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Abstract

This paper describes and compares two unsupervised al-
gorithms to automatically align Japanese grapheme and
phoneme strings, identifying segment-level correspon-
dences between them. The first algorithm is inspired
by the tf-idf model, including enhancements to handle
phonological variation and determine frequency through
analysis of “alignment potential”. The second algorithm
relies on the C4.5 classification system, and makes mul-
tiple passes over the alignment data until consistency of
output is achieved. In evaluation, the first algorithm
proves to be greatly superior to the second, producing a
word accuracy of 96.94%.

Introduction
The task of grapheme-phoneme alignment is intrinsi-
cally related to text-to-speech conversion, and provides
the basic toolset of grapheme-phoneme correspondences
for use in predicting the pronunciation of a given word.
While it is certainly possible to handcraft grapheme-
to-phoneme mappings (see, e.g., (Allen et al., 1987;
Sejnowski and Rosenberg, 1987; Huang et al., 1994;
Divay and Vitale, 1997)), we suggest that it should
be possible to automatically extract such data from
a database of grapheme-phoneme string pairs without
any form of supervision. Thus, given a pronunciation-
annotated machine-readable dictionary, it should be pos-
sible to generate a set of aligned grapheme–phoneme
(word–pronunciation) pairs reliably and fully automat-
ically. Theoretically, the grapheme-phoneme alignment
output could then be plugged into a reading machine,
producing an instant text-to-speech system for any lan-
guage (as per (Ling and Zhang, 1998; Black et al., 1998)).

The objective of this paper is to analyse the appli-
cability of unsupervised learning methods to automated
grapheme-phoneme alignment in Japanese. In particular,
we propose an incremental learning algorithm founded
upon the tf-idf metric, and compare this to a multi-pass
alignment method drawing on the C4.5 classification sys-
tem (inspired by the method of (Ling and Wang, 1997)).
Alignment data is first constructed by exhaustively gen-
erating all alignment mappings for a given grapheme-
phoneme pair. We filter off lexically and phonologically
implausible alignment candidates from this data, and
feed the final set of alignment candidates into the dif-
ferent alignment algorithms. These algorithms then in-
crementally disambiguate the data to produce a unique
alignment candidate for each grapheme-phoneme tuple,
through analysis of frequency distribution in the data.

Definitions
Japanese is made up of the three native orthographies
of kanji, katakana and hiragana. Kanji characters (e.g.

“C”) derive from the Chinese writing system and are
largely ideographic in nature; a single kanji character
tends to have multiple pronunciations (a sample of read-
ings for “C” include syō, ki(eru) and ke(su)). Katakana
and hiragana (collectively described as kana) are iso-
morphic syllabaries, with each character describing a
unique, mutually exclusive phoneme content; examples
of hiragana and katakana are “7” (si) and “4” (go),
respectively. The three orthographies intermingle in
modern-day Japanese texts, with hiragana generally used
for inflectional affixes, case particles and stop words,
katakana for loan words, and kanji for content word
stems. This effect is seen in the wordC74‘ [kesigomu]
“eraser”, which incorporates all three script types.

In targeting “graphemic Japanese”, therefore, we must
consider all three writing systems. Phonemic Japanese,
on the other hand, can be described through kana char-
acters, as all kanji characters are transcribable into
kana, and kana describe the full phonemic inventory of
Japanese in the form of phoneme chunks. That is not to
say that every kana character maps to a single phoneme,
but there is a unique broad phonetic transcription asso-
ciated with almost all kana characters.1 It is thus trivial
to complete the full grapheme-phoneme conversion pro-
cess if necessary, and at the same time, our choice of
kana characters as phoneme medium frees us from con-
sideration of low-level connectional restrictions between
phoneme units, as this information is implicitly encoded
within the orthography.

Grapheme-phoneme (“g-p”) alignment is defined as
the task of maximally segmenting a grapheme compound
(a single dictionary entry, usually constituting a sin-
gle word) into morpho-phonic units, and aligning each
such unit to its corresponding phoneme unit in the pho-
netic transcription for that compound. Segmentation of
the grapheme compound is maximal in the sense that
no segment can be further segmented into aligning sub-
segments. To take the example of the grapheme string

6-U-su-ru [ka-n-sya-su-ru ] “to thank/be thankful”,2 6
aligns with ka-n in the phoneme string, and U with sya,
as indicated in align1 of Figure 1.

