Balancing up Efficiency and Accuracy in
Translation Retrieval

Timothy Baldwin' and Hozumi Tanaka'

This research looks at the effects of segment order and segmentation on transla-
tion retrieval performance for an experimental Japanese-English translation memory
system. We implement a number of both bag-of-words and segment order-sensitive
string comparison methods, and test each over character-based and word-based in-
dexing. The translation retrieval performance of each system configuration is evalu-
ated empirically through the notion of segment edit distance between the translation
output and model translation. Our results indicate that character-based indexing is
consistently superior to word-based indexing in terms of raw accuracy, although seg-
mentation does have an accelerating effect on TM search times in combination with
a number of retrieval optimisation techniques. Segment order-sensitive approaches
are demonstrated to generally outperform bag-of-words methods, with 3-operation
edit distance proving the most effective comparison method. We additionally repro-
duced the same basic results over alphabetised data as for lexically differentiated
data containing kanji characters.

KeyWords: translation memory, translation retrieval, segmentation, segment or-
der

1 Introduction

Translation memories (TMs) are a well-established technology within the human and ma-
chine translation fraternities, due to the high translation precision they afford. Essentially,
TMs are a list of translation records (source language strings paired with a unique target
language translation), which the TM system accesses in suggesting a list of target language
translation candidates which may be helpful to the translator in translating a given source
language input.!

Naturally, TM systems have no way of accessing the target language (L2) equivalent of
the source language (L1) input, and hence the list of target language translation candidates is
determined based on source language similarity between the current input and translation ex-
amples within the TM, with translation equivalent(s) of maximally similar L1 string(s) given
as the translation candidate(s). This is based on the assumption that structural and semantic

similarities between L2 translations will be reflected in the original L1 equivalents.

1 Tokyo Institute of Technology, Department of Computer Science
1 See Planas (1998) for a thorough review of commercial TM systems.

19

Journal of Natural Language Processing, vol. 8, no. 2, pp. 19-37.

Journal of Natural Language Processing Vol. 8 No. 2 Apr. 2001

One reason for the popularity of TMs is the low operational burden they pose to the user,
in that translation pairs are largely acquired automatically from observation of the incremental
translation process, and translation candidates can be produced on demand almost instanta-
neously. To support this low overhead, TM systems must allow fast access into the potentially
large-scale TM, but at the same time be able to predict translation similarity with high ac-
curacy. Here, there is clearly a trade-off between access/retrieval speed and predictive
accuracy of the retrieval mechanism. Traditionally, research on TM retrieval methods has
focused on speed, with little cross-evaluation of the accuracy of different methods. We prefer
to focus on accuracy, and present empirical data evidencing the relative predictive potential
of different string comparison methods over different parameterisations.

In this paper, we focus on comparison of different retrieval algorithms for non-segmenting
languages, based around a TM system from Japanese to English. Non-segmenting languages
are those which do not involve delimiters (e.g. spaces) between words, and include Japanese,
Chinese and Thai. We are particularly interested in the part the orthogonal parameters of
segmentation and segment order play in the speed/accuracy trade-off. That is, by doing away
with segmentation in relying solely on character-level comparison (character-based index-
ing), do we significantly degrade match performance, as compared to word-level comparison
(word-based indexing)? Similarly, by ignoring segment order and treating each L1 string
as a “bag of words”, do we genuinely lose out over segment order-sensitive approaches? The
main objective of this research is thus to determine whether the computational overhead asso-
ciated with more stringent approaches (i.e. word-based indexing and segment order-sensitive
approaches) is commensurate with the performance gains they offer.

To preempt what follows, the major contributions of this research are: (a) empirical evalu-
ation of different comparison methods over actual Japanese-English TM data, focusing on four
orthogonal retrieval paradigms; (b) the finding that, over the target data, character-based in-
dexing is consistently superior to word-based indexing in identifying the translation candidate
most similar to the optimal translation for a given input; (c) verification of this result over
fully alphabetised input, suggesting ramifications for glyph-based non-segmenting languages
such as Thai; and (d) empirical verification of the supremacy of segment order-sensitive string
comparison methods over boolean match methods.

In the following sections we discuss the effects of segmentation and segment order (Sec-
tion 2) and present a number of both bag-of-words and segment order-sensitive string compar-
ison methods (Section 3), before going on to evaluate the different methods with character-

based and word-based indexing (Section 4). We then conclude the paper in Section 5.

20

Baldwin, T. and H. Tanaka Translation Retrieval

2 Segmentation and segment order

Using segmentation to divide strings into component words or morphemes has the obvi-
ous advantage of clustering characters into semantic units, which in the case of ideogram-based
languages such as Japanese (in the form of kanji characters) and Chinese, generally disam-
biguates character meaning. The kanji character ‘7, for example, can be used to mean any
of “to discern/discriminate”, “to speak/argue” and “a valve”, but word context easily resolves
such ambiguity. In this sense, our intuition is that segmented strings should produce better
results than non-segmented strings.

Looking to past research on string comparison methods for TM systems, almost all sys-
tems involving Japanese as the source language rely on segmentation (e.g. (Nakamura 1989;
Sumita and Tsutsumi 1991; Kitamura and Yamamoto 1996; Tanaka 1997)), with Sato (1992)
and Sato and Kawase (1994) providing rare instances of character-based systems.

