
Proceedings of DiSS’03, Disfluency in Spontaneous Speech Workshop. 5–8 September 2003, Göteborg University, Sweden.
Robert Eklund (ed.), Gothenburg Papers in Theoretical Linguistics 89, ISSN 0349–1021, pp. 53–56.

 53

Evaluation of a robust parser for spoken Japanese

Kotaro Funakoshi & Takenobu Tokunaga

Department of Computer Science, Tokyo Institute of Technology

Abstract
We implemented a parser designed to handle ill-formedness in
Japanese speech. The parser was evaluated by utilizing newly
collected speech data, which was obtained from an experiment
designed to produce ill-formed data effectively. Introducing
the proposed method increased the number of correctly
analyzed utterances from 171 to 322, from among 532
utterances in the corpus.

1. Introduction
Ill-formedness in speech is a major obstacle to designing
effective speech dialogue systems. In Japanese, there are three
major kinds of ill-formedness: postposition omission,
inversion and self-correction. In this paper, we describe our
implementation of the method previously proposed by our
group [3] to handle ill-formedness. We evaluated this method
by using newly collected speech data to demonstrate its
effectiveness in speech dialogue systems.

In evaluating methods of dealing with ill-formedness, a
major problem is to create a corpus that includes many ill-
formed utterances. Although postposition omission, inversion,
and self-correction are likely to occur more frequently than
other, minor types of ill-formedness, their absolute frequencies
of occurrence are not that large. Bear et al. [1] reported only
607 sentences containing self-corrections in a 10,000 sentence
corpus (6%). According to Den [2], the ATR dialogue
database has self-corrections in about 10% of its sentences.
Nakano & Shimazu [6] found 704 self-corrections in their
corpus of about 15,000 turns. In contrast, Heeman & Allen [4]
reported 1,973 self-corrections in their Trains Corpus of 6,163
turns, and Levelt [5] reported a self-correction rate of 34% for
human-human dialogue. Thus, the self-correction rate in a
dialogue corpus seems be around 10% (5–30%), although it
clearly varies according to the tasks involved in collection.
Yamamoto et al. [8] found 171 postposition omissions in
4,063 noun phrases (4%) and 32 inversions in 1,818
utterances (1.8%). Both types of ill-formedness occur less
often than self-correction.

We empirically expect that the more deliberately a speaker
speaks, the less ill-formedness occurs. In contrast, ill-
formedness should occur more frequently in a distractive
situation in which a speaker can not concentrate on speaking.
We thus designed an experiment to collect ill-formed
utterances by creating such a distractive situation.

In section 2, we classify the various types of ill-formedness,
and in section 3, we briefly describe our method of handling
these phenomena. In section 4, we describe the procedure for
collecting ill-formed data, examine the collected data, and give
the results of our data analysis. We conclude the paper in
section 5.

2. Ill-formedness in Japanese Speech
We consider four types of ill-formedness in Japanese speech:
postposition omission, inversion, self-correction, and
hesitation. In this paper, we refer to an instance of each type of
ill-formedness as a disfluency.

2.1. Postposition Omission
In Japanese, the grammatical role of a noun phrase is marked
by a postposition, and the order of postpositional phrases is
relatively free. In Japanese dialogue, however, speakers often
omit postpositions, and this causes difficulties in syntactic and
semantic analysis. In addition, when we use automatic speech
recognizers (ASRs) in dialogue systems, we have to deal with
the misrecognition of postpositions. Because their acoustic
power tends to be weak, postpositions tend to be
misrecognized more than content words by ASRs.

Yamamoto et al. [8] reported that omission of the
postpositions “wa”, “ga”, “wo”, “ni” and “e” makes up about
80% of all postposition omission. In this paper, we consider
seven postpositions (the above five, “mo” and “no”).

2.2. Inversion

Since Japanese is a head-final language, sentences usually end
with a predicate. In dialogue, however, speakers sometimes
add several phrases after the predicate. We consider such cases
as inversion, and we assume that these post-predicate phrases
depend on the predicate.

