracy and
edit discrepancy, to an order that would suggest the
extra computational overhead is warranted, in both
accuracy and translation discrepancy. It must be said
that the TM used in evaluation was too small to get
a genuine feel for the computational overhead that
would be experienced in a real-world TM system con-
text of potentially millions rather than thousands of
translation records.

5 Concluding remarks

This research is concerned with the relative import
of segment order and segmentation on translation re-
trieval performance for a TM system. We modelled
the effects of segment order sensitivity vs. bag-of-
words segment order insensitivity by implementing a
total of seven string comparison methods: two bag-
of-words approaches (the vector space model and “to-
ken intersection”) and five segment order-sensitive ap-
proaches (3- and 4-operation edit distance and similar-
ity, and “weighted sequential correspondence”). Each
of these methods was then tested under character-
based and word-based indexing, to determine what
effect segmentation would have on retrieval perfor-
mance. Empirical evaluation based around the L2
3-operation edit distance of proposed translation can-
didates revealed that character-based indexing con-
sistently produced greater accuracy than word-based
indexing, and that the segment order-sensitive 3-
operation edit distance method clearly outperformed
all other methods under both indexing paradigms. We
then went on to analyse the effect of kanji ideograms
on the superiority of character-based indexing, and
concluded that while idividual kanji characters may
have some smoothing effect, a fully alphabetised con-
text produces the same basic result.

The main area in which we feel this research could
be enhanced is to validate the findings of this paper
in expanding evaluation to other domains and test
sets, which we leave as an item for future research.
‘We also skirted around the issue of translation record

partitioning, and wish to investigate how different par-
titioning methods perform against each other.

Acknowledgements

Vital input into this research was received from Fran-
cis Bond (NTT) and Emmanuel Planas (NTT).

References

T. Baldwin and H. Tanaka. 1999. The applications of
unsupervised learning to Japanese grapheme-phoneme
alignment. In Proc. of the ACL Workshop on Unsuper-
vised Learning in Natural Language Processing, pages
9-16.

T. Baldwin and H. Tanaka. 2000. The effects of word
order and segmentation on translation retrieval perfor-
mance. In Proc. of the 18th International Conference
on Computational Linguistics (COLING 2000), pages
35-41.

H. Fujii and W.B. Croft. 1993. A comparison of index-
ing techniques for Japanese text retrieval. In Proc. of
16th International ACM-SIGIR Conference on Research
and Development in Information Retrieval (SIGIR’93),
pages 237-46.

E. Kitamura and H. Yamamoto. 1996. Translation re-
trieval system using alignment data from parallel texts.
In Proc. of the 58rd Annual Meeting of the IPSJ, vol-
ume 2, pages 385-6. (In Japanese).

C. Manning and H. Schiitze. 1999. Foundations of Statis-
tical Natural Language Processing. MIT Press.

Y. Matsumoto, A. Kitauchi, T. Yamashita, and Y. Hi-
rano. 1999. Japanese Morphological Analysis System
ChaSen Version 2.0 Manual. Technical Report NAIST-
IS-TR99009, NAIST.

N. Nakamura. 1989. Translation support by retrieving
bilingual texts. In Proc. of the 38th Annual Meeting
of the IPSJ, volume 1, pages 357-8. (In Japanese).

S. Nirenburg, C. Domashnev, and D.J. Grannes. 1993.
Two approaches to matching in example-based machine
translation. In Proc. of the 5th International Confer-
ence on Theoretical and Methodological Issues in Ma-
chine Translation (TMI-93), pages 47-57.

E. Planas and O. Furuse. 1999. Formalizing translation
memories. In Proc. of Machine Translation Summit
VII, pages 331-9.

E. Planas. 1998. A Case Study on Memory Based Machine
Translation Tools. PhD Fellow Working Paper, United
Nations University.

G. Salton. 1971. The SMART Retrieval System: Ezper-

iments in Automatic Document Processing. Prentice-

Hall.

. Sato and T. Kawase. 1994. A High-Speed Best Match
Retrieval Method for Japanese Text. Technical Report
IS-RR-94-91, JAIST.

S. Sato. 1992. CTM: An example-based translation aid
system. In Proc. of the 14th International Conference
on Computational Linguistics (COLING ’92), pages
1259-63.

E. Sumita and Y. Tsutsumi. 1991. A practical method
of retrieving similar examples for translation aid.
Transactions of the IEICE, J74-D-11(10):1437-47. (In
Japanese).

H. Tanaka. 1997. An efficient way of gauging similarity
between long Japanese expressions. In Information Pro-
cessing Society of Japan SIG Notes, volume 97, no. 85,
pages 69-74. (In Japanese).

A. Wagner and M. Fisher. 1974. The string-to-string cor-
rection problem. Journal of the ACM, 21(1):168-73.

wn

—116—

