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Abstract

Transliteratingwordsandnamesfrom one
language to another is a frequent and
highly productive phenomenon. Translit-
eration is information loosing since im-
portant distinctions are not preserved in
the process. Hence,automatically con-
verting transliteratedwordsbackinto their
original form is a real challenge. How-
ever, due to wide applicability in MT
andCLIR, it is acomputationally interest-
ing problem. Previously proposedback-
transliteration methodsarebasedeither on
phoneme modeling or grapheme model-
ing across languages. In this paper, we
propose a new method, combining the
two models in order to enhancetheback–
transliterations of words transliterated in
Japanese. Our experiments show that
the resulting system outperforms single-
modelsystems.

1 Intr oduction

With the advent of technology and increasedflow
of goods and services, it has become quite com-
mon to integratenew words from one languageto
another. Whenever a word is adopted into a new
language,pronunciation is adjustedto suit its pho-
neticinventory. Furthermore,theorthographic form
of the word is modified to allow representation in
the target languagescript. This process of acqui-
sition and assimilation of a new word into an ex-

isting writing systemis referredto astransliteration
(Knight andGraehl,1998).

Since integration of new words is a very pro-
ductive process,it oftenhappensthat thenew pairs
arenot recordedin machine or humandictionaries.
Therefore, it is impossible to rely on thedictionary
lookup to find the transliteration pairs. Failure to
find a target languageequivalent representsa big
problem in Machine Translation (MT) wherefail-
uresin dictionarylookupscancausetranslation fail-
ures. Furthermore, transliteration representsa sig-
nificantproblem in thefield of Cross-LanguageIn-
formation Retrieval (CLIR) wherethegoal is to re-
trieve all therelateddocumentsin two or morelan-
guages(Lin andChen,2002). In many casesthere-
sultswould begreatly improved,if thesystemwere
able to correctly identify the Englishequivalentof
aJapaneseor Koreantransliteration andthensearch
for documentsbasedon theoriginal word.

Whenthesourcelanguageandthetargetlanguage
use the same(or very similar) alphabet, there are
hardly any problems,as the speakers of both lan-
guagescaneasily identify the string. On the other
hand, if two languages use very different writing
codes, the acquired word undergoes heavy trans-
formation in order to become an acceptable vo-
cabulary entry. For example, the English word
cache is transliterated in Japanese as �������
	
“kyass hu”.1

1We use italics to transcribethe English words, while
Japanesetransliterations(e.g. �������� ) aregiven with ro-
maji in ” typewrit er ” font (e.g. ”kyasshu ”). The romaji
usedfollows (Knight and Graehl,1998), thus closely reflect-
ing English–like pronunciationwith long vowelstranscribedas
”aa” ratherthan” ā”.



Although governmentsprovideguidelinesonhow
to transliterate, words commonly appear in sev-
eral different forms. The wide variety of translit-
erations can be seen both in Korean (Jeong et
al., 1999) andJapanese(Knight andGraehl,1998;
Brill et al., 2001). For example, the English
word interface hasfive different transliterations in
EDICT Japanese-Englishdictionary:2 ���������� ��� “ inta afee su ”, ��� �!�"� � � � “ in-
taaf eisu ”, ������� � �
� “ inta fees u”, ��
�#� � ��� “ intafe isu ” and �$�%�"� � �
“ intaf esu ”.

While automatic transliteration in itself is diffi-
cult, back-transliteration or transliteration backinto
the original languageis even harder. Increasein
difficulty results from the fact that various distinc-
tions, present in the source language,are not pre-
servedwhenthewordis transliteratedinto thetarget
language. For example, Japanesehasonly five ba-
sic vowels andno / & / or / ' /3 sounds, whereas non-
existent soundsarereplacedwith theclosest equiv-
alents. Consequently, the following three English
words: bass,bath and bus are transliterated as (� “basu ”.4 The system trying to obtain a back-
transliteration for ( � has therefore three valid
choiceswhich cannot be disambiguated in the ab-
senceof additionalcontextual transformation.

