Improving Back－Transliteration by Combining Information Sources

\author{
Slaven Bilac \＆Hozumi Tanaka
 Department of Computer Science
 Tokyo Institute of Technology，Tokyo
 \｛sbilac，tanaka\}@cl.cs.titech.ac.jp

}

Abstract

Transliterating words and names from one language to another is a frequent and highly productive phenomenon．Translit－ eration is information loosing since im－ portant distinctions are not preserved in the process．Hence，automatically con－ verting transliterated words back into their original form is a real challenge．How－ ever，due to wide applicability in MT and CLIR，it is a computationally interest－ ing problem．Previously proposed back－ transliteration methods are based either on phoneme modeling or grapheme model－ ing across languages．In this paper，we propose a new method，combining the two models in order to enhance the back－ transliterations of words transliterated in Japanese．Our experiments show that the resulting system outperforms single－ model systems．

1 Introduction

With the advent of technology and increased flow of goods and services，it has become quite com－ mon to integrate new words from one language to another．Whenever a word is adopted into a new language，pronunciation is adjusted to suit its pho－ netic inventory．Furthermore，the orthographic form of the word is modified to allow representation in the target language script．This process of acqui－ sition and assimilation of a new word into an ex－
isting writing system is referred to as transliteration （Knight and Graehl，1998）．

Since integration of new words is a very pro－ ductive process，it often happens that the new pairs are not recorded in machine or human dictionaries． Therefore，it is impossible to rely on the dictionary lookup to find the transliteration pairs．Failure to find a target language equivalent represents a big problem in Machine Translation（MT）where fail－ ures in dictionary lookups can cause translation fail－ ures．Furthermore，transliteration represents a sig－ nificant problem in the field of Cross－Language In－ formation Retrieval（CLIR）where the goal is to re－ trieve all the related documents in two or more lan－ guages（Lin and Chen，2002）．In many cases the re－ sults would be greatly improved，if the system were able to correctly identify the English equivalent of a Japanese or Korean transliteration and then search for documents based on the original word．

When the source language and the target language use the same（or very similar）alphabet，there are hardly any problems，as the speakers of both lan－ guages can easily identify the string．On the other hand，if two languages use very different writing codes，the acquired word undergoes heavy trans－ formation in order to become an acceptable vo－ cabulary entry．For example，the English word cache is transliterated in Japanese as キャッシュ ＂kyasshu＂．${ }^{1}$

[^0]Although governments provide guidelines on how to transliterate，words commonly appear in sev－ eral different forms．The wide variety of translit－ erations can be seen both in Korean（Jeong et al．，1999）and Japanese（Knight and Graehl，1998； Brill et al．，2001）．For example，the English word interface has five different transliterations in EDICT Japanese－English dictionary：${ }^{2}$ インターフ ェース＂intaafeesu＂，インターフェイス＂in－ taafeisu＂，インタフェース＂intafeesu＂，イ ンタフェイス＂intafeisu＂and インタフェス ＂intafesu＂．

While automatic transliteration in itself is diffi－ cult，back－transliteration or transliteration back into the original language is even harder．Increase in difficulty results from the fact that various distinc－ tions，present in the source language，are not pre－ served when the word is transliterated into the target language．For example，Japanese has only five ba－ sic vowels and no $/ \theta /$ or $/ \partial /{ }^{3}$ sounds，whereas non－ existent sounds are replaced with the closest equiv－ alents．Consequently，the following three English words：bass，bath and bus are transliterated as バ ス＂basu＂．${ }^{4}$ The system trying to obtain a back－ transliteration for バス has therefore three valid choices which cannot be disambiguated in the ab－ sence of additional contextual transformation．

Transliterated words are normally written in katakana，one of three Japanese writing systems． While other vocabulary（i．e．animal names or onomatopoeic expressions）can also be written in katakana，the fact that something is written in katakana is a good hint that it might be a transliter－ ated foreign word or a name．Thus，unlike Arabic or Korean，where a big part of the back－transliteration problem is identifying candidate transliterations （Stalls and Knight，1998；Jeong et al．，1999），in Japanese back－transliteration can be directly applied to any katakana strings absent from the bilingual dic－ tionary．

