
A hybrid back-transliteration system for Japanese

Slaven BILAC
Tokyo Institute of Technology

Ookayama 2-12-1, Meguro
152-8552 Tokyo

Japan
sbilac@cl.cs.titech.ac.jp

Hozumi TANAKA
Tokyo Institute of Technology

Ookayama 2-12-1, Meguro
152-8552 Tokyo

Japan
tanaka@cl.cs.titech.ac.jp

Abstract

Transliterating words and names from one lan-
guage to another is a frequent and highly pro-
ductive phenomenon. Transliteration is infor-
mation loosing since important distinctions are
not preserved in the process. Hence, auto-
matically converting transliterated words back
into their original form is a real challenge.
In addition, due to its wide applicability in
MT and CLIR, it is an interesting problem
from a practical point of view. In this pa-
per, we propose a new method, combining the
transliterated string segmentation module with
phoneme-based and grapheme-based transliter-
ation modules in order to enhance the back–
transliterations of Japanese words. Our exper-
iments show significant improvements achieved
by the hybrid approach.

1 Introduction

With the advent of technology and increased
flow of goods and services, it has become quite
common to integrate new words from one lan-
guage to another. Whenever a word is adopted
into a new language, pronunciation is adjusted
to suit the phonetic inventory of the language.
Furthermore, the orthographic form of the word
is modified to allow representation in the tar-
get language script. This process of acquisition
and assimilation of a new word into an existing
writing system is referred to as transliteration
(Knight and Graehl, 1998). For example, the
English word cache is transliterated in Japanese
as キャッシュ “kyasshu”.1

Since integration of new words is a very pro-
ductive process, it often happens that the new

1We use italics to transcribe the English words, while
Japanese transliterations (e.g. キャッシュ) are given with
romaji (i.e. roman alphabet) in ”typewriter” font (e.g.
”kyasshu”). The romanization used follows (Knight and
Graehl, 1998), thus closely reflecting English–like pro-
nunciation with long vowels transcribed as ”aa” rather
than ”ā”.

pairs are not recorded in machine or human dic-
tionaries. Therefore, it is impossible to rely on
the dictionary lookup to find the transliteration
pairs. Inability to find a target language equiv-
alent represents a major problem in Machine
Translation (MT) since it can cause transla-
tion failures. Furthermore, transliteration rep-
resents a serious problem in the area of Cross-
Language Information Retrieval (CLIR) where
the goal is to retrieve all related documents in
two or more languages (Lin and Chen, 2002).

Back-transliteration is the transliteration
back into the original language. It is generally
more difficult than transliteration. Increase in
difficulty results from the fact that various dis-
tinctions, present in the source language, are
not preserved when the word is transliterated
into the target language. For example, Japanese
has only five basic vowels and no /T/ or /D/2

sounds. Non-existent sounds are replaced with
their closest equivalents. Consequently, the fol-
lowing three English words: bass,bath and bus
are transliterated as バス “basu”.3 The system
trying to obtain a back-transliteration for バス
has therefore three valid choices which cannot
be disambiguated in the absence of additional
contextual transformation. Furthermore, the
transliteration commonly reflects the pronunci-
ation of the source language, yet spelling can
also affect it. For example the first e in eternal
is transliterated as ”e” instead of ”i” in エター
ナル “etaanaru”.

Transliterated words are normally written in
katakana, one of three Japanese writing sys-
tems. While other vocabulary (i.e. animal
names or onomatopoeic expressions) can also
be written in katakana, the very fact that some-
thing is written in katakana is generally a good
hint that it might be a transliterated foreign

2All phonemes given in // are written in IPA symbols.
3Here /T/ is replaced with /s/, and /æ/ is replaced

with /a/.

word or a name. Thus, unlike Arabic or Korean,
where a big part of the back-transliteration
problem is identifying candidate transliterations
(Stalls and Knight, 1998; Jeong et al., 1999),
in Japanese back-transliteration can be directly
applied to any katakana strings absent from the
bilingual dictionary.