Transliterated words are normally written in
katakana, one of three Japanesewriting systems.
While other vocabulary (i.e. animal namesor
onomatopoeic expressions) can also be written in
katakana, the fact that something is written in
katakanais a goodhint that it might bea transliter-
atedforeignwordor aname.Thus,unlikeArabicor
Korean,wherea big partof theback-transliteration
problem is identifying candidate transliterations
(Stalls and Knight, 1998; Jeong et al., 1999), in
Japaneseback-transliterationcanbedirectly applied
toany katakanastringsabsent from thebilingualdic-
tionary.

In this paper we propose a methodto improve
back-transliteration by combining the information
based on pronunciation andspelling. Even though
weconcentrateonJapaneseandEnglish, ourmethod
is applicable to other languagepairs.

2ftp://ftp.cc .monash.edu. au/pub/nihon go/
3All phonemesgivenin // arewritten in IPA symbols.
4Here/ ) / is replacedwith /s/,and/æ/is replacedwith /a/.

The reminder of this paperis organized as fol-
lows: in Section2 we review previous approaches
to (back-)transliteration. In Section3 we describe
theproposedmethodandoutlinetheimplementation
details. Finally, Section4 givesa shortevaluation
andadiscussionor results obtained.

2 Previous research

Previousapproachesto (back-)transliteration canbe
roughly divided into two groups: grapheme-and
phoneme-based.Theseapproaches arealsoreferred
to asdirect- andpivot-based methods, respectively.

2.1 Grapheme-basedmodelling

In this framework, the English string is not
converted into a phonemic representation be-
fore its alignment with the transliterated string.
Brill et al. (2001)proposeanoisychannel modelfor
Japanese.This modelallows for non-atomic edits:
several letters can be replaced by a different let-
ter combination (Brill and Moore, 2000). The in-
put string is broken down into arbitrary substrings,
eachof which is output independently (and possi-
bly incorrectly). Themodelis trained to learnedit-
probabilitiesandthebestback-transliterationis cho-
senusing a modifiededit distancealgorithm (Dam-
erau,1964; Levensthein, 1966). This methodfails
to generatethecorrect string in caseswhereEnglish
spelling is not reflectedin thepronunciation (e.g *��+ “maimu” beingincorrectly back-transliterated
into maiminsteadof mime).

For transliteration, Gotoetal. (2003) propose a
maximumentropy basedmodelfor Japanese, while
KangandChoi (2000)proposeadecision tree-based
modelfor Korean.

2.2 Phoneme-basedmodelling

Thesystemsbased on phonemealignment aremore
numerous. Jeong etal. (1999) propose a method
using first order HMM model to generate English
strings from Koreaninput. The result is compared
with dictionaryentriesusing a variety of string sim-
ilarity algorithmsto find thebestmatch.

For Japanese, Knight andGraehl(1998) em-
ploy a compositional model combining romaji-to-
phoneme, phoneme-to-English and English word
probability models into one. The combined struc-
tureis treatedasagraph, andthetop ranking strings



are found using the k-best path algorithm (Epp-
stein, 1994). A similar model has been applied
for Arabic-English back-transliteration (Stalls and
Knight, 1998). However, this modelcannot handle
caseswherethe transliteration reflectsthe original
spelling. For example, tonya and tanya have dif-
ferent transliterationsof ” toon ya ” and” taany a”
but the system taking only pronunciation into ac-
count is unable to distinguishbetweenthetwo.

Finally, Oh andChoi (2002) propose a system
trying to incorporate two different English-to-
phonememodelsinto asingleKoreantransliteration
system: standardEnglishpronunciation andpronun-
ciationclosely following thespelling. However, this
system uses only the origin of the word (estimated
by a matchagainst a finite setof affixes) to decide
which model to apply whenproducing the translit-
eration.

3 The Combined model

The systems introduced in the previous section
model transliteration basedon either phonemeor
graphemelevel. Nonetheless, even though mostof
the transliterations are based on the original pro-
nunciation, there is a significant numberof words
where transliteration correspondsmore closely to
the spelling of the original. For example the
first e in eternal is transliterated as ”e” instead
of ” i ” in , �%��-�. “etaan aru ”. phantom is
transliteratedas � /0��12+ “ fant omu” rather than
” fenta mu” 3 . We believe, that we can better ac-
count for suchbehavior by combining the two in-
formation sources to maximizethe useof the data
available.