By avoiding the need to segment text, we: (a) alleviate computational overhead; (b) avoid
the need to commit ourselves to a particular analysis type in the case of ambiguity; (c) avoid
the issue of how to deal with unknown words; (d) avoid the need for stemming/lemmatisation;
and (e) to a large extent get around problems related to the normalisation of lexical alterna-
tion (see Baldwin and Tanaka (1999) for a discussion of problems related to lexical alternation
in Japanese). Additionally, we can use the commonly ambiguous nature of individual kan-
ji characters to our advantage, in modelling semantic similarity between related words with
character overlap. With word-based indexing, this would only be possible with the aid of a
thesaurus.

Similarly for segment order, we would expect that translation records that preserve the
segment (word) order observed in the input string would provide closer-matching translations
than translation records containing those same segments in a different order. Naturally, en-
forcing preservation of segment order is going to place a significant burden on the matching
mechanism, in that a number of different substring match schemata are inevitably going to
be produced between any two strings, each of which must be considered on its own merits.

To the authors’ knowledge, there is no TM system operating from Japanese that does not
rely on word/segment/character order to some degree. Tanaka (1997) uses pivotal content
words identified by the user to search through the TM and locate translation records which
contain those same content words in the same order and preferably the same segment distance
apart. Nakamura (1989) similarly gives preference to translation records in which the content
words contained in the original input occur in the same linear order, although there is the

scope to back off to translation records which do not preserve the original word order. Sumita

21

Journal of Natural Language Processing Vol. 8 No. 2 Apr. 2001

and Tsutsumi (1991) take the opposite tack in iteratively filtering out NPs and adverbs to
leave only functional words and matrix-level predicates, and find translation records which
contain those same key words in the same ordering, preferably with the same segment types
between them in the same numbers. Nirenburg et al. (1993) propose a segment order-sensitive
method based on “string composition discrepancy”, and incrementally relax the restriction
on the quality of match required to include word lemmata, word synonyms and then word
hypernyms, increasing the match penalty as they go. Sato and Kawase (1994) employ a more
local model of character order in modelling similarity according to N-grams fashioned from
the original string.

The greatest advantage in ignoring word/segment order is computational, in that we sig-
nificantly reduce the search space and require only a single overall comparison per string pair.

Below, we analyse whether this gain in speed outweighs any losses in retrieval performance.

3 String comparison methods

Due to our interest in the effects of both segment order and segmentation, we must have a
selection of string comparison methods compatible with the various permutations of these two
parameter types. We choose to look at a number of bag-of-words and segment order-sensitive
methods which are compatible with both character-based and word-based indexing, and vary
the input to model the effects of the two indexing paradigms. The particular bag-of-word ap-
proaches we target are the vector space model (Manning and Schiitze 1999, p 300) and “token
intersection”, a simple ratio-based similarity method. For segment order-sensitive approaches,
we test 3-operation and 4-operation edit distance and similarity, and also “weighted sequential
correspondence”.

All methods describe the degree of correspondence between two input strings T'M; and
IN? where we define TM; as an L1 string taken from the TM and IN as the input string.
For the edit distance methods, this correspondence takes the form of a distance, with more
similar strings having smaller distances separating them and identical strings having an edit
distance of 0. All other methods generate scaled similarities in the range [0, 1], with identical
strings having similarity 1.

One feature of all string comparison methods given here is that they have fine-grained
discriminatory potential and are able to narrow down the final set of translation candidates

to a handful of, and in most cases one, output. This was a deliberate design decision, and

2 Note that the ordering here is arbitrary, and that all the similarity methods described herein are commutative
for the given implementations.

22

Baldwin, T. and H. Tanaka Translation Retrieval

aimed at example-based machine translation applications, where human judgement cannot be
relied upon to single out the most appropriate translation from multiple system outputs. In
this, we set ourselves apart from the research of Sumita and Tsutsumi (1991), for example,
who judge the system to have been successful if there are a total of 100 or less outputs, and
a fair proportion of useful translations are contained within them. Note that it would be a
relatively simple procedure to fan out the number of outputs to n in our case, by taking the
top n ranking outputs.

For all string comparison methods, we weight different Japanese segment types according

to their expected impact on translation, in the form of the sweight function:

Segment type | sweight

punctuation 0

other segments 1

3.1 String comparison methods used in this research
Vector space model

Within our implementation of the vector space model (VSM), the segment content of each
string is described as a vector, made up of a single dimension for each segment token occurring
within T'M; or IN. The value of each vector component is given as the weighted frequency of
that token according to its sweight value, such that any number of a given punctuation mark
will produce a frequency of 0. The string similarity of TM; and IN is then defined as the
cosine of the angle between vectors TM; and T N, respectively, calculated as:

-~ TM;-IN

COS(TM“IN) = W (1)

where dot product and vector length coincide with the standard definitions.
The strings T'M; of maximal similarity to IN are those which produce the maximum value
for the vector cosine.

Note that VSM considers only segment frequency and is insensitive to segment order.