Furthermore, since Japanese does not employ
spaces to delimit words, katakana strings are
often not individual English words but whole
phrases. For example, リハビリテーションセン
ター “rihabiriteeshonsentaa” is the translit-
eration of rehabilitation center. Abbreviations
are common so the rehabilitation center is actu-
ally more commonly transliterated as リハビリ
センター “rihabirisentaa”.

In this paper we describe a system which first
finds the best segmentation of a transliterated
string and then obtains back-transliterations us-
ing the combined information based on pronun-
ciation and spelling. Our goal is to demonstrate
that by recognizing the weaknesses of existing
models and carefully combining them to capital-
ize on their synergies can significantly improve
the overall performance even without substan-
tial modifications to the underlying models.

The reminder of this paper is organized as fol-
lows: in Section 2 we review previous research.
Section 3 describes the proposed segmentation
method and Section 4 outlines the translitera-
tion model. Finally, Section 5 gives a short eval-
uation and a discussion of the results obtained.

2 Previous research

Previous approaches to (back-)transliteration
can be roughly divided into two groups:
grapheme- and phoneme-based. These ap-
proaches are also referred to as direct- and
pivot-based methods, respectively.

2.1 Grapheme-based modeling
In this framework, the English string is not con-
verted into a phonemic representation before its
alignment with the transliterated string (Kang
and Choi, 2000; Goto et al., 2003). Brill et
al. (2001) propose a noisy channel model al-
lowing for non-atomics edits (Brill and Moore,
2000). The input string is broken down into ar-
bitrary substrings, each of which is output inde-
pendently (and possibly incorrectly). The best
back-transliteration is chosen using a modified
edit distance algorithm (Damerau, 1964; Leven-
sthein, 1966). This method fails to generate the
correct string in cases where English spelling is
not reflected in the pronunciation (e.g マイム

“maimu” being incorrectly back-transliterated
into maim instead of mime). Furthermore, since
the transliterations are compared to dictionary
entries this method does not handle phrases di-
rectly.

2.2 Phoneme-based modeling

In this approach the pronunciation, rather than
the spelling of the original string is consid-
ered as a basis for transliteration (Jeong et
al., 1999; Oh and Choi, 2002). For Japanese,
Knight and Graehl (1998) employ a compo-
sitional model combining romaji-to-phoneme,
phoneme-to-English and English word probabil-
ity models. The combined structure is treated
as a graph, and the top ranking strings are
found using the k-best path algorithm (Epp-
stein, 1994). A similar model has been applied
for Arabic-English back-transliteration (Stalls
and Knight, 1998). However, this model can-
not handle cases where the transliteration re-
flects the original spelling. Furthermore, even
though the system handles phrases, commonly
it is the case that even though the correct
back-transliterations can be obtained for each
of the words in the phrase when handled sep-
arately, the system does not output the cor-
rect answer when handled as a phrase. For
example, both テープ “teepu” and サブシス
テム “sabushisutemu” are correctly transliter-
ated as tape and subsystem, respectively, but
the output for the phrase テープサブシステム
“teepusabushisutemu” is incorrect.

3 Input Segmentation

Above we have noted that transliterations are
commonly based on English phrases and not
only individual words. Therefore, a system able
to determine the proper segmentation of the
transliterated string W , has a better chance of
getting the correct answer. Since Japanese does
not employ word delimiters (i.e. white spaces),
text segmentation is a big part of any NLP
system dealing with Japanese. However, two
of the most common morpho-syntactic analy-
sis systems: Juman (Kurohashi et al., 1994)
and ChaSen (Matumoto et al., 2002) both em-
ploy rule based segmentation which heavily re-
lies on dictionary lookups. Since the back-
transliteration is aiming to handle words that
are not contained in the dictionary, such sys-
tems cannot be readily applied to segmentation
of katakana strings. Therefore, statistical seg-
mentation methods are preferable.