2.3. Self-correction

Self-correction is also known as speech repair, or simply
repair. In Japanese, self-correction can be combined with
postposition omission and inversion [3]:

(1) “akai tama-(wo) mae-(ni) osite migi-no yatsu-wo”

 red ball-(ACC) front-(GOAL) push right-GEN one-ACC
 (Push the right red ball forward)

In example (1), the speaker corrected “akai tama-(wo)” (“wo”
was omitted) by adding the inverted pronoun phrase, “migi-no
yatsu-wo”.

2.4. Hesitation

Hesitation occurs when a speaker is interrupted or fails to
articulate, resulting in a word fragment in the utterance. In
many cases, self-correction follows a hesitation, but not
always. Moreover, it is hard for current ASRs to recognize
fragments. Thus, we treat hesitation as a different phenomenon
from self-correction.

3. Analysis Method

3.1. Parser and Dictionary
We adopt the dependency parser and method of handling ill-
formedness proposed previously by our group [3]. The method
handles all ill-formedness in the parser in parallel with
syntactic analysis. We describe the parser and the dictionary it
uses below.

3.1.1 Dependency Parser

We can describe a fragment of a Japanese syntactic structure
in a regular expression as “(C F*)+”, where C is a content
word and F is a function word. We call such a unit “(C F*)” a
phrase. The function word depends on the preceding content
word.

Funakoshi, Tokunaga

54

The parser creates a dependency tree of phrases on a stack,
in which each element stores a subtree of the structure. The
parser maintains multiple stacks simultaneously, each
corresponding to a different hypothesis (syntactic structure).
After the parser receives a word sequence from the ASR, it
incrementally pushes the words onto the stack.

Once a content word is pushed onto a stack, all the
succeeding function words in the sequence are attached to the
content word. If two consecutive function words are not
allowed to adjoin, the parser considers the second one to be a
correction of the first, and it replaces the first with the second.
This process thus creates a phrase as one element at the top of
the stack.

When more than one element is created in the stack, the
parser pops the first two elements t1 and t2 (t2 is at the top),
then checks for the possibility of a dependency between rw1
and rw2. Here, rwi denotes the root word of subtree ti. If the
dependency is possible, the parser duplicates the stack. It then
restores the original stack by pushing the two popped elements
back on. In the new stack, the parser pushes a new element
containing the dependency of rw1 and rw2. Finally, the parser
recursively applies the same procedure to the new stack.

For example, suppose the verb “osite (push)” is pushed onto
the following stack:1

[(mae-ni) | ((akai) tama) >
 forward red ball

Assuming no function word follows “osite”, the parser
generates three new stacks:
 [(mae-ni) | ((akai) tama) | (osite) >,
 [(mae-ni) | (((akai) tama) osite) >,
 [((mae-ni) ((akai) tama) osite) >.

The parser assigns a score to each hypothesis and thus limits
the number of hypotheses. In this paper, we do not describe
the score calculation algorithm in detail. Briefly, the parser
gives preference to dependencies between closer words and
interpretations that include more words in an utterance.

3.1.2. Dictionary Description

As mentioned above, we adopted a dependency parser, which
does not employ explicit grammar rules. Instead, it has hard-
coded grammatical knowledge of phrase structures and utilizes
dependency constraints described in the word entries of a
dictionary. Here, we show how those constraints are defined.

When a content word C1 depends on another content word
C2, we assume that C1 takes a semantic role with regard to C2.
The possible semantic roles and constraints on those roles are
described in the dictionary as illustrated in Figure 1.

Figure 1: Dictionary entry for “osite (push)”.

1 “[“ and “>“ indicate the bottom and top of the stack, respectively.

“|” indicates the boundary between two elements. “()” indicates a
dependency.