1The only exception to affect us is the kana u, which when
not used as an inflecting suffix, is pronounced as /o/ when
immediately proceeding an /o/ sound within a phoneme seg-
ment, and /u/ otherwise. Here, disambiguation is possible
given phoneme segment context and part-of-speech informa-
tion.

2So as to make this paper as accessible as possible to read-
ers not familiar with Japanese, kana characters are written
italicised in Latin script for the remainder of this paper, with
character boundaries indicated by “-” and segment boundaries
(which double as character boundaries) indicated by “�”.
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Figure 1: Candidate alignments for 6-U-su-ru [ka-n-sya-su-ru] “to thank/be thankful”

Cognitive aspects of G-P alignment

One vital issue in grapheme-phoneme alignment is the de-
termination of ‘atomic’ grapheme segments, that is seg-
ments which are not further divisible. Clearly, the lower
bound on atom size for Japanese is a single kana or kanji
character, but there is no inherent upper bound on the
number of characters that can combine to form a seg-
ment, for either grapheme or phoneme segments. While
it is correct to say that there is a cognitive preference
to segment off individual kanji characters (possibly with
kana suffices), there is equally potential for (indivisible)
multiple-kanji grapheme segments, such asf-l [se-ri-fu]
“one’s lines”. Consequently, alignment does not simply
consist of segmenting the grapheme string up into indi-
vidual characters and aligning them with chunks of the
phoneme string, and consideration must be given to the
granularity of segmentation.

A number of inter-related cognitive factors seem to de-
termine the “segmentability” of a grapheme string and
resultant “alignability” with a given phoneme string,
namely: (i) the relative frequency of each segment-level
g-p sub-alignment; (ii) the cognitive immediacy of ad-
jacent segments; and (iii) phonetic similarity to regular
readings in the case of novel g-p sub-alignment.

High relative frequency of alignment refers to the situ-
ation of a given grapheme segment g commonly aligning
with a given phoneme segment p (and phonological vari-
ants thereof), such as6 invariably aligning with the read-
ing ka-n. Clearly if the 〈...�g�...〉–〈...�p�...〉 alignment
sub-schema is observed with sufficient frequency, a natu-
ral preference will arise to emulate that same alignment
sub-schema wherever possible, for reasons of familiarity.

In the case that there is no alignment schema which
produces familiar alignments for all individual grapheme
segments, there is a tendency to preserve as much regu-
larity to the overall alignment schema as possible by max-
imising the number of regular alignments and framing any
irregular alignments between segment-level alignments of
high cognitive immediacy. Thus, when presented with a
g-p tuple such as 〈 r-1〉–〈si-ra-ga〉, where r is com-
monly associated with the reading si-ra but not si and
there are no independent instances of 1 taking a ga or
ra-ga reading, there is a natural preference to uphold the
single known sub-alignment for r and produce a forced
alignment for 1, as in 〈r�1〉–〈si-ra�ga〉.

Finally, if a novel alignment must be made such as
〈...�1〉–〈...�ga〉 above, conservatism rules in that irreg-
ular readings tend to be chosen so as to be phonetically
similar to established readings. In the case of 1, the
established reading is ka-mi (or ga-mi in its voiced re-
alisation), from which the deletion of a single character
produces the suggested ga reading.

In the case that the above processes do not apply to
any substring of the g-p tuple, the tendency is to chunk
unalignable kanji together into a single multi-kanji seg-
ment, such as occurred for se-ri-fu above.

The implications of the above observations to our sta-
tistical modelling of g-p alignment are to develop a model
which gives preference to sub-alignments of high plau-
sibility, allows irregular alignments given that the sur-
rounding context displays high cognitive immediacy of
alignment, and has the facility to “back-off” to multi-
kanji segments when necessary. Our interpretation of
tf-idf is suggested to constitute such a model.

Grapheme-phoneme alignment

Grapheme-phoneme alignment is performed as a three-
stage process: (a) detection of lexical alternation and re-
moval of lexical alternates from the input; (b) determina-
tion of all possible alignment candidates and subsequent
pruning through alignment constraints; and (c) scoring
of all final candidate alignments to determine the final
solution.