Furthermore, the transliterated strings make
up a small percentage of Japanese texts, thus
making it very hard to obtain a large train-
ing set. Thus, the segmentation method must
be effective with limited amounts of training
data like the algorithms used for word discov-
ery (Brent, 1999; Venkataraman, 2001). Being
designed for word acquisition, these methods
penalize longer, new words more than shorter
ones, hence they often err by over-segmenting
the input. However, over-segmentation of the
string significantly hurts the transliteration per-
formance since subword chunks cannot be trans-
formed to correct English words. In the case of
under-segmentation, longer chunks can still be
correctly transliterated as phrases (see below).
Thus, for transliteration, a system able to seg-
ment strings with little training data and with-
out a tendency to over-segment the input string
is preferable.

3.1 Segmentation model
Here we outline an implementation of a simple
segmentation model which favors longer, new
words over shorter ones. Given the string W
to be segmented the goal is to insert word de-
limiters (#) so that the overall score W =
w1#w2# . . .#wk of the string is maximized
(Equation 1) if each each word wi score is as-
signed according to Equations 2 and 3.

Ŵ = arg max
W

k∏

i=1

S(wi) (1)

S(wi) =

{
C(wi)
N+T if C(wi) > 0
N

N+T SΣ(wi) otherwise
(2)

SΣ(wi) =
r(#)(

∏ki
j=1 r(wi[j]))p

1− r(#)
(3)

p =
{

L̄− ki if k1 < L̄
1 otherwise (4)

In these equation C is the occurrence count,
N is the count of word types and T is the to-
tal token count. ki is the length of word wi,
wi[j] is the jth letter, r is the relative frequency
and L̄ is the average word length. As can be
seen, penalty p is introduced for discouraging
segmentations introducing many short, novel
words (Equation 4). The best segmentation is
calculated using Dynamic Programming. Once
the best segmentation is decided the counts are
updated as necessary. The penalty for shorter
words is what distinguishes this model from the

unigram model of Venkataraman (2001).4

4 Transliteration models

After the input is segmented we can proceed to
transliterate it back into original language. As
pointed out above, both the pronunciation and
spelling of the original influence the translitera-
tion. This being so, we combine them to achieve
higher accuracy.

Given some Japanese word in romaji (Ja),5
the goal is to find the English word (phrase) Ea

that maximizes the probability P (Ea|Ja). Ap-
plying the Bayes’ rule and dropping the con-
stant denominator we get P (Ja|Ea) × P (Ea),
where P (Ea) is the source model and P (Ja|Ea)
is the noisy channel. We train the channel
model as described below, and then reverse it
to handle the romaji input.

4.1 Grapheme-based model (GM)

In this model the English word is directly
rewritten as a Japanese romaji string with the
probability Pg(Ja|Ea). Here, we follow (Brill
et al., 2001) to arbitrarily break up the Ea

string into n parts and output each part inde-
pendently. Thus, the resulting probability of
outputting Ja can be rewritten as in the equa-
tion (5).

Pg(Ja|Ea) ∼=
n∏

i=1

Pg(Jai |Eai) (5)

We implement Pg(Ja|Ea) as a weighted Finite
State Transducer (WFST) with Eai as inputs,
Jai as outputs (Pereira and Riley, 1997; Knight
and Graehl, 1998) and transition costs as neg-
ative logs of probabilities. This WFST is then
reversed and composed with the source model
WFST.6 When the source model P (Ea) is com-
piled into a WFST, a null input, word delimiter
output transition is added, allowing for multi-
ple words to be output for a single string input.
Hence phrases can also be handled.

4Venkataraman observes the best performance using
this model in many of his experiments.

5As stated above, transliterated words are normally
written in katakana, potentially inducing an another
stage in the model: rewriting romaji characters into
katakana P (Jk|Ja). However, katakana characters gener-
ally have a unique alphabetic equivalent, thus reducing
this distribution to 1. We implement the katakana to
romaji conversion as a preprocessing module.

6We use the AT&T FSM library (http://www.
research.att.com/~mohri/fsm/) for WFST composi-
tion.

The WFST resulting from the composition of
the Pg(Ja|Ea) and P (Ea) WFST composition
is searched for k-best transliterations using the
k-best path algorithm. A probability Pg(Ea|Ja)
is associated with each path obtained.