The first line in Figure 1 gives the features of the verb “osite
(push)”:

• part of speech (VERB)
• imperative mood (IMP+)
• action (PUSH+)

The following lines show the possible semantic roles of the
verb and the constraints on each role. For example, the second
line specifies the constraints on a word taking the role <OBJ>:

• number of words that can take this role (1)
• part of speech (NOUN)
• postpositions that can mark this role (”wa”, “wo” and

“mo”)
• semantic feature(s) (INST+)

The parser assigns a semantic role to every dependency

according to the dictionary. By referring to these roles, a
syntactic tree can be easily transformed into a semantic frame.
The semantic roles also help handle self-correction.

3.2. Analysis of Ill-formed Utterances

3.2.1. Postposition Omission and Inversion

We handle postposition omission and inversion by augmenting
the parser and dictionary described in section 3.1. For
postposition omission, we allow an unmarked (-) dependency
for words that generally relate to one of the seven
postpositions listed in section 2.1.

Inversion is handled by allowing not only forward
dependency but also backward dependency. First, we specify
the possible dependency directions for each role of every word
in the dictionary by attaching one of the labels “B”, “F”, or
“*”. “F” and “B” allow only forward dependency and
backward dependency, respectively, while “*” allows both.
Finally, the parser can then handle dependencies in both
directions.

3.2.2. Self-correction

The algorithm to handle self-correction is described in detail
in our group’s previous paper [3]. In this section, we explain it
briefly.

The parser detects a possible self-correction by examining
the two elements at the top of the stack. When the parser
detects a self-correction, it duplicates the hypothesis stack,
leaves one stack intact, and lets the other keep the restored
data.

We give an example below:
 (2) “uma wa akai tama aoi tama osite”
 horse-TOP red ball-UM blue ball-UM push
 (Horse, push the red ball blue ball)

Here, “UM” means “unmarked” due to postposition omission.
This example translates as “Horse, push the red ball blue ball.”
By applying its encoded rules, the parser detects the possibility
that akai tama has been corrected with aoi tama, after it
creates a hypothesis stack:

α: [(uma-wa) | ((akai) tama) | ((aoi) tama) >.
Then, the parser removes the redundant part, and generates a
new stack:

β: [(uma-wa) | ((aoi) tama) >.
Here, stack β can be extended to a correct interpretation:

γ: [((uma-wa) ((aoi) tama) osite) >.
Note that stack γ cannot be reached directly from stack α.

The method explained above cannot handle self-corrections
between function words, including postpositions. All self-

Osite VERB IMP+ PUSH+
 <OBJ> 1 NOUN wa|wo|mo INST+
 <SBJ> 1 NOUN wa|ga|mo ANIM+ INST+
 <TO> 1 NOUN ni|e LOC+
 <FROM> 1 NOUN wa|ga|mo LOC+
 <EXT> 1 ADV - DEG:*

Proceedings of DiSS’03, Disfluency in Spontaneous Speech Workshop. 5–8 September 2003, Göteborg University, Sweden.
Robert Eklund (ed.), Gothenburg Papers in Theoretical Linguistics 89, ISSN 0349–1021, pp. 53–56.

 55

corrections between function words are handled in creating
phrases (section 3.1.1). However, speakers rarely correct only
function words in a phrase. In most cases, they give a new
phrase containing the correct function words. On the other
hand, ASRs frequently insert incorrect function words after
correctly recognized function words, due to fillers between
phrases. Thus, we neglect the self-corrections between
function words.

Lastly, when the parser encounters an editing term, it creates
an empty stack for a restart.

3.2.3. Hesitation

It is difficult for ASRs to recognize word fragments resulting
from hesitation. We handle hesitation (i.e., word fragments) by
employing word skipping.

The parser skips words in parallel with the dependency
analysis. We assume that misrecognized words tend to be
isolated in their local contexts. Thus, to reduce ambiguity, the
parser skips words that cannot depend on their neighboring
words. When the parser finds such a word in a hypothesis
stack, it duplicates the stack and removes the word from one of
the two stacks.

4. Experiment

We collected ill-formed speech data and evaluated the analysis
method described in section 3.

4.1. Data Collection

4.1.1. Domain of Collected Utterances

In this experiment, the subject’s task was to arrange four
colored balls in their prescribed positions by instructing four
agents: Horse, Chicken, Snowman, and Camera. The agents
other than the Camera could perform the following actions:

1. push an object;
2. turn to a certain direction;
3. move to a certain position or direction.