3.1 Probabilistic model specification

Given the Japaneseword in romaji (i.e. alphabet),5

thegoalis to produceanEnglishword (phrase)that
maximizes theprobability 46587:9<; =>9@? . Applying the
Bayes’ rule and dropping the constant denomina-
tor we get 4A58= 9 ; 7 9 ?CB
4A587 9 ? where 4A587 9 ? is the
source model and 4A58=>9<; 7�9D? is the noisy channel.

5As statedabove, transliteratedwordsarenormallywritten
in katakana, potentiallyinducingananotherstagein themodel:
rewriting romaji charactersinto katakana E�FHGJILKMGJNPO . However,
katakanacharactersgenerallyhave a uniquealphabetic equiv-
alent, thus reducingthis distribution to 1. We implementthe
katakanato romaji conversionasa preprocessing module.

We train thechannel modelasdescribedbelow, and
thenreverse it to handle theromaji input.

3.1.1 Grapheme-basedmodel (GM)

In this modeltheEnglishword is directly rewrit-
ten as a Japanese romaji string with probability
4<Q>58=>9R; 7�9D? . Here,we follow (Brill et al., 2001) to
arbitrarily break up the 7�9 string into S parts and
output eachpart independently. Thus,the resulting
probability of outputting =>9 canbe rewritten as in
theequation (1).

4<QT58=>9<; 7�9D?VUW
X
Y[Z]\ 4<Q>58=>9_^`; 7:9a^b? (1)

Weimplement 4cQ>58=>9]; 7:9@? asaweighted FiniteState
Transducer (WFST) with 7:9a^ asinputs, =>9_^ asout-
puts (Knight and Graehl, 1998; Pereiraand Riley,
1997) andtransition costsasnegative logsof prob-
abilities. This WFST is thenreversed andthe best
transliteration is computed as its composition with
the source model 4A587:9@? .6 The resulting WFST is
searchedfor d -besttransliterationsusing the d -best
pathalgorithm. A probability 4<Q>587:9R; =>9D? is associ-
atedwith eachpathobtained.

3.1.2 Phoneme-basedmodel (PM)

In this model the channel is broken into two
stages: a) conversion of the English alphabet into
Englishphonemeswith someprobability 4A587:ef; 7�9D?
and b) conversion of the English phonemesinto
romaji with someprobability 4A58=>9<; 7�e>? . Conse-
quently, 4<e>58=>9<; 7�9D? can be rewritten as equation
(2). Ratherthan manipulating thesetwo distribu-
tions separately, we compute their composition to
obtain auniqueprobability distribution 4<e>58=>9_^g; 7�9_^b? .

4<e>58=>9<; 7:9@?hUW
X
Y[Z]\ 4A58=>9a^g; 7:e_^H?�B

X
Y[Z]\ 4A587:e_^i; 7:9a^b? (2)

Consequently all English alphabet strings can be
rewrittendirectly into romajiwithout requiring their
conversion into intermediatephonemerepresenta-
tion. This removestherequirementof having a pro-
nunciation dictionary for the back-transliteration.7

6We use the AT&T FSM library (http://ww w.
research. att.com/˜moh ri/fsm/ ) for WFST compo-
sition.

7However, thepronunciationdictionaryis still necessaryfor
thetraining.



Furthermore,sincebothmodelsaredealing with the
sameunit types, it is possible to directly combine
them,allowing for certainpartsof theinputstringto
beconvertedby oneandtherestby theothermodel.
We leave this methodof combination for future re-
search.

3.1.3 Combining the models

After obtaining the back–transliterations 7 9`j8kml[n
and 7:9aobp N j8k with the respective probabilities of
4<e>587:9<; =>9@? and 4<Q>587:9R; =>9D? , we canassign the final
scoreof a transliteration qsrg587:9R; =>9D? as in equation
(3) wheret and u aresetto maximizetheaccuracy
on thetraining set.8 Transliteration with thehighest
scoreis selectedasthebest.

qsr`587:9R; =>9D? W tv4<eT587:9R; =>9D?xwyuz4cQ@587:9R; =>9D?
s.t. t{w"u W�| (3)

