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1 Introduction

The probabilistic approach has been intro-
duced to various kinds of natural language pro-
cessing tasks because the available text corpora
are increasing in recent years. In syntactical
parsing, the probabilistic approach is introduced
for ranking the resultant parses which are gen-
erated numerously when handling a natural lan-
guage.

Several attempts have been made to prune
the meaningless parses and to aid in choosing
the most likely parse from the huge outputted
parses. Fujisaki et al. [3] introduced probabilistic
context-free grammar (P-CFG) whose probabil-
ities are trained in the Forward/Backward man-
ner. Wright et al. [4] formalized a way to include
the P-CFG into LR parsing table by distribut-
ing the probabilities originally associated with
the CFG rule to each LR parsing action. As a
result, the parser can compute the probability at
each step of the parse. The resultant probability
of a parse in Wright et al.’s model is identical to
the one acquired from the original P-CFG while
the process of generating LR parsing table be-
comes much more complicated.

Briscoe and Carroll [2] proposed a simpler way
to incorporate the trained probability into each
parsing action of the LR parsing table. The prob-
ability is directly computed from the count of
action employed during parsing the training text
corpora. Their method seems to be able to ex-
ploit the advantage in context-sensitivity prop-
erty of the LR parsing algorithm. The LR pars-
ing algorithm has the context-sensitivity in the
way of its grammar reduction depending on the
lookahead symbol. But, without the formaliza-
tion of their method, it is dubious in the way of
their including the left context for reduce action
aiming to increase the accuracy in computing the
probability of the parse.

The LR parsing algorithm has context-
sensitivity in the parsing process to some extent.
The states in canonical LR (CLR) parsing table
are created individually according to the looka-

head symbols. The LR parsing table implicitly
includes the information of left and right con-
texts to the reduce action, which will distinguish
the context in applying the grammar rule.

In this paper, we formalize probabilistic LR
language model for statistical parsing, and re-
view Briscoe and Carroll’s model in terms of
our formalization. Finally, the experiments com-
paring the performance of our model with the
Briscoe and Carroll’s model and P-CFG are con-
ducted.

2 Language Modeling for Prob-
abilistic LR Parsing

Suppose we have a CFG and its corresponding
CLR parsing table. Let V,, and V; be the non-
terminal and terminal alphabets, respectively, of
the CFG. Further, let S and A be the sets of LR
parse states and parsing actions appearing in the
CLR parsing table, respectively. For each state
s € 8, the CLR parsing table specifies a set of
possible input symbols: La(s) C V;. And, for
each coupling of a state s and input symbol [ €
La(s), the table specifies a set of possible pars-
ing actions: Act(s,l) C A. Each actiona € A
is either a shift action or reduce action. Let A,
and A, be the set of shift and reduce actions,
respectively, such that A = A, U A, U {accept}
(accept is a special action denoting the comple-
tion of parsing).

As with most statistical parsing frameworks,
given an input sentence, we rank the parse tree
candidates according to the probabilities of the
parse derivations that generate those trees. In
LR parsing, we can regard each parse derivation
as a sequence of transitions between LR parse
stacks. Let us consider a stack transition se-
quence T as (1):
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where ¢; is the i-th stack, whose stack-top state
is denoted by tfop(ci), and [; and a; are, re-
spectively, a input symbol and a parsing ac-
tion chosen at o;—1. It can be proven from
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the LR parsing algorithm that, given a de-
rived input symbol l;+1 € La(top(c;)) and an
action a;y; € Act(top(gi),lit+1), the next (de-
rived) stack nezt(oi,aiv1) (= oi41) can always
be uniquely determined. A parse derivation com-
pletes if I, = $ and an = accept. We say stack
transition sequence T is complete if I, = §,
a, = accept, and st, = final, where final is a
dummy denoting the stack when parsing is com-
pleted. Hereafter, we consistently refer to an LR
parse state as a state and an LR parse stack by
a stack. And, unless defined explicitly, s; de-
notes the stack-top state of the i-th stack g, i.e.
s; = top(oi).