The Camera could turn and move but could not push an
object. Instead, it could photograph a scene.

4.1.2. Collection Procedure

As mentioned in section 1, it is not easy to collect speech data
that includes disfluencies. We thus designed our experiment to
collect disfluencies as follows.

A supervisor and one subject participated in each session.
We used five Japanese students (four male and one female) as
subjects. The supervisor showed the subject a bird's-eye view
of the current disposition of the agents and balls, as shown in
Figure 2.

Figure 2: Revised dictionary entry for “osite”.

The agents were denoted by isosceles triangles and oriented by
the sharpest vertices, while the balls were denoted by circles
and colored blue or red. The agents and balls were labeled
with their names.

The stimulus consisted of a sequence of marks indicating an
action and its case roles, which were agent, object, source, and
destination. The marks were displayed one by one on the map
at intervals of 0.5 second in random order. The stimulus thus
corresponded to a command to an agent, and the subjects were
instructed to express the command orally, in parallel with the
sequential presentation of the marks. Since the subjects were
asked to utter their commands in real time—that is, while in
the process of constructing a sentence—we could expect many
ill-formed utterances, containing complex self-corrections in
particular, as well as simple repetitions.

In Figure 2, the action is shown at the upper left in English,
the agent is marked by the square on the Horse, the object is
marked by the square on one of the red balls, and the
destination of the action “push” is marked by the circle
between the Chicken and one of the blue balls. This stimulus
could be expressed as the command: “uma wa kamera no
usiro no akai tama wo aoi tama no hidari ni osite (Horse,
push the red ball behind the Camera to the left of the blue
ball)”. However, the marks were not always presented in the
same order as the standard surface order of the sentence. The
keyword specifying the action could be shown before the other
marks, so that, in such a case, an inversion would occur if the
subject followed the order of the marks.

The subjects are instructed to repair their utterances freely if
they thought their utterances were wrong or unnatural and they
wanted to do so. However, they were not actually required to
invert or correct their utterances.

4.1.3. Collected Data

We conducted two sessions with each subject and collected
536 utterances (about 50 utterances per session). The
disposition of the agents and balls was changed for each
session. The average length of the utterances was nine words.
The collected data included 7 postposition omissions,
4 inversions, 153 self-corrections, and 49 hesitations. These
disfluencies appeared in 139 utterances (26%).

We applied an ASR (AmiVoice, Advanced Media, Inc.) to
the data, and it made 184 deletions, 55 insertions, and 300
substitutions. The grammar used by the ASR prescribed only
the phrase structures. The vocabulary size was 120 words,
including 11 fillers. The ASR recognized 203 utterances
(38%) perfectly except for fillers. Of these, 168 were
recognized perfectly and contained no disfluencies.

4.2. Evaluation

4.2.1. Evaluation Procedure

We implemented the parser described in section 3 and applied
it to the collected data. For evaluation purposes, we used the
best among the multiple interpretations produced by the
parser. We then classified the syntactic analysis results into
three categories.
[Correct] The resulting dependency tree matched the

speaker's intention. The semantic roles assigned by the
parser were also correct.

[Partially Correct] The resulting tree was a subtree of the
correct tree.

[Wrong] Either the structure of the tree or the assigned
semantic roles (or both) were inconsistent with the
speaker's intention.

Funakoshi, Tokunaga

56

4.2.2. Results

First, we transcribed the speech data and parsed the
transcribed text with the parser. Table 1 shows the parsing
results, with each cell showing the number of utterances.

Table 1: Results of parsing the manual transcription.

The parser correctly analyzed 76% of the utterances with
disfluencies. For most of the incorrectly analyzed utterances
with disfluencies, the parser preferred interpretations without
self-corrections, because it was designed to give preference to
interpretations covering more of the words in an utterance. As
for the incorrectly analyzed utterances without disfluencies,
the parser misinterpreted semantic roles.