4.2 Phoneme-based model (PM)
In this model the channel is broken up into
two stages: a) conversion of the English alpha-
bet into English phonemes with some proba-
bility P (Ep|Ea) and b) conversion of the En-
glish phonemes into romaji with some probabil-
ity P (Ja|Ep). Consequently, Pp(Ja|Ea) can be
rewritten as equation (6). Rather than manip-
ulating these two distributions separately, we
compute their composition to obtain a unique
probability distribution Pp(Jai |Eai).

Pp(Ja|Ea) ∼=
n∏

i=1

P (Jai |Epi)×
n∏

i=1

P (Epi |Eai) (6)

Consequently all English alphabet strings can
be rewritten directly into romaji without requir-
ing their conversion into intermediate phoneme
representation. This removes the requirement
of having a pronunciation dictionary for the
back-transliteration.7 Furthermore, since both
models are dealing with the same unit types, it
is possible to directly combine them, allowing
for certain parts of the input string to be con-
verted by one and the rest by the other model.
We leave this method of combination for future
research.

4.3 Combining the models
After obtaining the back–transliterations Eaphon

and Eagraph
with the respective probabilities of

Pp(Ea|Ja) and Pg(Ea|Ja), we can assign the fi-
nal score of a transliteration Sc(Ea|Ja) as in
equation (7) where γ and δ are set to maximize
the accuracy on the training set.8 Transliter-
ation with the highest score is selected as the
best.

Sc(Ea|Ja) = γPp(Ea|Ja) + δPg(Ea|Ja)
s.t. γ + δ = 1 (7)

4.4 Training the models
For the GM, we follow (Brill et al., 2001) closely
to extract the character-string mappings. Ro-
maji and English alphabet are first aligned

7However, the pronunciation dictionary is still neces-
sary for the training.

8Parameters are trained using Golden Section Search
(Press et al., 1992).

using the non-weighted Levensthein distance.
Then, letter-edits are expanded to include up
to N edits to the right and to the left. For
example, for the pair (roo,row) we get: r →
r o → o o → w. For N = 1, edits ro → ro,
roo → row, oo → ow are also added to the set.
We collect a complete set of edits αg → βg in the
training set and assign the probability to each
according to equation (8). Throughout, we dis-
tinguish edits that appear at the beginning or
the end of the word or neither.

P (α → β) =
count(α → β)

count(α)
(8)

Given the collection of edits αg → βg for each
input word Ja we can generate a WFST which
contains all possible ways to rewrite the input
string.

For the PM, we follow (Knight and Graehl,
1998) to obtain the optimal romaji to English
phoneme alignment. After the EM algorithm
selects the optimal alignment, we proceed to ex-
pand the set of individual alignments with N
adjacent units as above to obtain a set of possi-
ble rewrites αep → βja . This process is repeated
to obtain the set of all possible rewrites of En-
glish alphabet into phonemes αea → βep .

Each input αea with all its mappings βep is
converted into a WFST and composed with a
WFST encoding the complete set of mappings
αep → βja to obtain the set of all possible
rewrites of English alphabet strings αp into ro-
maji strings βp based on the PM.

5 Evaluation

The proposed system is intended for producing
transliterations of katakana strings not found
in the system dictionary. Therefore, we eval-
uate various aspects of the system on sets of
novel katakana strings. The first set consists
of 150 katakana words extracted from the EDR
Japanese corpus (EDR, 1995) not in the EDICT
dictionary. Since one of motivations for doing
this research was to examine possible uses of
transliteration in CLIR, we conducted a second
test using the NTCIR-2 test collection (Kando
et al., 2001). All 78 out-of-vocabulary katakana
words from the topic section (i.e. queries) were
used. Note this topics section consists of 49
short documents, thus showing that NTCIR-2
collection of scientific texts has a large number
of (novel) katakana words.