Token intersection

The token intersection of T'M; and IN is defined as the cumulative intersecting frequency

of tokens appearing in each of the strings, normalised according to the combined segment

23

Journal of Natural Language Processing Vol. 8 No. 2 Apr. 2001

lengths of TM; and IN. Normalisation is by way of Dice’s coefficient:

(T, 1) = 22 i et (0 Fdund D) @)

where each t is a segment token occurring in either T'M; or IN, freqq(t) is defined as the
sweight-based frequency of token ¢ occurring in string S, and len(S) is the segment length of
string S, that is the sweight-based count of segments contained in S.

As for VSM, the string(s) T'M; most similar to I N are those which generate the maximum

value for tint(TM;, IN), and segment order does not take any part in calculation.

3- and 4-operation edit distance

The first of the segment order-sensitive methods is edit distance (Wagner and Fisher 1974;
Planas and Furuse 1999). Essentially, the segment-based edit distance between strings T'M;
and IN is the minimum number of primitive edit operations on segment units required to
transform TM; into IN (and vice versa). With 3-operation edit distance, we use the oper-
ations of segment equality (segment s; in string S and segment ¢; in string T' are identical),
segment deletion (delete segment s; from string S) and segment insertion (insert segment a
into a given position in string S); with 4-operation edit distance, segment substitution (sub-
stitute segment s; in string S for segment a) makes up the fourth operation type. The cost

associated with each operation over segments s; and a is defined as:?

Operation Cost
segment equality 0
segment deletion sweight(s;)
segment insertion sweight(a)
segment substitution | max(sweight(s;), sweight(a))

Dynamic programming (DP) techniques are used to determine the minimum edit distance
between a given string pair, following the classic 4-operation edit distance formulation of
Wagner and Fisher (1974). For 4-operation edit distance, the edit distance between strings
S = $182...8m and T = t1ta...4,, is defined as Dy,p (S, T):

D4Op(S, T) = d4(m, TL) (3)

3 Note that the costs for deletion and insertion must be equal to maintain commutativity.

24

Baldwin, T. and H. Tanaka Translation Retrieval

0 ifi=0Aj=0
d(0,j — 1) + sweight(t;) ifi=0Aj#0
1,0 ght(si FiAON] =0
i) =) el = L0)+ sueighis) FitON] "
dy(i —1,7) + sweight(s;),
min | dy(,5 — 1) + sweight(t;), otherwise
da(i— 1,7 — 1) +ma(i, j)
o 0 ifs; =s;
my(i,j) = , , - (5)
max (sweight(s;), sweight(t;)) otherwise

We modify this slightly to determine 3-operation edit distance, formalised over S and T

as:

DSop(S; T) = d3(ma n) (6)
0 ifi=0Aj=0
d3(0,j — 1) + sweight(t;) ifi=0Aj#0
. ds(i —1,0) + sweight(s;) ifiA0N =0
d3(7’7]) = (7)
ds(i —1,7) + sweight(s;),
min | ds(4,5 — 1) + sweight(t;), otherwise
m3(l,.7)
. ds(i—1,57—-1 if si=s;
maig) = §) Y
00 otherwise

The reason that we distinguish between 3- and 4-operation edit distance is that the seg-
ment substitution operator is a compound operator, simultaneously involving a deletion and
insertion operation. By maintaining segment deletion and insertion as separate operations,
our intuition is that we should get a stronger sense of the true effort required to coerce an ar-
bitrary string pair together, as a translator would have to do in adapting the final translation

candidate to the needs of the original L1 input.

3- and 4-operation edit similarity

Above, we suggested the use of 3- and 4-operation edit distance as is without normalisa-
tion. This is possible due to them both explicitly modelling the degree of segment disparity
between a given string pair, and hence capturing the degree of dissimilarity of the strings,
relative to the minimum edit distance of zero. All other methods targeted herein model string

overlap, and must be normalised in order to weight off the actual degree of overlap against the

25

Journal of Natural Language Processing Vol. 8 No. 2 Apr. 2001

maximum potential overlap, in the form of the segment lengths of the target strings. While
such normalisation is not obligatory for edit distance, it is certainly possible to normalise edit
distance values to edit similarity values, scaled to the range [0,1] as for other methods, a
possibility we look to here.

The 3-operation edit distance between strings S and T can be translated into scaled 3-
operation edit similarity by way of the following equation:

D30, (S,T)

SZmSOp(Sa T) =+ m

9)

Note that 3-operation edit similarity computed in this fashion is identical to the “sequen-
tial correspondence” method of Baldwin and Tanaka (2000), which determines the maximum
sequential substring match between two strings.

Similarly, 4-operation edit similarity is derived from 4-operation edit distance by:

Dyop(S,T)
max(len(S), len(T))

$iMaop(S,T) =1 — (10)

Weighted sequential correspondence

Weighted sequential correspondence—the last of the segment order-sensitive methods—
takes into account not only the sequentiality but also the contiguity of match. This is achieved
by associating an incremental weight with each matching segment, assessing the contiguity of
left-neighbouring segments, similarly to the character-based matching method of Sato (1992).
Namely, the kth segment of a matched substring is given the multiplicative weight min(Maz, k).

