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Abstract 
We implemented a parser designed to handle ill-formedness in 
Japanese speech. The parser was evaluated by utilizing newly 
collected speech data, which was obtained from an experiment 
designed to produce ill-formed data effectively. Introducing 
the proposed method increased the number of correctly 
analyzed utterances from 171 to 322, from among 532 
utterances in the corpus. 

1. Introduction 
Ill-formedness in speech is a major obstacle to designing 
effective speech dialogue systems. In Japanese, there are three 
major kinds of ill-formedness: postposition omission, 
inversion and self-correction. In this paper, we describe our 
implementation of the method previously proposed by our 
group [3] to handle ill-formedness. We evaluated this method 
by using newly collected speech data to demonstrate its 
effectiveness in speech dialogue systems. 

In evaluating methods of dealing with ill-formedness, a 
major problem is to create a corpus that includes many ill-
formed utterances. Although postposition omission, inversion, 
and self-correction are likely to occur more frequently than 
other, minor types of ill-formedness, their absolute frequencies 
of occurrence are not that large. Bear et al. [1] reported only 
607 sentences containing self-corrections in a 10,000 sentence 
corpus (6%). According to Den [2], the ATR dialogue 
database has self-corrections in about 10% of its sentences. 
Nakano & Shimazu [6] found 704 self-corrections in their 
corpus of about 15,000 turns. In contrast, Heeman & Allen [4] 
reported 1,973 self-corrections in their Trains Corpus of 6,163 
turns, and Levelt [5] reported a self-correction rate of 34% for 
human-human dialogue. Thus, the self-correction rate in a 
dialogue corpus seems be around 10% (5–30%), although it 
clearly varies according to the tasks involved in collection. 
Yamamoto et al. [8] found 171 postposition omissions in 
4,063 noun phrases (4%) and 32 inversions in 1,818 
utterances (1.8%). Both types of ill-formedness occur less 
often than self-correction. 

We empirically expect that the more deliberately a speaker 
speaks, the less ill-formedness occurs. In contrast, ill-
formedness should occur more frequently in a distractive 
situation in which a speaker can not concentrate on speaking. 
We thus designed an experiment to collect ill-formed 
utterances by creating such a distractive situation. 

In section 2, we classify the various types of ill-formedness, 
and in section 3, we briefly describe our method of handling 
these phenomena. In section 4, we describe the procedure for 
collecting ill-formed data, examine the collected data, and give 
the results of our data analysis. We conclude the paper in 
section 5. 

2. Ill-formedness in Japanese Speech 
We consider four types of ill-formedness in Japanese speech: 
postposition omission, inversion, self-correction, and 
hesitation. In this paper, we refer to an instance of each type of 
ill-formedness as a disfluency. 

2.1. Postposition Omission 
In Japanese, the grammatical role of a noun phrase is marked 
by a postposition, and the order of postpositional phrases is 
relatively free. In Japanese dialogue, however, speakers often 
omit postpositions, and this causes difficulties in syntactic and 
semantic analysis. In addition, when we use automatic speech 
recognizers (ASRs) in dialogue systems, we have to deal with 
the misrecognition of postpositions. Because their acoustic 
power tends to be weak, postpositions tend to be 
misrecognized more than content words by ASRs.  

Yamamoto et al. [8] reported that omission of the 
postpositions “wa”, “ga”, “wo”, “ni” and “e” makes up about 
80% of all postposition omission. In this paper, we consider 
seven postpositions (the above five, “mo” and “no”).  

2.2. Inversion 

Since Japanese is a head-final language, sentences usually end 
with a predicate. In dialogue, however, speakers sometimes 
add several phrases after the predicate. We consider such cases 
as inversion, and we assume that these post-predicate phrases 
depend on the predicate. 

2.3. Self-correction 

Self-correction is also known as speech repair, or simply 
repair. In Japanese, self-correction can be combined with 
postposition omission and inversion [3]: 
 
(1) “akai tama-(wo) mae-(ni)   osite migi-no yatsu-wo” 

 red ball-(ACC)   front-(GOAL) push  right-GEN one-ACC 
    (Push the right red ball forward) 
 
In example (1), the speaker corrected “akai tama-(wo)” (“wo” 
was omitted) by adding the inverted pronoun phrase, “migi-no 
yatsu-wo”. 

2.4. Hesitation 

Hesitation occurs when a speaker is interrupted or fails to 
articulate, resulting in a word fragment in the utterance. In 
many cases, self-correction follows a hesitation, but not 
always. Moreover, it is hard for current ASRs to recognize 
fragments. Thus, we treat hesitation as a different phenomenon 
from self-correction. 