First, we evaluate the segmentation module of
the system. We use the two sets and compare

Set Recall Precision F
UNI EDR 78.64 65.53 71.49
SEG EDR 95.45 95.00 95.23
CHA NTCIR-2 65.04 66.67 65.84
UNI NTCIR-2 82.11 70.14 75.65
SEG NTCIR-2 88.62 86.51 87.56

Table 1: Results of the segmentation

our system (SEG) with the unigram segmenta-
tion model of Venkataraman (2001) (UNI), and
the segmentation obtained by ChaSen (CHA).9
For this evaluation we trained the two statisti-
cal models on a complete set of about 13,000
all-katakana strings from the Edict dictionary.
Each string was considered as one word and
the unigram and phoneme models were updated
after each repetition. The segmentation stan-
dard was segmented by hand. The results are
shown in Table 1. In this table, recall is cal-
culated as c

N , precision as c
n and F-measure as

2×precision×recall
precision+recall . Here, N is the correct num-

ber of words (assigned in hand-segmentation), e
is the number of words incorrectly identified, c
is the number of words correctly identified and
n = c + e is the total number of words iden-
tified automatically. We can see that ChaSen
segmentation achieves the lowest score of the
three methods because it deems most strings as
unknown words and leaves them unsegmented.
UNI method performs better, but it assigns
a high number of incorrect word boundaries.
On the other hand, penalizing shorter words
is highly effective in encouraging selection of
longer novel words which in turn reduces the
number of segmentation errors and significantly
increases all three measures.

Next we evaluate the transliteration module
of the system. We extracted a collection of
about 6000 words in katakana together with
the corresponding English translation from the
EDICT dictionary. This set was expanded, so
that for each katakana word containing a long
vowel or a geminate consonant, we add one with
these removed. The pronunciations for train-
ing the PM were obtained from the CMU pro-
nouncing dictionary. When no pronunciations
were available the words were excluded from the

9Only given for NTCIR-2 data since EDR katakana
words with frequency over 3 were used for evaluation.
The ChaSen segmentation depends on the sentence con-
text, hence it might be different for different appearances
of the string.

Top-1 (%) Top-10 (%)
PM0 20 (13.33) 36 (24.00)
SEG 50 (33.33) 51 (34.00)
GM 72 (48.00) 99 (66.00)
GM + SEG 87 (58.00) 108 (72.00)
PM 69 (46.00) 92 (61.33)
PM + SEG 86 (57.33) 102 (68.00)
COMB 74 (49.33) 108 (72.00)
COMB + SEG 89 (59.33) 113 (75.33)

Table 2: Transliteration results for the EDR
test set (150 inputs)

Top-1 (%) Top-10 (%)
SEG 20 (25.64) 20 (25.64)
GM 38 (48.72) 49 (62.82)
GM + CHA 42 (53.85) 54 (69.23)
GM + UNI 42 (53.85) 52 (66.67)
GM + SEG 52 (66.67) 61 (78.21)
PM 28 (35.90) 41 (52.56)
PM + CHA 38 (48.72) 49 (62.82)
PM + UNI 39 (50.00) 55 (70.51)
PM + SEG 45 (57.69) 58 (74.36)
COMB 35 (44.87) 53 (67.95)
COMB + CHA 41 (52.56) 56 (71.79)
COMB + UNI 42 (53.85) 60 (76.92)
COMB + SEG 49 (62.82) 65 (83.33)

Table 3: Transliteration results for the NTCIR-
2 test set (78 inputs)

training. The parameters were tuned on a dif-
ferent 700+ word subset of the EDICT dictio-
nary.

In the first experiment we used the com-
plete CMU dictionary word set (around 120,000
words) compiled into a language model with
word probabilities reflecting the corpus frequen-
cies from the EDR English corpus (EDR, 1995)
and look for transliterations of 150 words in the
EDR test set. The transliterations were consid-
ered correct, if they matched the English trans-
lation, letter-for-letter, in a non-case-sensitive
manner. Table 2 gives the transliteration re-
sults respectively for the Phoneme Model with-
out context (PM0), the proposed segmentation
with dictionary lookup (SEG), the Grapheme
Model (GM), the Phoneme Model (PM) and
the combined model (COMB) and the combi-
nations of the latter three with the SEG model.
When the SEG model is used, the input string is
first segmented and then a dictionary lookup is

performed on each segment. When this model
is combined with other models, the transliter-
ation is produced for each segment regardless
of whether dictionary lookup was successful or
not. This is necessary because dictionary infor-
mation often does not correspond to the desired
transliteration (e.g. マルチ “maruchi” is trans-
lated only as multimedia in EDICT, although it
would often be better translated as multi). The,
PM0 was trained only on the directly aligning
edits (N=0), and the PM and GM models used
a context of two units to the left and to the right
(N=2).