3.2 Training the models

For theGM, we follow (Brill et al., 2001) closely to
extract thecharacter-stringmappings. Sinceromaji
andEnglishalphabetareequivalentcharactersets,
they can be aligned using the non-weightedLev-
ensthein distance. Then, letter-edits are expanded
to include up to } edits to the right and to the
left. For example for the pair (roo ,row) we get:~�� ~ ��� � ��� � . For } W | , edits~s����~s� , ~s�z����~��L� , �������L� arealsoadded to
theset.We collect a complete setof edits �<Q ��� Q
in thetraining setandassign theprobability to each
according to equation (4). Throughout, we distin-
guish editsthatappearat thebeginningor theendof
thewordor neither.

4A58� ��� ? W��
�L� S]�`58� ��� ?
� �L� S]�g58�v?

(4)

Giventhecollection of edits �cQ ��� Q for eachinput
word =>9 wecangenerateaWFSTwhichcontainsall
possible waysto rewrite theinputstring.

3.2.1 Training the phonememodel

For the PM, the English phonemeand English
alphabet sets are not equivalent, hence the edit-
distancealgorithm cannot beapplied directly to ob-
tain the optimal alignment. Instead we proceedto

8ParametersaretrainedusingGoldenSectionSearch(Press
et al., 1992).

obtain the bestalignmentusing the EM algorithm
(Dempsteret al., 1977). Giventheinput strings,we
generateall possible alignmentsconstrainedsothat:
a)eachunit in onestringalignsto oneor moreunits
in theotherstring andb) therearenocrossingalign-
mentarcs.Herethebaseunit representseithera let-
ter or aphoneme.9

After theEM algorithm selects theoptimalalign-
ment, we proceed to expand the set of individual
alignmentswith } adjacent unitsasabove to obtain
a setof possible rewrites �<� N ��� � j . This process
is repeatedto obtainthe setof all possible rewrites
of English phonemesinto romaji �<� j ���<� N .

Eachinput �<� N with all its mappings � � j is con-
vertedinto aWFSTandcomposedwith aWFST en-
coding thecomplete setof mappings �c� j ���c� N to
obtain thesetof all possible rewritesof Englishal-
phabetstrings �<e into romajistrings � e basedonthe
PM.

For thecase( } W�� ), themodelfor mapping ro-
maji to Englishphonemesis similar to the onede-
scribedby Knight andGraehl(1998). However, we
learnthealignmentsboth for Englishalphabetto En-
glish phonemestringsandEnglishphoneme to ro-
maji strings, addcontext informationandcompose
theresulting modelsto getdirect mappingsfrom En-
glish alphabetto romaji. We will seethebenefits of
theseimprovements in thefollowing section.

4 Evaluation

We extracted a collection of about 7000 words in
katakana together with the corresponding English
translation from theEDICT dictionary. About 10%
(714 tokens) of theseentrieswereleft out for eval-
uation. The remaining set was expanded, so that
for eachkatakanaword containing a long vowel or
a geminate consonant, we add one with these re-
moved. The pronunciations for training the PM
were obtainedfrom the CMU pronouncing dictio-
nary. When no pronunciations were available the
wordswereexcludedfrom thetraining.

Table1 gives the result of our experimentswith
714EDICT transliterationsfor thePhonemeModel
without context (PM0), theGraphemeModel (GM),
thePhonemeModel (PM) andthecombinedmodel

9The CMU pronouncing dictionary (http://ww w.
speech.cs .cmu.edu/cgi - bin/cmudict ) phoneme
setis usedfor a totalof 39phonemeswithout thetonemarks.



EDICTa EDICTb
Inputs Top-1(%) Top-10(%) Top-1(%) Top-10(%)

PM0 714 281(39.36) 368(51.54) 232(32.49) 365(51.12)
GM 714 473(66.25) 595(83.33) 455(63.73) 591(82.77)
PM 714 571(79.97) 664(93.00) 484(67.79) 623(87.25)
COMB 714 604(84.59) 698(97.76) 504(70.59) 649(90.90)

Table1: Transliterationresults for theEDICT testset

CMUa CMUb
Inputs Top-1(%) Top-10(%) Top-1(%) Top-10(%)