Lexical alternates are defined as containing the same
kanji characters in the same linear order, and coinciding
in phonemic content (i.e. having the same reading). We
enforce the constraint that all lexical alternates must be
governed by the same basic alternation schema, allowing
us to filter off alignment candidates for a given g-p tuple
which are incompatible with one or more alternates of
that tuple.

Given that both grapheme and phoneme segments can
be of arbitrary length, alignment candidate gener-
ation must encompass all segmentation cardinalities.
That is, for the example of a three-character grapheme
string, we must consider the maximal segmentation of
the string into three segments, and also partial segmenta-
tions into two segments or alternatively a single segment
encompassing the full string.

Luckily, we are able to rely on strict linearity of align-
ment between the grapheme and phoneme strings, and
in most cases can count on the alignment being isomor-
phic (the only exception being “grapheme gapping” – see
(Baldwin and Tanaka, 1999b)). As a result, the total

number of alignments is given by
∑l−1

x=0 Cm−1
x Cn−1

x in
the general case, where m is the character length of the
grapheme string, n the character length of the phoneme
string, and l = min(m, n).

We are able to reduce the alignment space considerably,
however, through the advent of five lexical and phonolog-
ical constraints on alignment, as described in (Baldwin
and Tanaka, 1999b). These constraints apply to script
and syllable boundaries, the character length of aligned
segments, and the number of voiced obstruents contained
in a single phoneme segment. For the data targeted in
evaluation, the average alignment paradigm size was re-
duced from 12.06 to 3.27 (a reduction of close to 75%),
with no instances of the correct alignment candidate be-
ing pruned from the alignment paradigm.

It is important to realise that the application of the
above constraints not only reduces the search space for
statistical scoring, but can actually single out a unique
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tf -idf (〈g, p, ctxt〉) =
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︸ ︷︷ ︸
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)

︸ ︷︷ ︸

idf (〈g,p,ctxt〉)

(3)

legal solution, providing what turns out to be vital “free
ride” alignment data to bootstrap the different systems
with.

The alignment constraints are the only component of
the overall formulation which is specific to Japanese,
and the different algorithms would be equally applicable
to unconstrained alignment data, making them directly
transferrable to any other language.

We next turn to description of the two main unsuper-
vised alignment methods.

Incremental learning with TF-IDF
The first algorithm (originally proposed in (Baldwin and
Tanaka, 1999a)) is based on incremental learning or “hill-
climbing”, whereby the system disambiguates a single
alignment paradigm at a time and incrementally up-
dates the statistical model according to both discarded
alignment candidates and the selected alignment solu-
tion. Selection of the alignment paradigm to be dis-
ambiguated is performed according to an adaptation of
the tf-idf scoring metric (Salton and Buckley, 1990),
originally developed within the information retrieval fra-
ternity for term weighting. In this, we score and rank
each alignment candidate contained within the current
alignment paradigm, and further rank the different align-
ment paradigms according to the weighted ratio between
the top- and second-ranking alignment candidates. The
highest-scoring alignment paradigm on each iteration is
selected for disambiguation, according to the top-ranking
alignment candidate described therein. We then up-
date the statistical model, revise scores for alignment
paradigms affected by the changed statistics, and rerank
in preparation for the next iteration.

The utility of tf-idf within the task of g-p align-
ment, stems from it weighting up terms (aligned g-p seg-
ments) which occur frequently within a given document
(grapheme segment) context, but relatively infrequently
within other documents (left/right adjoining grapheme
and phoneme contexts). As described above, we wish to
model the cognitive process of g-p alignment by max-
imally weighting high-frequency (regular) readings for a
given grapheme string, but at the same time scoring down
readings which occur primarily in a fixed lexical context,
as this would tend to point to oversegmentation at the
phoneme level (the phoneme context is in actual fact
part of the reading for the current grapheme segment)
and/or the grapheme level (the grapheme context clusters
with the current grapheme segment to form a multiple-
grapheme segment).

In addition to facilitating the detection of regular align-
ments, tf-idf provides a means of variably “window-
ing” over the grapheme and phoneme strings, in that it
does not involve a pre-conceived notion of segment size.
Additionally, by way of taking the mean of the scores
for the left/right and grapheme/phoneme contexts for
each aligned g-p segment pair, we are able to weight
up alignments with more highly regularised segment-level

readings, again mirroring the cognitive processing of g-

p alignment.
While tf-idf offers no immediate solution to the third

cognitive issue of conservatism in cases of non-regular
readings, it does allow us to handle abbreviations of reg-
ular readings—as was seen above for the ga reading of 1
—in that they will generally be found within the (undis-
ambiguated) alignment paradigm of g-p tuples drawing
on the regular reading.