Sw(S,T) = s(m,n) (11)
0 ifi=0VvVji=0
o s(i = 1,7),
shd) = max s(z,] -1, otherwise 12)

s(i— 1,5 — 1) + mw (i,)
em(i, j) X sweight(i) if i = s

0 otherwise
0 ifi=0Vi=0Vs %t

mig) = 4 o mvimivs (14)
min(Maz,em(i — 1,7 — 1) + 1) otherwise

This raw similarity is then normalised according to Dice’s coefficient, similarly to token

intersection:
2 x Sw(TM;,IN)
leny (T M;) + leny, (IN)

simy (TM;,IN) = (15)

26

Baldwin, T. and H. Tanaka Translation Retrieval
where len,, is defined for a string S = s153...5,, as:

lenw (S) = 3752, sweight(s;) x min(Maxz, j) (16)

3.2 Retrieval speed optimisation

While this paper is mainly concerned with accuracy, we take a moment out here to discuss
the potential to accelerate the proposed methods, to get a feel for their relative speeds in
actual retrieval.

First, an “inverted file” can be used to gain an insight into the optimal attainable match
for a given string pair. An inverted file is simply a list of each segment type contained in the
TM, and an index of those translation records containing that token (including a frequency
count for each). By determining the token frequency for each segment type contained in the
input, we can plug the data from the inverted file straight into the equations for the bag-of-
words methods, and simply return the translation record(s) which produced the highest score.
For the segment order-sensitive methods, on the other hand, the inverted file allows us to
determine the optimal match achievable with each translation record, by assuming that over-
lapping segments occur in identical order in the two target strings. By then working through
the translation records in descending order of optimal score, we can halt the search process
once the optimal score for the top-ranking translation not yet processed, falls below the best
score actually observed to that point. For both indexing paradigms, this method also allows
us to completely rule out strings with no segment overlap with I N, greatly reducing the string
search space.

One further mechanism we can rely on with the segment order-sensitive methods, is to use
the current top-ranking score in establishing upper and lower bounds on the segment length
of strings which have the potential to better that score. For both edit distance methods, for
example, we make the observation that for a current minimum edit distance of «, the following

inequality over len(T'M;) must be satisfied for T'M; to have a chance of bettering a:
len(IN) — a <len(TM;) <len(IN)+ « (17)

Through these two methods, we were able to greatly speed up the string comparison pro-
cess for word-based indexing and all methods other than weighted sequential correspondence
(due to artificially high optimal match scores for translation records, under the assumption of
full contiguity). The degree of reduction for character-based indexing was not as marked, due

to the greater numbers of translation records sharing some character content with IN.

27

Journal of Natural Language Processing Vol. 8 No. 2 Apr. 2001

4 Evaluation

4.1 Evaluation specifications

Evaluation was partitioned off into character-based and word-based indexing for the vari-
ous string comparison methods. For word-based indexing, segmentation was carried out with
ChaSen v2.0b (Matsumoto et al. 1999). No attempt was made to post-edit the segmented
output, in interests of maintaining consistency in the data. Segmented and non-segmented
strings were tested using a single program, with segment length set to a single character for
non-segmented strings.

As our dataset, we used 3043 unique translation records deriving from technical field re-
ports on construction machinery manually translated from Japanese into English.* Transla-
tion records varied in size from single-word technical terms taken from a technical glossary,
to multiple-sentence strings, at an average Japanese word length of 14.4 and character length
of 27.7, and average English word length of 13.3. All Japanese strings of length 6 characters
or more (a total of 2512 strings) were extracted from the dataset, leaving a residue glossary
of technical terms (531 strings) as we would not expect to find useful matches in the TM.
The retrieval accuracy over the 2502 full-length strings was then verified by 10-fold semi-
stratified cross validation, including the glossary in the TM data on each iteration. By 10-fold
semi-stratified cross-validation, we mean that the dataset was partitioned into 10 equally-
sized subsets of roughly equivalent L1 segment length distribution. The TM system was then
run over 10 iterations, taking one partition as the held-out input set, and the remaining 9
partitions as the TM data on each iteration.

Note that the test data was pre-partitioned into single technical terms, single sentences
or sentence clusters, each constituting a single translation record. Partitions were taken as
given in evaluation, whereas for real-world TM systems, the automation of this process com-
prises an important component of the overall system, preceding translation retrieval. While
acknowledging the importance of this step and its interaction with retrieval performance, we
choose to sidestep it for the purposes of this paper, and leave it for future research.

While the different methods are generally capable of focusing in on a small set of translation
candidates for a given input, we enforce the constraint that a unique translation candidate
(possibly the empty string — see below) must be generated for each input, in order to avoid
any bias to methods with high output fan-out. This is done by breaking ties in translation

potential, by randomly selecting one translation candidate from the set of outputs.

4 A superset of the dataset used by Baldwin and Tanaka (2000).

28

Baldwin, T. and H. Tanaka Translation Retrieval

In an effort to make evaluation as objective and empirical as possible, appropriateness of
the final translation candidate proposed by the different methods was evaluated according to
the 3-operation edit distance between the translation candidate and the unique model trans-
lation. In this, we transferred the 3-operation edit distance method described above directly
across to L2 (English), with segments as words and the following experimentally-validated

sweight schema:

Segment type ‘ sweight

punctuation 0
stop words 0.01

other words 1

Stop words are defined as those contained within the SMART (Salton 1971) stop word list.?
The (unique) system output was judged to be correct if it was optimally close to the model
translation, i.e. that there was no other translation candidate closer to the model translation
in terms of 3-operation edit distance; the average optimal 3-operation edit distance from the
model translation was 3.72.