PM0 150 27(18.00) 47 (31.33) 20 (13.33) 36 (24.00)
GM 150 49(32.67) 86 (57.33) 69 (46.00) 96 (64.00)
PM 150 58(38.67) 82 (54.67) 67 (44.67) 91 (60.67)
COMB 150 57(38.00) 106(70.67) 70 (46.67) 107(71.33)

Table2: Transliterationresultsfor theEDR testset

(COMB). Here, PM0 was trained only on the di-
rectly aligningedits( } W�� ), andtheremainingmod-
els used a context of two units to the left and to
the right ( } W � ). The test dictionarycontains all
words appearing in the English translations in the
EDICT dictionary (over 30,000 words). The top-
1 andtop-10 accuraciesaregiven for two language
models(LM): EDICTa whereall wordshave equal
probability andEDICTb whereprobabiliti esreflect
the corpus frequencies from the EDR English cor-
pus(EDR, 1995). Thetransliterationswereconsid-
eredcorrect, if they matchedtheEnglishtranslation,
letter-for-letter, in anon-case-sensitivemanner.

We canseethat thePM yieldsbetterresults than
the GM with the samecontext window. This justi-
fies the consideration of pronunciation for translit-
eration, and it showsthat our methodof mapping
English to romaji using pronunciation is effective.
Furthermore,we canseethat the proposedmethod
(COMB) givesthebestperformancein all cases.

It might seemsurprising that using EDICTb re-
sultsin reduced accuracy. However, thecorpus fre-
quenciesbiasthemodelsoerroneoustransliterations
consisting of shorter more frequentwordsarepre-
ferred over longer, correct, but infrequent words.
This shows the importance of a good LM from
which to select transliterations.

For the second set of experimentswe extracted
150 katakana words from the EDR Japanesecor-
pus not in the EDICT dictionary and we used the

completeCMU dictionarywordset(around120,000
words)compiled into modelsCMUa andCMUb, as
describedabove.

Table2 givesthetransliteration results for thistest
set. We canseea significant overall drop in accu-
racy. It is partially due to a larger setof words to
choosefrom, hence a moredifficult task.Sincevar-
ious spellings with similar pronunciationsarecon-
tained in thedictionary, corpus frequencieshelpim-
prove the top-1 accuracy, thus the higher accuracy
ratesfor theCMUb languagemodel. For example,
with CMUb service is selectedrather thanservis as
the top transliteration of ”saabi su ” in � ������ ���0� “cent aasa abisu ” center service.

However, a bigger problemis the inability of our
system to handle non-Englishterms(e.g.

�%��� �
“sahar in ” Sakhalin) andabbreviations(e.g.

���
� �  � ��¡ � � �¢�¢� “ riha birit eesh on-
sent aa” rehabilitat ion center is abbreviatedas

�
� � � � �"�y� “ rihab iris entaa ” ) which
make a sizable portion of EDR out-of-vocabulary
items.Ratherthan tryingto obtain anEnglishequiv-
alent of these terms, the systemwould ideally be
able to determine the possible origin of the word
from thecontext available(e.g.userquery in CLIR)
andthenapply anadequatelanguagemodel.

Brill et al. (2001) provide no direct evaluationof
their transliteration system. Instead, they evalu-
ate the ability of their system to extract English-
katakanapairsfrom non-alignedwebquerylogs. On



theother hand, Knight andGraehl(1998) give only
the accuracy for transliteration of personal names
(64% correct, 12% phonetically equivalent) but not
for general out-of-vocabulary terms. This makes
comparisonwith our systemdifficult. Nonetheless,
theabove experimentsshow thatthecombination of
thephoneme-andgrapheme-basedmodelshelpsthe
overall accuracy and coverage. In the future, we
would like to explore different waysof combining
thesemodelsto further increasethe positive effect
of thecombination.

5 Conclusion

Back transliteration is the process of converting
transliterated words back into their original form.
Previous models used either only phoneme- or
only grapheme-basedinformation containedin the
transliteration. Instead, we proposea methodfor
improving back–transliteration by combining these
two models. We go on to describe how we imple-
mentedthemodelsto allow combinationandfinally,
weevaluatetheeffectivenessof thecombinedmodel
andpoint out somedeficiencieswe hopeto address
in thefuture.
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