Counting frequencies

Clearly, to be able to apply the tf-idf metric, we require
some way of counting frequencies. For disambiguated
alignment paradigms, we can rely on the absolute fre-
quencies of segments contained within the alignment so-
lution. For residue alignment paradigms awaiting disam-
biguation, on the other hand, we have an arbitrary num-
ber of alignment candidates to choose from, and no im-
mediate way of producing an all-encompassing frequency
value.

We resolve this issue by associating a single frequency
count with every segment type occurring independently
in a given alignment paradigm, irrespective of the number
of alignment candidates it occurs within. In this way, we
model the “alignment potential” of each segment. This
process can be formalised as in equation equation (1),
in the case of freq(〈g, p〉) (singleton and triple segment
combinations are defined in a similar fashion). Here, p
is the phoneme segment aligning with grapheme segment
g, and phon var(p) describes the set of “phonological al-
ternates” of p. Phonological alternates are predictable
instances of phonological alternation from a base form
p, with the most widespread types of phonological alter-
nation being “sequential voicing” (Tsujimura, 1996) and
gemination. Fortunately, phonological alternation occurs
only on syllables at phoneme segment boundaries, and
phonological alternate “equivalence classes” are mutually
exclusive in the main. This allows us to cluster together
frequencies for members of each equivalence class, going
some way toward combating the effects of data sparse-
ness.

The basic TF-IDF model

Our interpretation of the tf-idf model is given in equa-
tion equation (3), where g is a grapheme segment, p a
phoneme segment and ctxt a single phoneme or grapheme
context for 〈g, p〉 within the current alignment. As an
additional facet of hill-climbing, we weight up segment
frequencies contained within disambiguated alignment
paradigms (freq

SOLVED
), over those for unprocessed align-

ment processes (freq
UNSOLVED

). This is achieved through
the wfreq functions for the various segment combina-
tions, which use the fixed SOLVED and UNSOLVED
weights to prioritise disambiguated frequencies (0 < α <
UNSOLVED ≤ SOLVED). The subtractions by a fac-
tor of UNSOLVED are designed to discount the single
occurrences of 〈g, p〉 and 〈g, p, ctxt〉 in the current align-



ment paradigm, and α is an additive smoothing constant
designed to counter the effects of low frequency counts.

As described above, consideration of lexical context
for a given segment tuple 〈g, p〉 is four-fold, made up
of the single character immediately adjacent to g in the
grapheme string and single syllable immediately adjacent
to p in the phoneme string (or the null string in the case
of a string-initial/final segment), for both the left and
right directions. An individual tf -idf score is calculated
for each of these contexts ctxt, and the resultant scores
combined by taking the 4-way arithmetic mean. In the
case of full-string segment alignment, the overall score is
defined to be tf (〈g, p〉).

The overall score for all g-p segment tuples contained
in the current alignment is computed according to the
arithmetic mean of the respective combined tf -idf scores,
with the proviso that full kana-based grapheme segments
are excluded from computation.

Additional allowances for affixation and conjugation
are made according to the method described in (Bald-
win and Tanaka, 1999b).

Selective sampling

As described above, a single alignment paradigm is se-
lected for disambiguation on each iteration, and the sta-
tistical model updated by way of incrementing frequen-
cies for segment alignments contained in the alignment
solution (according to the SOLVED weight), and decre-
menting frequencies deriving from segments occurring in
disallowed alignment candidates and not the alignment
solution. The method of “selectively sampling” a single
alignment solution on each iteration, is performed by cal-
culating a score for each alignment paradigm, and disam-
biguating the highest scoring paradigm according to the
top-scoring alignment candidate contained therein. The
score for the alignment paradigm is calculated according
to the “weighted log odds” discriminative ratio s1 log s1

s2
,

where s1 is the score for the top-ranking alignment candi-
date and s2 that for the second-ranking alignment candi-
date within the current alignment paradigm. Intuitively,
this balances up maximisation of both s1 and the dis-
parity between s1 and s2, such that we are after not only
alignment candidates which score well, but also alignment
paradigms where the top-scoring alignment candidate has
a clear empirical advantage over other candidates.