Herewith, the stack transition T is decom-
posed into a sequence of stacks (X), input sym-
bols (L) and parsing actions (A).

T = {,L, A} @)

Given an input of word sequence (W), the
probability of a parse derivation is defined as fol-
lows,

W = {wi,wy,...,Wnm} (3)
P(T|W) = P(X,L,AlW) (4)
= aw-P(Z,L,A)- P(W|Z,L, A) (5)

=~ aw-P(Z,L,A) - P(W]|L) (6)

Since our aim is to rank the probability of the
stack transition, the scaling factor ow in equa-
tion (5) can be omitted. In addition, the word
sequence (W) is assumed to be independent of
everything else other than the sequence of input
symbol (L).

The first term is called LR parsing action prob-
ability and the second term is called lezical prob-
ability. Considering the LR parsing action prob-
ability, the probability of a complete stack tran-
sition T can be decomposed as follows:

P(S, L, 4)
= P(00,l1,01,01,...,0n=1,ln. an,0n) (7)
= P(ao)-ﬁP(li,ai,az‘l
Joglha;’—;’h..‘,li_lgai—lsai—l) 8)

Every parse derivation starts from the initial
state (sg), therefore,

P(og) = P(so) =1 (9)

According to Markov assumption, the stack in
the parse process at time t; depends only on the
state at time #;_;. Therefore, we here can sim-
plify the equation (8) to,

n
P(T) = [ P(oi, li, asloi1) (10)
=1
Furthermore, we decompose the above probabil-
ity P(o4,li,a:|0i—1) into what we can estimate
individually.

P(os,liyailoimy) =
P(li|loi—1) - P(ailoi-1, ) - P(oiloi-1, a3, 1) (11)

Considering the LR parsing table, the state sym-
bol summarizes the information contained in the
stack below it, and combination of the state sym-
bol on top of stack and the current input symbol
is used to index the parsing table and determine
the action decision. Hence we estimate the state
on top of stack in place of the stack below it.
The first term P(l;lgi-1) can be estimated as
follows.
Ifi=1, then

P(lijag) = P(l]so) (12)
If the previous action is a shift action then,
P(liloi-1) = P(li]si-1) (13)

If the previous action is a reduce action, the in-
put symbol for the current state does not change
(! = l;—1), therefore,

P(ljloi—1) =1 (14)

For the second term P(ai|oi-1,!;), the proba-
bility of the current action a; can be estimated
from the state s;—.; on top of stack ¢;_; and the
input symbol [;.

P(ailoi-1,1:) =~ Pas]si-1, 1) (15)

For the third term P(oloi-1,ai,l;), the cur-
rent stack ¢; is unambiguously determined when
the previous stack o;—; and the current action a;
are fixed, therefore,

P(oiloi1,li,a:) =1 (16)

In concluding, only the first term of equation
(11) is differently estimated according to the pre-
vious action. On the other hand, the estima-
tion of the probability must be separately con-
sidered in two cases depending on the type of
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state, namely the state reached immediately af-
ter a shift action (S, including the initial state
sg) and the state reached immediately after a re-
duce action (S,). From equation (11) to (16), we
can summarize the LR parsing action probability
as follows,

N L P ailsic)  (sie1 € Ss)
P(lz;au 01,01—1) ~ {P(ailsi—lyli) (si—l c s’r)
(17)

Since S; and S, are mutually exclusive, we
can assign a probability to each action in the
action part of an LR parsing table, according
to equation (17). To be more specific, for each
state s € S, we associate a probability p(a) with
each action a € Act(s,!) (for I € La(s)), where
p(a) = P(l,a|s) such that:

T Y pa)=1 (orseSy) (18)

leLa(s) a€Act(s,l)