In this paper we propose a method to improve back－transliteration by combining the information based on pronunciation and spelling．Even though we concentrate on Japanese and English，our method is applicable to other language pairs．

[^1]The reminder of this paper is organized as fol－ lows：in Section 2 we review previous approaches to（back－）transliteration．In Section 3 we describe the proposed method and outline the implementation details．Finally，Section 4 gives a short evaluation and a discussion or results obtained．

2 Previous research

Previous approaches to（back－）transliteration can be roughly divided into two groups：grapheme－and phoneme－based．These approaches are also referred to as direct－and pivot－based methods，respectively．

2．1 Grapheme－based modelling

In this framework，the English string is not converted into a phonemic representation be－ fore its alignment with the transliterated string． Brill et al．（2001）propose a noisy channel model for Japanese．This model allows for non－atomic edits： several letters can be replaced by a different let－ ter combination（Brill and Moore，2000）．The in－ put string is broken down into arbitrary substrings， each of which is output independently（and possi－ bly incorrectly）．The model is trained to learn edit－ probabilities and the best back－transliteration is cho－ sen using a modified edit distance algorithm（Dam－ erau，1964；Levensthein，1966）．This method fails to generate the correct string in cases where English spelling is not reflected in the pronunciation（e．g マ イム＂maimu＂being incorrectly back－transliterated into maim instead of mime）．

For transliteration，Goto et al．（2003）propose a maximum entropy based model for Japanese，while Kang and Choi（2000）propose a decision tree－based model for Korean．

2．2 Phoneme－based modelling

The systems based on phoneme alignment are more numerous．Jeong et al．（1999）propose a method using first order HMM model to generate English strings from Korean input．The result is compared with dictionary entries using a variety of string sim－ ilarity algorithms to find the best match．

For Japanese，Knight and Graehl（1998）em－ ploy a compositional model combining romaji－to－ phoneme，phoneme－to－English and English word probability models into one．The combined struc－ ture is treated as a graph，and the top ranking strings
are found using the k－best path algorithm（Epp－ stein，1994）．A similar model has been applied for Arabic－English back－transliteration（Stalls and Knight，1998）．However，this model cannot handle cases where the transliteration reflects the original spelling．For example，tonya and tanya have dif－ ferent transliterations of＂toonya＂and＂taanya＂ but the system taking only pronunciation into ac－ count is unable to distinguish between the two．

Finally，Oh and Choi（2002）propose a system trying to incorporate two different English－to－ phoneme models into a single Korean transliteration system：standard English pronunciation and pronun－ ciation closely following the spelling．However，this system uses only the origin of the word（estimated by a match against a finite set of affixes）to decide which model to apply when producing the translit－ eration．

3 The Combined model

The systems introduced in the previous section model transliteration based on either phoneme or grapheme level．Nonetheless，even though most of the transliterations are based on the original pro－ nunciation，there is a significant number of words where transliteration corresponds more closely to the spelling of the original．For example the first e in eternal is transliterated as＂e＂instead of＂i＂in エターナル＂etaanaru＂．phantom is transliterated as ファントム＂fantomu＂rather than ＂fentamu＂＊．We believe，that we can better ac－ count for such behavior by combining the two in－ formation sources to maximize the use of the data available．

3．1 Probabilistic model specification

Given the Japanese word in romaji（i．e．alphabet），${ }^{5}$ the goal is to produce an English word（phrase）that maximizes the probability $P\left(E_{a} \mid J_{a}\right)$ ．Applying the Bayes＇rule and dropping the constant denomina－ tor we get $P\left(J_{a} \mid E_{a}\right) \times P\left(E_{a}\right)$ where $P\left(E_{a}\right)$ is the source model and $P\left(J_{a} \mid E_{a}\right)$ is the noisy channel．

[^2]We train the channel model as described below，and then reverse it to handle the romaji input．