We can see that segmenting the string im-
proves the performance of any model it is com-
bined with, and that the GM and PM models
achieve similar results when equivalent context
is used. However, the set of correctly handled
entries is different for each one of them, hence
their combination increases coverage. Overall,
segmentation with the combined grapheme and
phoneme models results in the best translit-
eration accuracy. Among others, this model
successfully handles phrases with abbreviations
(e.g. レハビリセンター “rehabirisentaa” is
correctly transliterated into rehabilitation cen-
ter) provided the abbreviated constituent is
recorded in the dictionary.

In the second experiment we created a dictio-
nary model from about 110,000 words and their
frequencies as counted in the English part of
the NTCIR-2 collection and produced translit-
erations of the 78 novel katakana words. We
were also interested in evaluating the influence
of segmentation accuracy on the transliteration
so we give results for two additional segmenta-
tion methods: segmentation by ChaSen (CHA)
and Venkataraman’s unigram model (UNI). The
results are given in Table 3. We can see that any
segmentation method improves the overall per-
formance, but the largest increase in accuracy
is achieved by using the proposed segmentation.
Note that the GM + SEG model has best top-
1 accuracy for this data set, but the best top-
10 accuracy is still achieved by COMB + SEG
model. This is due to a high number of scientific
terms whose transliteration better reflects origi-
nal spelling than pronunciation (e.g.グリコカリ
ックス “gurikokarikkusu” glycocalyx) that are
pushed lower in the result set when the translit-
eration scores are interpolated. Still, the need
to consider both spelling and pronunciation si-
multaneously is reinforced, since which of the
two transliteration models (i.e. PM or GM) per-

forms better depends on the input string.

5.1 Discussion
Brill et al. (2001) provide no direct evaluation
of their transliteration system. Instead, they
evaluate the ability of their system to extract
English-katakana pairs from non-aligned web
query logs. Furthermore, no mention is made
of handling English phrases.

On the other hand, Knight and Graehl (1998)
give only the accuracy for transliteration of
personal names (64% correct, 12% phoneti-
cally equivalent), but not for general out-of-
vocabulary terms. Their system does handle
English phrases, but uses no context informa-
tion. Also, it uses pronunciation only of the
most frequent words. Furthermore, there is
no common test set for evaluation of back-
transliteration. All this makes comparison with
our system difficult.

Nonetheless, our GM corresponds to Brill’s
system, augmented with phrase handling abil-
ity. On the other hand, the PM0 is similar to
Knight’s system, except that we do not model
romaji to katakana ambiguities. Also, we com-
bine mappings from English spelling to pronun-
ciation and pronunciation to romaji into a single
WFST rather than handling them separately in
the transliteration process.10 The results ob-
tained show the advantages of the proposed ap-
proach and there is no reason to believe that
improvements in any of the individual modules
would not be reflected in the overall accuracy of
the combined system.

Based on our observations of the weaknesses
of previous systems we were able to make small
improvements to each one of the modules. The
resulting system, combining all these modules
achieved significant overall improvement. This
shows that, rather than trying to develop a
highly complex model able to handle all aspects
of the problem at hand, sometimes it is effec-
tive enough to combine the strengths of smaller
simpler models in order to improve the system’s
overall performance.

In the future, we would like to explore in more
depth the effect of the improved transliteration
on CLIR systems. We would also like to study
the benefits of using context available in CLIR
queries on the transliteration accuracy.

10It is possible that these changes have reduced the
system accuracy. Indeed Knight and Graehl (1998) men-
tion slightly better performance when mapping English
spelling to pronunciation is not modeled probabilisti-
cally.

6 Conclusion

Back transliteration is the process of convert-
ing transliterated words back into their orig-
inal form. Previous models used either only
phoneme- or grapheme-based information con-
tained in the transliteration. Furthermore,
no segmentation of input strings is performed.
In this paper we show that the performance
of back-transliteration can be significantly im-
proved by augmentations of the phoneme-based,
grapheme-based transliteration and the seg-
mentation modules and their combination into
a hybrid system. The system evaluation on two
sets of transliterated strings, not contained in
the system dictionary, shows significant increase
in accuracy over singleton models.