Multi-pass classification

The second algorithm is inspired by the research of Ling
and Wang (1997), who applied the C4.5 classification sys-
tem (Quinlan, 1993) to unsupervised alignment of En-
glish g-p tuples. Specifically, C4.5 was used to predict
the phonemic equivalent of English words (graphemic
strings), by way of outputting a phoneme for each con-
stituent character in a given character window and com-
bining phonemes to give an aligned phonemic equivalent
for the original word. A phonetic transcription for the
original word was then used to independently generate
alignment candidates, and the alignment candidate most
similar to the C4.5-constructed alignment chosen as the
alignment solution. Similarly to our incremental learning
method, alignment solutions are then fed back into C4.5
as training data, for use in aligning subsequent words.
Ling and Wang implemented a number of heuristics to
improve the performance of their basic method, including
ordering the system inputs in ascending order of align-
ment cardinality, delaying making a decision in cases
of multiple alignment candidates being equally similar

to the C4.5-constructed alignment, and cross-validating
held-out partitions of the alignment data against the re-
mainder of the data. The final alignment precision over
33,121 English words exceeded 99.5%.

The alignment accuracy on English is certainly impres-
sive, and suggests the method as promising for Japanese
g-p alignment. Unfortunately, however, the case of
Japanese g-p alignment is considerably more complex
than that of English. Most importantly, as noted above,
Japanese phoneme segments often extend over multiple
characters for single character grapheme segments even,
whereas in the case of English, grapheme segments almost
always map onto single phonemes. It was thus possible
for Ling and Wang to enumerate the 40 or so possible
phoneme segments and have C4.5 choose between them
in predicting the phonemic equivalent of each grapheme
segment. If we attempted to do the same for Japanese,
we would end up with a total of over 56,000 phoneme
segments in the case of the data set used in evaluation,
making the classification task unmanageable. Addition-
ally, English uses only 26 letters (assuming uniform case),
whereas our test data contains 4429 grapheme character
tokens and 167 phoneme character tokens. This blow out
in the search space suggests the need for a different clas-
sification approach.

On the implementation side, Ling and Wang are unable
to use negative evidence from discarded alignment candi-
dates, a possibility we look to. We also use the certainty
factor values returned by C4.5 in scoring the plausibility
of different alignment candidates.

Algorithm basics
We apply the basic fixed window method suggested by
Ling and Wang, but instead of inputting only grapheme
context to return a phoneme, we input both grapheme
and phoneme contexts to return a binary judgement on
the plausibility of a coincident segment boundary existing
at the centre of the two context windows. Grapheme and
phoneme context is set to 3 characters on either side of the
segment boundary, making for a combined window size of
12 characters. To give an example based on align1 from
Figure 1, the classifier “ , , 6, U, su, ru, , ka, n, sya,
su, ru” should produce a judgement of true, correspond-
ing to the leftmost inter-segment boundary in align1 (the
‘ ’ token indicates an empty character beyond the bound-
aries of the original word, and the underlined component
is the grapheme window). “ , , 6, U, su, ru, ka, n, sya,
su, ru, ”, on the other hand, is associated with a neg-
ative judgement within the context of align1, as despite
segment boundaries existing at the centres of the two
context windows, they do not coincide under alignment.

At the same time as classifying input for segment
boundary compatibility, C4.5 can be set to output a cer-
tainty factor cf : 0 ≤ cf ≤ 1 for each class. This is par-
ticularly useful in comparing the overall plausibility of
alignment candidates with little or no segment boundary
overlap. In the case of the tuple g-H [ta-i-si] “ambas-
sador”, for example, we need to choose between the three
alignment candidates of a1 = 〈g�H〉–〈ta�i-si〉, a2 = 〈

g�H〉–〈ta-i�si〉 and a3 = 〈g-H〉–〈ta-i-si〉, the second
of which (a2) is correct. In sizing up a3 against a1 and
a2, we are making a judgement as to the plausibility of
the single segment boundary distinguishing each align-
ment candidate pairing. However, if a1 were determined
to be more plausible that a3, and equivalently a2 more
plausible than a3, how could we choose between a1 and
a2? Here, we apply the certainty factors in transferring
evaluation across to a numeric comparison.