3. Analysis Method 

3.1. Parser and Dictionary 
We adopt the dependency parser and method of handling ill-
formedness proposed previously by our group [3]. The method 
handles all ill-formedness in the parser in parallel with 
syntactic analysis. We describe the parser and the dictionary it 
uses below.  

3.1.1 Dependency Parser 

We can describe a fragment of a Japanese syntactic structure 
in a regular expression as “(C F*)+”, where C is a content 
word and F is a function word. We call such a unit “(C F*)” a 
phrase. The function word depends on the preceding content 
word. 
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The parser creates a dependency tree of phrases on a stack, 
in which each element stores a subtree of the structure. The 
parser maintains multiple stacks simultaneously, each 
corresponding to a different hypothesis (syntactic structure). 
After the parser receives a word sequence from the ASR, it 
incrementally pushes the words onto the stack.  

Once a content word is pushed onto a stack, all the 
succeeding function words in the sequence are attached to the 
content word. If two consecutive function words are not 
allowed to adjoin, the parser considers the second one to be a 
correction of the first, and it replaces the first with the second. 
This process thus creates a phrase as one element at the top of 
the stack.  

When more than one element is created in the stack, the 
parser pops the first two elements t1 and t2 (t2 is at the top), 
then checks for the possibility of a dependency between rw1 
and rw2. Here, rwi denotes the root word of subtree ti. If the 
dependency is possible, the parser duplicates the stack. It then 
restores the original stack by pushing the two popped elements 
back on. In the new stack, the parser pushes a new element 
containing the dependency of rw1 and rw2. Finally, the parser 
recursively applies the same procedure to the new stack.  

For example, suppose the verb “osite (push)” is pushed onto 
the following stack:1 

[ (mae-ni) | ((akai) tama) > 
 forward red ball 

Assuming no function word follows “osite”, the parser 
generates three new stacks: 
  [ (mae-ni) | ((akai) tama) | (osite) >, 
  [ (mae-ni) | (((akai) tama) osite) >, 
  [ ((mae-ni) ((akai) tama) osite) >. 

The parser assigns a score to each hypothesis and thus limits 
the number of hypotheses. In this paper, we do not describe 
the score calculation algorithm in detail. Briefly, the parser 
gives preference to dependencies between closer words and 
interpretations that include more words in an utterance.  

3.1.2.  Dictionary Description 

As mentioned above, we adopted a dependency parser, which 
does not employ explicit grammar rules. Instead, it has hard-
coded grammatical knowledge of phrase structures and utilizes 
dependency constraints described in the word entries of a 
dictionary. Here, we show how those constraints are defined.  

When a content word C1 depends on another content word 
C2, we assume that C1 takes a semantic role with regard to C2. 
The possible semantic roles and constraints on those roles are 
described in the dictionary as illustrated in Figure 1. 

Figure 1: Dictionary entry for “osite (push)”. 

                                                   
1 “[“ and “>“ indicate the bottom and top of the stack, respectively. 

“|” indicates the boundary between two elements. “( )” indicates a 
dependency. 

The first line in Figure 1 gives the features of the verb “osite 
(push)”: 

• part of speech (VERB) 
• imperative mood (IMP+) 
• action (PUSH+) 
 

The following lines show the possible semantic roles of the 
verb and the constraints on each role. For example, the second 
line specifies the constraints on a word taking the role <OBJ>: 

• number of words that can take this role (1) 
• part of speech (NOUN) 
• postpositions that can mark this role (”wa”, “wo” and 

“mo”) 
• semantic feature(s) (INST+) 
 
The parser assigns a semantic role to every dependency 

according to the dictionary. By referring to these roles, a 
syntactic tree can be easily transformed into a semantic frame. 
The semantic roles also help handle self-correction.  

3.2. Analysis of Ill-formed Utterances 

3.2.1.  Postposition Omission and Inversion 

We handle postposition omission and inversion by augmenting 
the parser and dictionary described in section 3.1. For 
postposition omission, we allow an unmarked (-) dependency 
for words that generally relate to one of the seven 
postpositions listed in section 2.1.  

Inversion is handled by allowing not only forward 
dependency but also backward dependency. First, we specify 
the possible dependency directions for each role of every word 
in the dictionary by attaching one of the labels “B”, “F”, or 
“*”. “F” and “B” allow only forward dependency and 
backward dependency, respectively, while “*” allows both. 
Finally, the parser can then handle dependencies in both 
directions.  

3.2.2.  Self-correction 

The algorithm to handle self-correction is described in detail 
in our group’s previous paper [3]. In this section, we explain it 
briefly.  