We set the additional criterion that the different methods should be able to determine
whether the top-ranking translation candidate is likely to be useful to the translator, and that
no output should be given if the closest matching translation record was outside a certain
range of “translation usefulness”. In practice, this was set to the 3-operation edit distance
between the model translation and the empty string (i.e. the edit cost of creating the model
translation from scratch). This cutoff point was realised for the different string comparison
methods by thresholding over the respective scores. The different thresholds settled upon
experimentally for all string comparison methods are given in brackets in the second column
of Table 1, with the threshold for edit distance methods dynamically set to the edit distance
between the input and the empty string.

We set ourselves apart from conventional research on TM retrieval performance in adopt-
ing this objective numerical evaluation method. Traditionally, retrieval performance has been
gauged by the subjective usefulness of the closest matching element of the system output (as
judged by a human), and described by way of a discrete set of translation quality descriptors
(e.g. (Nakamura 1989; Sumita and Tsutsumi 1991; Sato 1992)). Perhaps the closest evaluation
attempts to what we propose are those of Planas and Furuse (1999) in setting a mechanical

cutoff for “translation usability” as the ability to generate the model translation from a given

5 ftp://ftp.cornell.cs.edu/pub/smart/english.stop

29

Journal of Natural Language Processing Vol. 8 No. 2 Apr. 2001

translation candidate by editing less than half the component words, and Nirenburg et al.
(1993) in calculating the weighted number of key strokes required to convert the system out-
put into an appropriate translation for the original input. The method of Nirenburg et al.
(1993) is certainly more indicative of true L2 usefulness, but is dependent on the competence
of the translator editing the TM system output, and not automated to the degree our method

is.

Method Accuracy Edzt Ave. Ave.
discrep. outputs time
Vector space model (0.5) 51.56 0.85 1.03 (0.97) | 1.72
Token intersection (0.4) 51.44 0.75 1.07 (0.94) | 2.39
CHAR- 3-op edit distance (len(IN)) 58.19 0.50 1.36 (0.81) | 3.01
BASED 3-op edit similarity (0.4) 53.31 0.60 1.08 (0.95) | 11.49
INDEXING 4-op edit distance (len(IN)) 50.24 0.66 1.54 (0.79) | 20.02
4-op edit similarity (0.3) 51.56 0.59 1.17 (0.90) | 30.83
Weighted seq. corr, Maz = 2 (0.2) 55.67 0.46 1.06 (0.95) | 64.02
Weighted seq. corr, Maz = 4 (0.2) 53.48 0.66 1.06 (0.95) | 137.83
Vector space model (0.5) 50.84 (—1.4%) 0.77 1.10 (0.93) | 0.68
Token intersection (0.4) 51.40 (—0.1%) 0.71 1.17 (0.89) | 0.91
WORD- 3-op edit distance (len(IN)) 54.67 (—6.0%) 0.56 1.78 (0.72) 1.00
BASED 3-op edit similarity (0.4) 51.92 (—2.6%) 0.62 1.17 (0.89) | 1.80
INDEXING 4-op edit distance (len(IN)) 48.08 (—4.3%) 0.76 2.51 (0.66) | 3.39
4op edit similarity (0.3) 49.32 (—4.3%) | 064 | 1.40 (0.84) | 4.45
Weighted seq. corr, Maz =2 (0.2) 52.44 (—5.8%) 0.50 1.15 (0.91) | 12.85
Weighted seq. corr, Maz =4 (0.2) 50.08 (—6.4%) 0.65 1.13 (0.93) | 31.28

Table 1 Results for the different string comparison methods under character-based and
word-based indexing

4.2 Results

The results for the different string comparison methods with character-based and word-
based indexing are given in Table 1, with the two bag-of-words approaches partitioned off from
the five segment order-sensitive approaches for each indexing paradigm (weighted sequential
correspondence was tested twice, with varying values of the variable cutoff Maz). “Accuracy”
is an indication of the proportion of inputs for which an optimal translation was produced;
character-based indexing accuracies in bold indicate a significant® advantage over the cor-
responding word-based indexing accuracy, and figures in brackets for word-based indexing

indicate the relative performance gain over the corresponding character-based indexing con-

6 As determined by the paired ¢ test (p < 0.05).

30

Baldwin, T. and H. Tanaka Translation Retrieval

figuration. “Edit discrep.” refers to the mean 3-operation edit distance discrepancy between
the translation candidate and optimal translation(s) in the case of the translation candidate
being sub-optimal. “Ave. outputs” describes the average number of translation candidates
output by the system, with the figure in brackets being the proportion of inputs for which
a unique translation candidate was produced; recall that a unique translation candidate is
randomly selected for final evaluation purposes in the case of multiple outputs. “Ave. time”
describes the average time taken to determine the translation candidate(s) for a single output,
relative to the time taken for word-based 3-operation edit distance retrieval; note that the
figures for word-based indexing include the times for on-line segmentation of the input. The
best result in each column for each of character- and word-based indexing, is underlined.