3．1．1 Grapheme－based model（GM）

In this model the English word is directly rewrit－ ten as a Japanese romaji string with probability $P_{g}\left(J_{a} \mid E_{a}\right)$ ．Here，we follow（Brill et al．，2001）to arbitrarily break up the E_{a} string into n parts and output each part independently．Thus，the resulting probability of outputting J_{a} can be rewritten as in the equation（1）．

$$
\begin{equation*}
P_{g}\left(J_{a} \mid E_{a}\right) \cong \prod_{i=1}^{n} P_{g}\left(J_{a_{i}} \mid E_{a_{i}}\right) \tag{1}
\end{equation*}
$$

We implement $P_{g}\left(J_{a} \mid E_{a}\right)$ as a weighted Finite State Transducer（WFST）with $E_{a_{i}}$ as inputs，$J_{a_{i}}$ as out－ puts（Knight and Graehl，1998；Pereira and Riley， 1997）and transition costs as negative logs of prob－ abilities．This WFST is then reversed and the best transliteration is computed as its composition with the source model $P\left(E_{a}\right) .{ }^{6}$ The resulting WFST is searched for k－best transliterations using the k－best path algorithm．A probability $P_{g}\left(E_{a} \mid J_{a}\right)$ is associ－ ated with each path obtained．

3．1．2 Phoneme－based model（PM）

In this model the channel is broken into two stages：a）conversion of the English alphabet into English phonemes with some probability $P\left(E_{p} \mid E_{a}\right)$ and b）conversion of the English phonemes into romaji with some probability $P\left(J_{a} \mid E_{p}\right)$ ．Conse－ quently，$P_{p}\left(J_{a} \mid E_{a}\right)$ can be rewritten as equation （2）．Rather than manipulating these two distribu－ tions separately，we compute their composition to obtain a unique probability distribution $P_{p}\left(J_{a_{i}} \mid E_{a_{i}}\right)$ ．
$P_{p}\left(J_{a} \mid E_{a}\right) \cong \prod_{i=1}^{n} P\left(J_{a_{i}} \mid E_{p_{i}}\right) \times \prod_{i=1}^{n} P\left(E_{p_{i}} \mid E_{a_{i}}\right)$
Consequently all English alphabet strings can be rewritten directly into romaji without requiring their conversion into intermediate phoneme representa－ tion．This removes the requirement of having a pro－ nunciation dictionary for the back－transliteration．${ }^{7}$

[^3]Furthermore, since both models are dealing with the same unit types, it is possible to directly combine them, allowing for certain parts of the input string to be converted by one and the rest by the other model. We leave this method of combination for future research.

3.1.3 Combining the models

After obtaining the back-transliterations $E_{a_{\text {phon }}}$ and $E_{a_{\text {graph }}}$ with the respective probabilities of $P_{p}\left(E_{a} \mid J_{a}\right)$ and $P_{g}\left(E_{a} \mid J_{a}\right)$, we can assign the final score of a transliteration $S_{c}\left(E_{a} \mid J_{a}\right)$ as in equation (3) where γ and δ are set to maximize the accuracy on the training set. ${ }^{8}$ Transliteration with the highest score is selected as the best.

$$
\begin{align*}
S_{c}\left(E_{a} \mid J_{a}\right)= & \gamma P_{p}\left(E_{a} \mid J_{a}\right)+\delta P_{g}\left(E_{a} \mid J_{a}\right) \\
& \text { s.t. } \quad \gamma+\delta=1 \tag{3}
\end{align*}
$$

3.2 Training the models

For the GM, we follow (Brill et al., 2001) closely to extract the character-string mappings. Since romaji and English alphabet are equivalent character sets, they can be aligned using the non-weighted Levensthein distance. Then, letter-edits are expanded to include up to N edits to the right and to the left. For example for the pair (roo,row) we get: $r \rightarrow r o \rightarrow o o \rightarrow w$. For $N=1$, edits ro \rightarrow ro, roo \rightarrow row, oo \rightarrow ow are also added to the set. We collect a complete set of edits $\alpha_{g} \rightarrow \beta_{g}$ in the training set and assign the probability to each according to equation (4). Throughout, we distinguish edits that appear at the beginning or the end of the word or neither.

$$
\begin{equation*}
P(\alpha \rightarrow \beta)=\frac{\operatorname{count}(\alpha \rightarrow \beta)}{\operatorname{count}(\alpha)} \tag{4}
\end{equation*}
$$

Given the collection of edits $\alpha_{g} \rightarrow \beta_{g}$ for each input word J_{a} we can generate a WFST which contains all possible ways to rewrite the input string.