The parser detects a possible self-correction by examining 
the two elements at the top of the stack. When the parser 
detects a self-correction, it duplicates the hypothesis stack, 
leaves one stack intact, and lets the other keep the restored 
data.  

We give an example below:  
 (2)  “uma wa  akai tama   aoi  tama   osite” 
      horse-TOP  red  ball-UM  blue  ball-UM  push 
   (Horse, push the red ball blue ball) 
 
Here, “UM” means “unmarked” due to postposition omission. 
This example translates as “Horse, push the red ball blue ball.” 
By applying its encoded rules, the parser detects the possibility 
that akai tama has been corrected with aoi tama, after it 
creates a hypothesis stack:  

α: [ (uma-wa) | ((akai) tama) | ((aoi) tama) >. 
Then, the parser removes the redundant part, and generates a 
new stack:  

β: [ (uma-wa) | ((aoi) tama) >. 
Here, stack β can be extended to a correct interpretation:  

γ: [ ((uma-wa) ((aoi) tama) osite) >. 
Note that stack γ cannot be reached directly from stack α.  

The method explained above cannot handle self-corrections 
between function words, including postpositions. All self-

 

Osite  VERB  IMP+    PUSH+ 
    <OBJ>  1 NOUN wa|wo|mo  INST+ 
    <SBJ>  1 NOUN wa|ga|mo  ANIM+ INST+ 
    <TO>   1 NOUN ni|e     LOC+ 
    <FROM> 1 NOUN wa|ga|mo  LOC+ 
    <EXT>  1 ADV  -      DEG:* 
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corrections between function words are handled in creating 
phrases (section 3.1.1). However, speakers rarely correct only 
function words in a phrase. In most cases, they give a new 
phrase containing the correct function words. On the other 
hand, ASRs frequently insert incorrect function words after 
correctly recognized function words, due to fillers between 
phrases. Thus, we neglect the self-corrections between 
function words.  

Lastly, when the parser encounters an editing term, it creates 
an empty stack for a restart.  

3.2.3.  Hesitation 

It is difficult for ASRs to recognize word fragments resulting 
from hesitation. We handle hesitation (i.e., word fragments) by 
employing word skipping.  

The parser skips words in parallel with the dependency 
analysis. We assume that misrecognized words tend to be 
isolated in their local contexts. Thus, to reduce ambiguity, the 
parser skips words that cannot depend on their neighboring 
words. When the parser finds such a word in a hypothesis 
stack, it duplicates the stack and removes the word from one of 
the two stacks.  

4. Experiment 

We collected ill-formed speech data and evaluated the analysis 
method described in section 3. 

4.1. Data Collection 

4.1.1.  Domain of Collected Utterances 

In this experiment, the subject’s task was to arrange four 
colored balls in their prescribed positions by instructing four 
agents: Horse, Chicken, Snowman, and Camera. The agents 
other than the Camera could perform the following actions:  

1. push an object; 
2. turn to a certain direction; 
3. move to a certain position or direction. 

The Camera could turn and move but could not push an 
object. Instead, it could photograph a scene.  

4.1.2.  Collection Procedure 

As mentioned in section 1, it is not easy to collect speech data 
that includes disfluencies. We thus designed our experiment to 
collect disfluencies as follows.  

A supervisor and one subject participated in each session. 
We used five Japanese students (four male and one female) as 
subjects. The supervisor showed the subject a bird's-eye view 
of the current disposition of the agents and balls, as shown in 
Figure 2. 

Figure 2: Revised dictionary entry for “osite”. 
 

The agents were denoted by isosceles triangles and oriented by 
the sharpest vertices, while the balls were denoted by circles 
and colored blue or red. The agents and balls were labeled 
with their names.  

The stimulus consisted of a sequence of marks indicating an 
action and its case roles, which were agent, object, source, and 
destination. The marks were displayed one by one on the map 
at intervals of 0.5 second in random order. The stimulus thus 
corresponded to a command to an agent, and the subjects were 
instructed to express the command orally, in parallel with the 
sequential presentation of the marks. Since the subjects were 
asked to utter their commands in real time—that is, while in 
the process of constructing a sentence—we could expect many 
ill-formed utterances, containing complex self-corrections in 
particular, as well as simple repetitions.  

In Figure 2, the action is shown at the upper left in English, 
the agent is marked by the square on the Horse, the object is 
marked by the square on one of the red balls, and the 
destination of the action “push” is marked by the circle 
between the Chicken and one of the blue balls. This stimulus 
could be expressed as the command: “uma wa kamera no 
usiro no akai tama wo aoi tama no hidari ni osite (Horse, 
push the red ball behind the Camera to the left of the blue 
ball)”. However, the marks were not always presented in the 
same order as the standard surface order of the sentence. The 
keyword specifying the action could be shown before the other 
marks, so that, in such a case, an inversion would occur if the 
subject followed the order of the marks.  