Perhaps the most striking result is that character-based indexing produces a superior match
accuracy to word-based indexing for all string comparison methods, although we must qualify
this in saying that none of the gains were found to be statistically significant. While this
finding is perhaps counterintuitive, it concurs with the results of Baldwin and Tanaka (2000)
for an analogous TM system and also Fujii and Croft (1993) for information retrieval.

Looking to segment order, we see that 3-operation edit distance outperforms all other
methods for both character- and word-based indexing, peaking at just over 58% for character-
based indexing.” The relative performance of the remaining methods is variable, with the two
bag-of-words methods being superior to or roughly equivalent to all segment order-sensitive
methods other than 3-operation edit distance for word-based indexing, but the relative gain
for the segment order-based methods under character-based indexing tending to exceed that
for the bag-of-words methods. It is thus difficult to draw any hard and fast conclusion as to
the relative merits of segment order-based versus bag-of-words methods, other than to say
that 3-operation edit distance would appear to have a clear advantage over other methods.

The figures for edit discrepancy in the case of non-optimal translation candidate(s) are e-
qually interesting, and suggest that on the whole, the various methods err more conservatively
for character-based than word-based indexing. The most robust method is weighted sequential
correspondence (Maz = 2), at an edit discrepancy of 0.46 and 0.50 for character-based and
word-based indexing, respectively.

All methods were able to produce just over one translation candidate on average, with all
other than the edit distance methods returning a unique translation candidate around 90% of
the time or better. Theoretically, it should be possible to generate slightly higher accuracies
for methods with higher numbers of outputs (most notably the edit distance methods) through

7 All accuracies are well up on those quoted in Baldwin and Tanaka (2000) due to the modified English sweight
schema and an enlarged dataset.

31

Journal of Natural Language Processing Vol. 8 No. 2 Apr. 2001

more careful selection of the final translation candidate. Preliminary testing of the scope for
improvement here, suggests that there is certainly a correlation between the average number
of outputs and the potential for improvement in both raw accuracy and edit discrepancy, a
point we leave for future research.

Turning to speed, word-based indexing was found to be faster than character-based index-
ing across the board, for the simple reason that the number of character segments is always
going to be greater than or equal to the number of word segments. The average segment
lengths quoted above (27.7 characters vs. 14.4 words) indicate that we generally have twice
as many characters as words in a given string. Additionally, the inverted file-based acceler-
ation technique has a greater effect for word-based indexing than character-based indexing,
accentuating any speed disparity. The exceptionally slow speeds for weighted sequential cor-
respondence under character-based indexing and for higher values of Maz in particular, are
worrying. Indeed, despite the marginal lead of weighted sequential correspondence over other
methods in terms of edit discrepancy, we suggest that its sluggish nature makes it inappropri-
ate for on-line tasks, or that at best, any effort expended in speeding it up would be better
invested in enhancing one of the other methods.

One interesting point to come out of the presented figures is that 3-operation edit distance
is superior to 4-operation edit distance and similarity in all respects, and also that we lose out
by normalising 3-operation edit distance to a similarity.

In summary, segmentation degrades retrieval accuracy but enhances access speed. The best
justification for segmentation thus comes in terms of acceleration when used in combination
with the proposed retrieval optimisation techniques, and if we are solely interested in accuracy
and edit discrepancy, then our method of choice is 3-operation edit distance operating under

character-based indexing.

4.3 The impact of kanji on the results

An immediate explanation for character-based indexing’s empirical edge over word-based
indexing is the semantic smoothing effects of individual kanji characters, alluded to above
(Section 2). To take an example, the single-segment nouns #1F [sosa] and {F&E) [sado] are
synonyms and both translated as “operation” in the given domain, but would not match under
word-based indexing. Character-based indexing, on the other hand, would recognise the over-
lap in character content, and in the process pick up on the semantic correspondence between
the two words.

To test the effect of kanji characters (i.e. ideograms) on translation retrieval performance,

32

Baldwin, T. and H. Tanaka Translation Retrieval

Method Accuracy Edlt Ave. Ave.
discrep. outputs time
Vector space model (0.5) 48.22 1.22 1.03 (0.97) | 3.28
Token intersection (0.4) 49.02 0.97 1.05 (0.95) | 4.53
CHAR- 3-op edit distance (len(IN)) 55.47 0.53 1.35 (0.81) | 42.84
BASED 3-op edit similarity (0.4) 53.07 0.68 1.06 (0.95) | 86.62
INDEXING 4-op edit distance (len(IN)) 50.70 0.68 1.42 (0.81) | 98.60
4-op edit similarity (0.3) 51.30 0.65 1.17 (0.90) | 139.32
Weighted seq. corr, Maz = 2 (0.2) 55.35 0.62 1.05 (0.96) | 182.63
Weighted seq. corr, Maz = 4 (0.2) 54.35 0.69 1.04 (0.97) | 218.93
Vector space model (0.5) 52.54 (+9.0%) 0.80 1.10 (0.93) | 0.63
Token intersection (0.4) 51.94 (+6.0%) 0.75 1.19 (0.89) | 0.84
WORD- 3-op edit distance (len(IN)) 55.15 (—0.6%) 0.57 1.85 (0.74) | 0.93
Bane 3-op edit similarity (0.4) 52.30 (—1.4%) | 0.64 | 1.19 (0.89) | 1.65
INDEXING 4-op edit distance (len(IN)) 47.93 (—5.5%) 0.75 2.44 (0.67) | 2.98
d-op edit similarity (0.3) 50.26 (—2.0%) | 0.66 | 1.41 (0.84) | 3.93
Weighted seq. corr, Maz = 2 (0.2) 52.26 (—5.6%) 0.65 1.17 (0.91) | 12.90
Weighted seq. corr, Maz = 4 (0.2) 51.22 (—5.8%) 0.65 1.14 (0.92) | 27.41