So as to limit comparison of alignment candidates to
only those determined to be legal by the alignment con-
straints, we cluster “homogeneous” legal alignment can-
didates together into “packed alignment arrays” and indi-
vidually score each alignment candidate described therein.
Packed alignment arrays are of the form 〈 g?H〉–
〈ta?i-si〉, for example, where ‘?’ indicates an optional seg-
ment boundary aligning with the corresponding bound-
ary in the opposing string (note that packed alignment
arrays can also contain fixed segment boundaries, the
score for which contributes to the overall score of align-
ment). Homogeneous alignment candidates are defined
as not having any crossing-over of alignment and having
all coincident segments aligning similarly. a1 and a2 from
above are not homogeneous (due to the “g” and “H”
segments aligning differently), producing the two packed
alignment arrays 〈g?H〉–〈ta?i-si〉 and 〈g?H〉–〈ta-i?si〉
for “gH”. A combined score for each alignment candi-
date is determined based on the average segment bound-
ary certainty factor, and alignment candidates realised in
multiple packed alignment arrays (such as a3 in the two
presented arrays) are given the minimum score out of
those realisations. The optimal alignment candidate for
a given alignment paradigm is then that which produces
the maximum mean certainty factor.

While we do not have any pre-annotated training data
(preserving the true unsupervised status of our method),
we do have disambiguated positive evidence from the
“free ride” data disambiguated by the alignment con-
straints. We can also construct negative evidence from
alignment candidates disallowed by the alignment con-
straints,3 although here there is potential for segment-
level overlap with the correct alignment. We thus take
only those segment boundary windows not found within
the final alignment paradigm. Finally, we stretch the
boundaries of unsupervised learning somewhat in provid-
ing the system with positive instances for each hiragana
and katakana character, aligning it as a single character
in the grapheme and phoneme strings. These instances
combine to form the “bootstrap data” with which the
system is initialised.

We further order the g-p tuple data set in ascending
order of alignment cardinality, in the manner of Ling and
Wang, so as to give the system the chance to make eas-
ier decisions early on and use the resulting evidence in
making decisions of greater complexity later on.

First pass

In the first pass over the data, C4.5 is initialised with
the bootstrap data from above, and run over each align-
ment paradigm in turn. The classifying decision tree is
then updated each time an alignment paradigm is dis-
ambiguated, based on the positive evidence described by
the alignment solution. Due to the potentially dubious
nature of evidence arising from this first pass, we commit
ourselves to an alignment solution only in the case that
there is no tie in combined certainty factor; in the case of
a tie, we reserve our decision for subsequent passes. Ad-
ditionally, we feed only positive evidence back into C4.5.

Second and subsequent passes

In the second and subsequent passes, we classify each
alignment paradigm according to the combination of the

3We take only negative evidence produced through align-
ment incompatibility between otherwise legal alignment can-
didates for lexical alternates, and also that produced by Ly-
man’s Law (Vance, 1987).

original bootstrap data and any positive or negative data
generated for other alignment paradigms in the preced-
ing pass, holding out data pertaining to the current align-
ment paradigm. Negative data is progressively added into
the training data throughout the second pass, and main-
tained through subsequent passes.

In the case of a tie in alignment score, we take the first
alignment producing that score. Note that packed align-
ment arrays are listed in descending order of the number
of individual alignment candidates they describe, such
that by taking the first alignment candidate to produce
the maximum alignment score, we are giving it credit for
having won out over a larger number of alignment candi-
dates.

We continue iterating over the data until the combined
alignment output converges, that is we attain consistent
output over successive passes.

Evaluation

The proposed systems were tested on a set of 5000 g-p tu-
ples containing at least one kanji, randomly extracted
from the combined edict Japanese-English4 and Shin-
meikai (Nagasawa, 1981) dictionaries. Any lexical alter-
nates of the 5000 g-p tuples were further added to the test
set to give the alignment constraints full scope for appli-
cation (expanding the test data out to 6503 instances),
and the original 5000 g-p tuples manually aligned for
use in system performance evaluation. The extra lex-
ical alternate data is used only in applying the align-
ment constraints and has no bearing on subsequent eval-
uation. The annotated alignment data was, of course, not
available to any of the system configurations at execution
time.

The test data was additionally pre-processed into align-
ment paradigms and sorted into ascending order of align-
ment cardinality, so as to ensure that the input to the
two systems was identical.

The baseline word accuracy for this test suite, based on
random selection of an alignment schema from the final
alignment paradigm for each g-p tuple, is 44.75%.