Table 2 shows the parsing results for the ASR output.

Table 2: Results of parsing the automatic dictation.

In this case, the parser correctly analyzed 64.5% (322) of the
499 utterances that were correctly analyzed for the manual
transcription. Incorporating our method of handling ill-
formedness into the parser enabled it to correctly analyze 151
(= 28 + 22 + 101) of those 322 utterances. Two thirds of the
recovered misrecognitions were deletions of one of the seven
postpositions. The remaining one third occurred in reparanda
that the speakers intended to correct.

5. Conclusion

In this paper, we reported our implementation and evaluation
of a parser designed previously by our group [3] to handle ill-
formedness in Japanese speech dialogue. Introducing a method
of handling disfluencies into the parser enabled it to interpret
106 more utterances (about 20% of the collected data) if the
ASR worked perfectly (Table 1). With the AmiVoice ASR, the
number of sentences analyzed correctly was greatly improved,
from 32% (171) to 60% (322).

We designed an experiment to obtain ill-formed data
effectively. However, the collected data included only 7
postposition omissions and 4 inversions. This shows that the
procedure described in section 4.1.2 was insufficient to
produce large numbers of postposition omissions and
inversions. We expect that free conversation would be more
suitable than the restricted situations employed in our
experiment for obtaining ill-formed data.

We also expected that the procedure would collect many
complex self-corrections. However, there were only 6 self-

corrections containing more than four words in the reparanda
(4% of 153), not including restarts. This was slightly greater
than the number reported in Ref. [7] but less than that reported
in Ref. [1] and much lower than expected. Our group [3]
previously pointed out that Japanese speakers can correct their
utterances from distant locations within a sentence by
combining inversion and self-correction, as in example (1), but
we could find only 3 such self-corrections in the collected
data.

6. References

[1] Bear, John, John Dowding & Elizabeth Shriberg. 1992.
Integrating multiple knowledge sources for detection and
correction of repairs in human-computer dialog. Proc. of
30th Annual Meeting of ACL, pp. 56–63.

[2] Den, Yasuharu. 1997. A uniform approach to spoken
language analysis (in Japanese). Journal of Natural
Language Processing, vol. 4, No. 1 pp. 23–40.

[3] Funakoshi, Kotaro, Takenobu Tokunaga & Hozumi
Tanaka. 2002. Processing Japanese self-correction in
speech dialog systems. Proc. of COLING2002, pp. 287–
293.

[4] Heeman, Peter A. & James F. Allen. 1997. Intonational
boundaries, speech repairs and discourse markers:
Modeling spoken dialog. Proc. of 35th Annual Meeting of
ACL, pp. 254–261.

[5] Levelt, Willem J. M. 1983. Monitoring and self-repairs in
speech. Cognition, vol. 14, pp. 41–104.

[6] Nakano, Mikio & Akira Shimazu. 1998. Parsing
utterances including self-repairs (in Japanese). IPSJ
Journal, vol. 39, no. 6. pp. 1935–1943.

[7] Spilker, Jörg, Martin Klaner & Günther Görz. 2000.
Processing self-corrections in a speech-to-speech system.
Wolfgang Wahlster, editor, Verbmobil: Foundations of
Speech-to-Speech Translation, Springer, pp. 131–140.

[8] Yamamoto, Mikio, Satoshi Kobayashi & Seiichi
Nakagawa. 1992. An analysis and parsing method of the
omission of post-position and inversion on Japanese
spoken sentence in dialog (in Japanese). IPSJ Journal,
vol. 33, no. 11, pp. 1322–1320.

Utterance Type C P W Total
w/ disfluency and

misrecognition
28 17 67 112

w/ disfluency only 22 1 2 25
w/ misrecognition only 101 42 76 219

w/o disfluency and
misrecognition

171 1 6 178

Total 322 61 153 536

Utterance Type C P W Total
w/ disfluency 106 2 31 139

w/o disfluency 393 1 3 396
Total 499 3 34 536

C: correct, P: partially correct, W: wrong