3.2.1 Training the phoneme model

For the PM, the English phoneme and English alphabet sets are not equivalent, hence the editdistance algorithm cannot be applied directly to obtain the optimal alignment. Instead we proceed to

[^4]obtain the best alignment using the EM algorithm (Dempster et al., 1977). Given the input strings, we generate all possible alignments constrained so that: a) each unit in one string aligns to one or more units in the other string and b) there are no crossing alignment arcs. Here the base unit represents either a letter or a phoneme. ${ }^{9}$

After the EM algorithm selects the optimal alignment, we proceed to expand the set of individual alignments with N adjacent units as above to obtain a set of possible rewrites $\alpha_{e_{a}} \rightarrow \beta_{e_{p}}$. This process is repeated to obtain the set of all possible rewrites of English phonemes into romaji $\alpha_{e_{p}} \rightarrow \beta_{j_{a}}$.

Each input $\alpha_{e_{a}}$ with all its mappings $\beta_{e_{p}}$ is converted into a WFST and composed with a WFST encoding the complete set of mappings $\alpha_{e_{p}} \rightarrow \beta_{j_{a}}$ to obtain the set of all possible rewrites of English alphabet strings α_{p} into romaji strings β_{p} based on the PM.

For the case $(N=0)$, the model for mapping romaji to English phonemes is similar to the one described by Knight and Graehl (1998). However, we learn the alignments both for English alphabet to English phoneme strings and English phoneme to romaji strings, add context information and compose the resulting models to get direct mappings from English alphabet to romaji. We will see the benefits of these improvements in the following section.

4 Evaluation

We extracted a collection of about 7000 words in katakana together with the corresponding English translation from the EDICT dictionary. About 10\% (714 tokens) of these entries were left out for evaluation. The remaining set was expanded, so that for each katakana word containing a long vowel or a geminate consonant, we add one with these removed. The pronunciations for training the PM were obtained from the CMU pronouncing dictionary. When no pronunciations were available the words were excluded from the training.

Table 1 gives the result of our experiments with 714 EDICT transliterations for the Phoneme Model without context (PM0), the Grapheme Model (GM), the Phoneme Model (PM) and the combined model

[^5]| | | EDICTa | | EDICTb | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | Inputs | Top－1（\％） | Top－10（\％） | Top－1（\％） | Top－10（\％） |
| PM0 | 714 | $281(39.36)$ | $368(51.54)$ | $232(32.49)$ | $365(51.12)$ |
| GM | 714 | $473(66.25)$ | $595(83.33)$ | $455(63.73)$ | $591(82.77)$ |
| PM | 714 | $571(79.97)$ | $664(93.00)$ | $484(67.79)$ | $623(87.25)$ |
| COMB | 714 | $604(\mathbf{8 4 . 5 9})$ | $698(\mathbf{9 7 . 7 6})$ | $504(\mathbf{7 0 . 5 9})$ | $649(\mathbf{9 0 . 9 0})$ |

Table 1：Transliteration results for the EDICT test set

		CMUa		CMUb	
	Inputs	Top－1（\％）	Top－10（\％）	Top－1（\％）	Top－10（\％）
PM0	150	$27(18.00)$	$47(31.33)$	$20(13.33)$	$36(24.00)$
GM	150	$49(32.67)$	$86(57.33)$	$69(46.00)$	$96(64.00)$
PM	150	$58(\mathbf{3 8 . 6 7})$	$82(54.67)$	$67(44.67)$	$91(60.67)$
COMB	150	$57(38.00)$	$106(\mathbf{7 0 . 6 7})$	$70(\mathbf{4 6 . 6 7})$	$107(\mathbf{7 1 . 3 3)}$