The subjects are instructed to repair their utterances freely if 
they thought their utterances were wrong or unnatural and they 
wanted to do so. However, they were not actually required to 
invert or correct their utterances.  

4.1.3.  Collected Data 

We conducted two sessions with each subject and collected 
536 utterances (about 50 utterances per session). The 
disposition of the agents and balls was changed for each 
session. The average length of the utterances was nine words. 
The collected data included 7 postposition omissions, 
4 inversions, 153 self-corrections, and 49 hesitations. These 
disfluencies appeared in 139 utterances (26%).  

We applied an ASR (AmiVoice, Advanced Media, Inc.) to 
the data, and it made 184 deletions, 55 insertions, and 300 
substitutions. The grammar used by the ASR prescribed only 
the phrase structures. The vocabulary size was 120 words, 
including 11 fillers. The ASR recognized 203 utterances 
(38%) perfectly except for fillers. Of these, 168 were 
recognized perfectly and contained no disfluencies.  

4.2. Evaluation 

4.2.1.  Evaluation Procedure 

We implemented the parser described in section 3 and applied 
it to the collected data. For evaluation purposes, we used the 
best among the multiple interpretations produced by the 
parser. We then classified the syntactic analysis results into 
three categories. 
[Correct] The resulting dependency tree matched the 

speaker's intention. The semantic roles assigned by the 
parser were also correct.  

[Partially Correct] The resulting tree was a subtree of the 
correct tree.  

[Wrong] Either the structure of the tree or the assigned 
semantic roles (or both) were inconsistent with the 
speaker's intention.  
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4.2.2.  Results 

First, we transcribed the speech data and parsed the 
transcribed text with the parser. Table 1 shows the parsing 
results, with each cell showing the number of utterances. 
 
Table 1: Results of parsing the manual transcription. 
 

The parser correctly analyzed 76% of the utterances with 
disfluencies. For most of the incorrectly analyzed utterances 
with disfluencies, the parser preferred interpretations without 
self-corrections, because it was designed to give preference to 
interpretations covering more of the words in an utterance. As 
for the incorrectly analyzed utterances without disfluencies, 
the parser misinterpreted semantic roles.  

Table 2 shows the parsing results for the ASR output. 
 
Table 2: Results of parsing the automatic dictation. 

 
In this case, the parser correctly analyzed 64.5% (322) of the 
499 utterances that were correctly analyzed for the manual 
transcription. Incorporating our method of handling ill-
formedness into the parser enabled it to correctly analyze 151 
(= 28 + 22 + 101) of those 322 utterances. Two thirds of the 
recovered misrecognitions were deletions of one of the seven 
postpositions. The remaining one third occurred in reparanda 
that the speakers intended to correct.  

5. Conclusion 

In this paper, we reported our implementation and evaluation 
of a parser designed previously by our group [3] to handle ill-
formedness in Japanese speech dialogue. Introducing a method 
of handling disfluencies into the parser enabled it to interpret 
106 more utterances (about 20% of the collected data) if the 
ASR worked perfectly (Table 1). With the AmiVoice ASR, the 
number of sentences analyzed correctly was greatly improved, 
from 32% (171) to 60% (322).  

We designed an experiment to obtain ill-formed data 
effectively. However, the collected data included only 7 
postposition omissions and 4 inversions. This shows that the 
procedure described in section 4.1.2 was insufficient to 
produce large numbers of postposition omissions and 
inversions. We expect that free conversation would be more 
suitable than the restricted situations employed in our 
experiment for obtaining ill-formed data.  

We also expected that the procedure would collect many 
complex self-corrections. However, there were only 6 self-

corrections containing more than four words in the reparanda 
(4% of 153), not including restarts. This was slightly greater 
than the number reported in Ref. [7] but less than that reported 
in Ref. [1] and much lower than expected. Our group [3] 
previously pointed out that Japanese speakers can correct their 
utterances from distant locations within a sentence by 
combining inversion and self-correction, as in example (1), but 
we could find only 3 such self-corrections in the collected 
data.  
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Utterance Type C P  W  Total  
w/ disfluency and 

misrecognition 
28 17 67 112 

w/ disfluency only 22 1 2 25 
w/ misrecognition only 101 42 76 219 

w/o disfluency and 
misrecognition 

171 1 6 178 

Total 322 61 153 536 
 

Utterance Type C P  W  Total  
w/ disfluency 106 2 31 139 

w/o disfluency 393 1 3 396 
Total 499 3 34 536 

C: correct, P: partially correct, W: wrong 