Table 2 Results for the different string comparison methods over alphabetised
(katakana-transcribed) data

we used ChaSen to convert all kanji and hiragana into katakana, generating an essentially
alphabetic version of each string, analogous to the case of Thai. In one version of this al-
phabetised data, the original segmentation was retained, and in a second version, each string
was segmented off into individual characters. We then ran the same methods over this mod-
ified input, using exactly the same technique as for the original experiment. The results are
presented in Table 2, with times calculated relative to 3-operation edit distance in the first
experiment.

Here, we find that for word-based indexing, most methods performed marginally better
over the alphabetised data than over the original data preserving the full heterogeneity of
hiragana, katakana and kanji. As for the original experiment, the segment order-sensitive
methods perform better under character-based indexing than word-based indexing, to a level
of statistical significance for weighted sequential correspondence (Maz = 2). This trend was
reversed for the bag-of-words methods, with both VSM and token intersection suffering a
significant degradation in accuracy under character-based indexing. Once again, 3-operation
edit distance proved the clear victor on all fronts, with the only blemish being its running
time under character-based indexing.

One immediate conclusion which can be drawn from this is that, in the absence of segment

sensitivity, segmentation is required in order to maintain performance levels under character-

33

Journal of Natural Language Processing Vol. 8 No. 2 Apr. 2001

based indexing, when operating over homogeneous alphabetised data. Perhaps more impor-
tantly, that the same smoothing effect was observed for character-based indexing when op-
erating over both lexically differentiated and alphabetised script, would tend to suggest that
smoothing is not tied to kanji characters to the degree we had originally predicted. Having
said this, returning to our “operation” synonym example from above, we notice that the over-
lap in kanji is reflected in overlap in pronunciation, which is retained in the katakana version.
In this sense, the smoothing effect for katakana-based input can be said to draw on the same
basic mechanism as for the original lexically differentiated data.

It is possible to translate these results for Japanese across to other non-segmenting lan-
guages, notably Chinese and Thai. Due to its ideogrammatic founding, we would expect to get
similar results to those for the first experiment with Chinese, that is segmentation would harm
rather than aid translation retrieval accuracy and impinge only slightly on retrieval speed for
most methods. For Thai, we can apply the results from the second experiment in postulating
that the main advantage in segmenting strings would be computational in pruning the search
space.

As an aside, it is important to pick up on the blowout in running times for character-based
indexing in the second experiment, again suggesting that segmentation has a place in pruning
the search space and reducing access times. The slowdown for the edit distance and similarity
methods is particularly marked, and relates to the inverted file-based acceleration method fail-
ing to a large degree due to the homogeneity of the data. This does not occur for word-based
indexing because segmentation produces segment differentiation. The relatively lesser degree
of slowdown for weighted sequential correspondence when compared to the original experi-
ment, is largely because the running time is bounded by the size of the TM; a large portion
of the TM was searched over in the original experiment, such that the relative slowdown was

buffered.

4.4 Miscellaneous reflections

One way in which ChaSen could conceivably have affected retrieval performance is that
technical terms tended to be over-segmented. Experimentally combining recognised technical
terms into a single segment (particularly in the case of contiguous katakana segments in the
manner of Fujii and Croft (1993)), however, degraded rather than improved retrieval perfor-
mance for both character-based and word-based indexing. As such, this side-effect of ChaSen
would not appear to have impinged on retrieval accuracy. Additionally, over-segmentation

was consistent on the whole, such that parts of the same whole could be matched together

34

Baldwin, T. and H. Tanaka Translation Retrieval

under word-based indexing as well as character-based indexing.

One other plausible reason for the unexpected results is that the dataset could have been
in some way inherently better suited to character-based indexing than word-based indexing,
although the fact that the results were cross-validated would tend to rule out this possibility.

Interestingly, weighted sequential correspondence consistently performed better with Maz
set to 2. This contradicts the finding of Sato (1992) that a setting of 4 was optimal for
character-based indexing.

To return to the original question posed above of retrieval speed vs. accuracy, the seg-
ment order-sensitive edit distance approach would seem to hold a genuine edge over the other
methods in terms of accuracy and edit discrepancy, to an order that would suggest the extra
computational overhead is warranted, in both accuracy and translation discrepancy. It must
be said that the TM used in evaluation was too small to get a genuine feel for the computa-
tional overhead that would be experienced in a real-world TM system context of potentially

millions rather than thousands of translation records.