Table 2：Transliteration results for the EDR test set
（COMB）．Here，PM0 was trained only on the di－ rectly aligning edits $(N=0)$ ，and the remaining mod－ els used a context of two units to the left and to the right $(N=2)$ ．The test dictionary contains all words appearing in the English translations in the EDICT dictionary（over 30，000 words）．The top－ 1 and top－10 accuracies are given for two language models（LM）：EDICTa where all words have equal probability and EDICTb where probabilities reflect the corpus frequencies from the EDR English cor－ pus（EDR，1995）．The transliterations were consid－ ered correct，if they matched the English translation， letter－for－letter，in a non－case－sensitive manner．

We can see that the PM yields better results than the GM with the same context window．This justi－ fies the consideration of pronunciation for translit－ eration，and it shows that our method of mapping English to romaji using pronunciation is effective． Furthermore，we can see that the proposed method （COMB）gives the best performance in all cases．

It might seem surprising that using EDICTb re－ sults in reduced accuracy．However，the corpus fre－ quencies bias the model so erroneous transliterations consisting of shorter more frequent words are pre－ ferred over longer，correct，but infrequent words． This shows the importance of a good LM from which to select transliterations．

For the second set of experiments we extracted 150 katakana words from the EDR Japanese cor－ pus not in the EDICT dictionary and we used the
complete CMU dictionary word set（around 120，000 words）compiled into models CMUa and CMUb，as described above．

Table 2 gives the transliteration results for this test set．We can see a significant overall drop in accu－ racy．It is partially due to a larger set of words to choose from，hence a more difficult task．Since var－ ious spellings with similar pronunciations are con－ tained in the dictionary，corpus frequencies help im－ prove the top－ 1 accuracy，thus the higher accuracy rates for the CMUb language model．For example， with CMUb service is selected rather than servis as the top transliteration of＂saabisu＂in センター サービス＂centaasaabisu＂center service．

However，a bigger problem is the inability of our system to handle non－English terms（e．g．サハリン ＂saharin＂Sakhalin）and abbreviations（e．g．リハ ビリテーションセンター＂rihabiriteeshon－ sentaa＂rehabilitation center is abbreviated as リ ハビリセンター＂rihabirisentaa＂）which make a sizable portion of EDR out－of－vocabulary items．Rather than trying to obtain an English equiv－ alent of these terms，the system would ideally be able to determine the possible origin of the word from the context available（e．g．user query in CLIR） and then apply an adequate language model．

Brill et al．（2001）provide no direct evaluation of their transliteration system．Instead，they evalu－ ate the ability of their system to extract English－ katakana pairs from non－aligned web query logs．On
the other hand, Knight and Graehl (1998) give only the accuracy for transliteration of personal names (64% correct, 12% phonetically equivalent) but not for general out-of-vocabulary terms. This makes comparison with our system difficult. Nonetheless, the above experiments show that the combination of the phoneme- and grapheme-based models helps the overall accuracy and coverage. In the future, we would like to explore different ways of combining these models to further increase the positive effect of the combination.

5 Conclusion

Back transliteration is the process of converting transliterated words back into their original form. Previous models used either only phoneme- or only grapheme-based information contained in the transliteration. Instead, we propose a method for improving back-transliteration by combining these two models. We go on to describe how we implemented the models to allow combination and finally, we evaluate the effectiveness of the combined model and point out some deficiencies we hope to address in the future.

Acknowledgements

We would like to thank Taiichi Hashimoto, Michael Zock and three anonymous reviewers on valuable comments and help in writing this paper.

References

E. Brill and R. C. Moore. 2000. An improved error model for noisy channel spelling correction. In Proceedings of the 38th Annual Meeting of the Association for Computarional Linguistics (ACL 2000), pages 286-293.
E. Brill, G. Kacmarcik, and C. Brockett. 2001. Automatically harvesting katakana-English term pairs from search engine query logs. In Proc. of the Sixth Natural Language Processing Pacific Rim Symposium, pages 393-399.
F. Damerau. 1964. A technique for computer detection and correction of spelling errors. Communications of the ACM, 7:659-664.
A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete via the em algorithm. Journal of the Royal Statistical Society, 39:138.