References

M. R. Brent. 1999. An efficient, probabilisti-
cally sound algorithm for segmentation and
word discovery. Machine Learning, 34:71–
105.

E. Brill and R. C. Moore. 2000. An improved
error model for noisy channel spelling correc-
tion. In Proceedings of the 38th Annual Meet-
ing of the Association for Computarional Lin-
guistics (ACL 2000), pages 286–293, Tokyo,
Japan.

E. Brill, G. Kacmarcik, and C. Brockett. 2001.
Automatically harvesting katakana-English
term pairs from search engine query logs. In
Proc. of the Sixth Natural Language Process-
ing Pacific Rim Symposium, pages 393–399,
Tokyo, Japan.

F. Damerau. 1964. A technique for computer
detection and correction of spelling errors.
Communications of the ACM, 7:659–664.

EDR. 1995. EDR Electronic Dictionary Tech-
nical Guide. Japan Electronic Dictionary Re-
search Institute, Ltd. (In Japanese).

D. Eppstein. 1994. Finding the k shortest
paths. In In Proc. of the 35th Symposium on
the Foundations of Computer Science, pages
154–165.

I. Goto, N. Kato, N. Uratani, and T. Ehara.
2003. Transliteration considering context in-
formation based on the maximum entropy
method. In Proc. of IXth MT Summit.

K. S. Jeong, S. H. Myaeng, J. S. Lee, and
K. S. Choi. 1999. Automatic identification
and back-transliteration of foreign words for
information retrieval. Information Processing
and Management, 35:523–540.

Noriko Kando, Kazuko Kuriyama, and Masa-
haru Yoshioka. 2001. Overview of Japanese
and English Information Retrieval Tasks(
JEIR) at the Second NTCIR Wordshop. In
Proceedings of NTCIR Workshop 2.

B. J. Kang and K. S. Choi. 2000. Auto-
matic transliteration and back-transliteration
by decision tree learning. In Proc. of the 2nd
International Conference on Language Re-
sources and Evaluation (LREC 2000).

K. Knight and J. Graehl. 1998. Machine
transliteration. Computational Linguistics,
24:599–612.

S. Kurohashi, T. Nakamura, Y. Matsumoto,
and M. Nagao. 1994. Improvements of
Japanese morphological analyzer JUMAN. In
SNLR, pages 22–28.

V. Levensthein. 1966. Binary codes capable of
correcting deletions, insertions, and reversals.
Soviet Physics–Doklady, 10:707–710.

W. H. Lin and H. H. Chen. 2002. Backward
machine transliteration by learning phonetic
similarity. In Proc. of the Sixth Conference on
Natural Language Learning, pages 139–145.

Y. Matumoto, A. Kitauchi, T. Yamashita,
Y. Hirano, H. Matsuda, K. Takaoka, and
M. Asahara. 2002. Morphological analysis
system ChaSen version 2.2.9 manual.

J. H. Oh and K. S. Choi. 2002. An English-
Korean transliteration model using pronun-
ciation and contextual rules. In Proc. of
the 19th International Conference on Compu-
tational Linguistics (COLING 2002), pages
393–399.

F. C. N. Pereira and M. Riley. 1997. Speech
recognition by composition of weighted finite
automata. In E. Roche and Y. Shabes, edi-
tors, Finite-State Language Processing, pages
431–453. MIT Press.

W. H. Press, B. P. Flannery, A. Teukolsky, and
T. Vetterling. 1992. Numeric Recipies in C.
Cambridge University Press, 2nd edition.

B. G. Stalls and K. Knight. 1998. Translat-
ing names and technical terms in Arabic text.
In Proc. of the COLING/ACL Workshop on
Computational Approaches to Semitic Lan-
guages.

A. Venkataraman. 2001. A statistical model for
word discovery in transcribed speech. Com-
putational Linguistics, 27:352–372.