5 Concluding remarks

This research is concerned with the relative import of segment order and segmentation on
translation retrieval performance for a TM system. We modelled the effects of segment order
sensitivity vs. bag-of-words segment order insensitivity by implementing a total of seven string
comparison methods: two bag-of-words approaches (the vector space model and “token inter-
section”) and five segment order-sensitive approaches (3- and 4-operation edit distance and
similarity, and “weighted sequential correspondence”). Each of these methods was then tested
under character-based and word-based indexing, to determine what effect segmentation would
have on retrieval performance. Empirical evaluation based around the L2 3-operation edit dis-
tance of proposed translation candidates revealed that character-based indexing consistently
produced greater accuracy than word-based indexing, and that the segment order-sensitive
3-operation edit distance method clearly outperformed all other methods under both indexing
paradigms. We then went on to analyse the effect of kanji ideograms on the superiority of
character-based indexing, and concluded that while individual kanji characters may have some
smoothing effect, a fully alphabetised context produces the same basic result. One unexpected
benefit of segmentation was the speed-up of TM search times when used in combination with
a number of optimisation techniques.

The main area in which we feel this research could be enhanced is to validate the findings

of this paper in expanding evaluation to other domains and test sets, which we leave as an

35

Journal of Natural Language Processing Vol. 8 No. 2 Apr. 2001

item for future research. We also skirted around the issue of translation record partitioning,

and wish to investigate how different partitioning methods perform against each other.

Acknowledgements

Vital input into this research was received from Francis Bond (NTT) and Emmanuel Planas
(NTT).

Reference

Baldwin, T., and Tanaka, H. (1999). “The applications of unsupervised learning to Japanese
grapheme-phoneme alignment.” In Proc. of the ACL Workshop on Unsupervised Learn-
ing in Natural Language Processing, pp. 9-16.

Baldwin, T., and Tanaka, H. (2000). “The Effects of Word Order and Segmentation on
Translation Retrieval Performance.” In Proc. of the 18th International Conference on
Computational Linguistics (COLING 2000), pp. 35-41.

Fujii, H., and Croft, W. (1993). “A Comparison of Indexing Techniques for Japanese Text
Retrieval.” In Proc. of 16th International ACM-SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’93), pp. 237-46.

Kitamura, E., and Yamamoto, H. (1996). “Translation Retrieval System Using Alignment
Data from Parallel Texts.” In Proc. of the 53rd Annual Meeting of the IPSJ, Vol. 2, pp.
385-6. (In Japanese).

Manning, C., and Schiitze, H. (1999). Foundations of Statistical Natural Language Processing.
MIT Press.

Matsumoto, Y., Kitauchi, A., Yamashita, T., and Hirano, Y. (1999). “Japanese Morphological
Analysis System ChaSen Version 2.0 Manual.” Tech. rep. NAIST-IS-TR99009, NAIST.

Nakamura, N. (1989). “Translation Support by Retrieving Bilingual Texts.” In Proc. of the
38th Annual Meeting of the IPSJ, Vol. 1, pp. 357-8. (In Japanese).

Nirenburg, S., Domashnev, C., and Grannes, D. (1993). “Two Approaches to Matching in
Example-Based Machine Translation.” In Proc. of the 5th International Conference on
Theoretical and Methodological Issues in Machine Translation (TMI-93), pp. 47-57.

Planas, E. (1998). “A Case Study on Memory Based Machine Translation Tools.” PhD Fellow
Working Paper, United Nations University.

Planas, E., and Furuse, O. (1999). “Formalizing Translation Memories.” In Proc. of Machine

Translation Summit VII, pp. 331-9.

36

Baldwin, T. and H. Tanaka Translation Retrieval

Salton, G. (1971). The SMART Retrieval System: Experiments in Automatic Document Pro-
cessing. Prentice-Hall.

Sato, S. (1992). “CTM: An Example-Based Translation Aid System.” In Proc. of the 14th
International Conference on Computational Linguistics (COLING ’92), pp. 1259-63.

Sato, S., and Kawase, T. (1994). “A High-Speed Best Match Retrieval Method for Japanese
Text.” Tech. rep. IS-RR-94-91, JAIST.

Sumita, E., and Tsutsumi, Y. (1991). “A Practical Method of Retrieving Similar Examples
for Translation Aid.” Transactions of the IEICE, J74-D-II(10), 1437-47. (In Japanese).

Tanaka, H. (1997). “An Efficient Way of Gauging Similarity between Long Japanese Expres-
sions.” In Information Processing Society of Japan SIG Notes, Vol. 97, no. 85, pp. 69-74.
(In Japanese).

Wagner, A., and Fisher, M. (1974). “The String-to-String Correction Problem.” Journal of
the ACM, 21(1), 168-73.

Timothy Baldwin: Timothy Baldwin received his BSc in computer science
from the University of Melbourne in 1994, and his BA in linguistics and
Japanese also from the University of Melbourne in 1995. He completed an
MEng in computer science at the Tokyo Institute of Technology in 1998, and
is currently working towards his PhD at that same institution. His curren-
t research interests include machine translation, computational lexical se-
mantics, word sense disambiguation, machine learning and computer-aided
language learning.

Hozumi Tanaka: Hozumi Tanaka received his BS in 1964 and MS in 1966,
both from the Tokyo Institute of Technology. In 1966 he joined the Electro
Technical Laboratories, Tsukuba. He received his DEng in 1980 from the
Tokyo Institute of Technology, and has been a professor in the Department
of Computer Science of that same university since 1983. His main research

background is in artificial intelligence and natural language processing.

37