EDR. 1995. EDR Electronic Dictionary Technical Guide. Japan Electronic Dictionary Research Institute, Ltd. (In Japanese).
D. Eppstein. 1994. Finding the k shortest paths. In In Proc. of the 35th Symposium on the Foundations of Computer Science, pages 154-165.
I. Goto, N. Kato, N. Uratani, and T. Ehara. 2003. Transliteration considering context information based on the maximum entropy method. In Proc. of IXth MT Summit.
K. S. Jeong, S. H. Myaeng, J. S. Lee, and K. S. Choi. 1999. Automatic identification and backtransliteration of foreign words for information retrieval. Information Processing and Management, 35:523-540.
B. J. Kang and K. S. Choi. 2000. Automatic transliteration and back-transliteration by decision tree learning. In Proc. of the 2nd International Conference on Language Resources and Evaluation (LREC 2000).
K. Knight and J. Graehl. 1998. Machine transliteration. Computational Linguistics, 24:599-612.
V. Levensthein. 1966. Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics-Doklady, 10:707-710.
W. H. Lin and H. H. Chen. 2002. Backward machine transliteration by learning phonetic similarity. In Proc. of the Sixth Conference on Natural Language Learning, pages 139-145.
J. H. Oh and K. S. Choi. 2002. An English-Korean transliteration model using pronunciation and contextual rules. In Proc. of the 19th International Conference on Computational Linguistics (COLING 2002), pages 393-399.
F. C. N. Pereira and M. Riley. 1997. Speech recognition by composition of weighted finite automata. In E. Roche and Y. Shabes, editors, Finite-State Language Processing, pages 431-453. MIT Press.
W. H. Press, B. P. Flannery, A. Teukolsky, and T. Vetterling. 1992. Numeric Recipies in C. Cambridge University Press, 2nd edition.
B. G. Stalls and K. Knight. 1998. Translating names and technical terms in Arabic text. In Proc. of the COLING/ACL Workshop on Computational Approaches to Semitic Languages.

[^0]: ${ }^{1}$ We use italics to transcribe the English words，while Japanese transliterations（e．g．キャッシュ）are given with ro－ maji in＂typewriter＂font（e．g．＂kyasshu＂）．The romaji used follows（Knight and Graehl，1998），thus closely reflect－ ing English－like pronunciation with long vowels transcribed as ＂aa＂rather than＂ \bar{a}＂．

[^1]: ${ }^{2}$ ftp：／／ftp．cc．monash．edu．au／pub／nihongo／
 ${ }^{3}$ All phonemes given in／／are written in IPA symbols．
 ${ }^{4}$ Here $/ \theta /$ is replaced with $/ \mathrm{s} /$ ，and $/ \mathfrak{m} /$ is replaced with $/ \mathrm{a} /$ ．

[^2]: ${ }^{5}$ As stated above，transliterated words are normally written in katakana，potentially inducing an another stage in the model： rewriting romaji characters into katakana $P\left(J_{k} \mid J_{a}\right)$ ．However， katakana characters generally have a unique alphabetic equiv－ alent，thus reducing this distribution to 1 ．We implement the katakana to romaji conversion as a preprocessing module．

[^3]: ${ }^{6}$ We use the AT\＆T FSM library（http：／／www． research．att．com／～mohri／fsm／）for WFST compo－ sition．
 ${ }^{7}$ However，the pronunciation dictionary is still necessary for the training．

[^4]: ${ }^{8}$ Parameters are trained using Golden Section Search (Press et al., 1992).

[^5]: ${ }^{9}$ The CMU pronouncing dictionary (http://www. speech.cs.cmu.edu/cgi-bin/cmudict) phoneme set is used for a total of 39 phonemes without the tone marks.