Looking first to the incremental tf-idf learning me-
thod, we tested the algorithm with different settings for
the parameters SOLVED , UNSOLVED and α, and found
that the respective values of 1.0, 0.5 and 0.05 produced
the best word accuracy of 96.94%. Higher values of α
tended to produce greater levels of under-alignment (chunk-
ing together of grapheme and phoneme segments into sin-
gle super-segments), whereas lower levels of α produced
greater levels of over-alignment (intra-segment segmen-
tation). Larger values of SOLVED , on the other hand,
tended to inflate the overall rate of both over- and under-
alignment. Interestingly, most errors were homogeneous
with the correct alignment.

The multi-pass classification method produced a word
accuracy of 47.34% on the first pass and 58.18% on the
second and third passes, halting on completion of the
third pass due to coincidence of output with the second
pass. Ties in alignment score were produced for only 78
of the 5000 annotated g-p tuples on the first pass, such
that we were able to produce alignments for 4922 g-p

tuples. On the first pass, most errors took the form of
underalignment, whereas errors on the second and third
passes were generally instances of overalignment or non-
homogeneous with the correct alignment.

Based on these figures, the incremental tf-idf learning
method is clearly superior to the multi-pass classification

4ftp://ftp.cc.monash.edu.au/pub/nihongo



method, both in terms of raw accuracy and the degree of
error in the case of incorrect output. The 58.18% word
accuracy for the multi-pass classification approach also
contrasts starkly with the 99.5% word accuracy claimed
by Ling and Wang for English g-p alignment, although
it does well outperform the baseline word accuracy.

To further compare the accuracies of the different me-
thods, we calculated the progressive alignment accuracy
over corridors of 250 alignment solution outputs, based
on the order of output. In the case of the multi-pass clas-
sification method, the order of output corresponds to the
order of the original data, in increasing order of alignment
cardinality, whereas for the incremental tf-idf learning
method, the order of output is determined by the dis-
criminative ratio values. For both methods, however, the
first 895 outputs are the “free ride” alignment paradigms
of cardinality one, at word accuracy 100%. The progres-
sive word accuracies for pass 1 and passes 2 and 3 of the
multi-pass classification method are presented separately
as “MP-P1” and “MP-P2/3”, respectively. We include
evaluation of a number of variations on the basic tf-idf

method (“BASIC”) to verify the efficacy of the discrimi-
native ratio, firstly by way of a random sampling method,
where a random alignment paradigm is disambiguated at
each iteration (“RAND”), and secondly by way of a non-
incremental method where all alignment paradigms are
disambiguated according to the initial top-scoring align-
ment candidate and output in descending order of the
discriminative ratio value (“DUMP”). The various pro-
gressive word accuracies are given in Figure 2.

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

W
o

rd
 a

cc
u

ra
cy

 (
%

)

Output number

BASIC
RAND
DUMP
MP-P1

MP-P2/3

Figure 2: Progressive alignment accuracy

We can see a clear correlation between alignment cardi-
nality and accuracy for the multi-pass classification me-
thod, and also a clear performance gain for the second
pass over the first pass. The performance gain for the
basic tf-idf method over random sampling (word ac-
curacy 96.64%) and the non-incremental method (word
accuracy 96.20%) is more subtle, although the basic me-
thod does return higher word alignment accuracy and the
output is more consistently accurate over the first 4000
or so annotated outputs, pointing to the success of the
selective sampling method.

Conclusion

In conclusion, we have proposed two fundamentally dif-
ferent methods of unsupervised g-p alignment, and tested
them on a set of 5000 Japanese g-p tuples. The first
method centres around an adaptation of the tf-idf met-

ric, and iterates over the data, hill-climbing as it goes.
The second method, inspired by Ling and Wang (97),
uses C4.5 to determine segment boundary compatibil-
ity for combined g-p context windows, and selects the
most plausible overall alignment candidate according to
the confident factor values returned by C4.5. It makes
multiple passes over the data, incrementally enhancing
alignment accuracy as it goes. The tf-idf-based learn-
ing method returned a word accuracy of 96.94% in evalu-
ation, surpassing the 58.18% 3-pass word accuracy for the
C4.5 multi-pass classification method by a large margin.
In the future, we are interested in running the different
methods over data for other languages, and expanding
evaluation.
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