On the other hand, for each state s € S, we
associate a probability p(a) with each action a €
Act(s,l) (for | € La(s)), where p(a) = P(als,l)
such that:

}: pla) =1 (fors€ S,) (19)
a€Act(sl)

Through assigning probabilities to actions in an
LR parsing table in this way, we can estimate
the probability of a stack transition sequence T
as given in (1) by computing the product of the
probabilities associated with all the actions in-
cluded in T

P(T) = [ (@) (20)
=1

Now, let us consider the second term in equa-
tion (6). The lezical probability can be decom-
posed and estimated by assuming that the prob-
ability of the current word depends only on its
part-of-speech! shown in the following equation.

P(WIL) ~ [] Plwilk) (21)
=1
The new input word is taken into account

when the previous action is a shift action only. If
the previous action is a reduce action, the current

'In our case, the terminal symbols using in the LR
parsing table are the parts-of-speech of input words

input word is always identical to the previous in-
put word. Therefore, in the same manner as in
the estimation of the LR parsing action probabil-
ity, the lezical probability is then can be defined
as,

mwm={?wm coes @

3 Comparison with Briscoe and
Carroll’s Model

In this section, we briefly review Briscoe and
Carroll’s model [2] and make a qualitative com-
parison between their model and ours.

We consider the probabilities of transitions be-
tween stacks as given in equation (10), whereas
Briscoe and Carroll consider the probabilities of
transitions between LR parse states as below:

P(T) = ﬁP(li,ai,SiISi—ﬂ (23)
=1

= [ P, ailsi-1) - P(silsi—1, b, as) (24)

i=1

Briscoe and Carroll initially associate a proba-
bility p(a) with each action a € Act(s,l) (for
! € La(s)) in an LR parsing table, where p(a) cor-
responds to P(l;, a;{si—;), the first term in (24):

p(a) = P(l,als) (25)
such that:
VseS. > > pla)=1 (26)
ieLa(s) a€Act(s\l)

In this model, for any state, the probability as-
sociated with each action is normalized in the
same manner. However, as discussed in the pre-
vious section, the probability assigned to an ac-
tion should be normalized differently depending
on whether the state associated with the action
is of class S or S, as in equations (18) and (19).
Without this difference, probability P(!;]s;—1) in
equation (13) could be duplicated for a single ter-
minal symbol. As a consequence, in Briscoe and
Carroll’s formulation, the probabilities of all the
complete parse derivations may not sum up to
one.

Briscoe and Carroll are also required to include
the second term P(s;i|s;—1,1;, a;) in (24) since it
is not always one. In general, if we have only

— 303 —



the information of the current state and apply
a reduce action, we cannot always uniquely de-
termine the next state. For this reason, Briscoe
and Carroll further subdivide the probabilities
assigned to reduce actions according to the state
reached after the reduce action is applied. Con-
trastively, in our model, given the current stack,
the next stack after applying any action can be
uniquely determined as in (16).

4 Experiments

We use a grammar for the Japanese inter-
phrase construction. Together with this gram-
mar there is also a considerable large enough
bracketed corpus (a part of EDR corpus) for sta-
tistical training and the evaluation.

4.1 Grammar and Corpus

The grammar consists of 11 terminal symbols
and 13 non-terminal symbols. The terminal sym-
bols represent the Japanese phrase types which
are subcategorized by the type of phrase depen-
dency. The grammar? is the set of production
rules for constructing the inter-phrase structure.
From this grammar, we generate a CLR parsing
table whose number of state is 280.

There are about 20,000 bracketed sentences.
We randomly divided the corpus into 2 groups,
95% are used for training and 5% are used for
testing. The size of the corpus is shown in the
Table 1. The length of sentences are well dis-
tributed in both groups.

# of Sents. | Ave. | Range
20,470 (95%) | 8.28 3-26

1,077 (5%) | 8.27 3-25
Table 1: Corpus

Corpus
Training
Testing

4.2 Results

We trained the amount of 20,000 training
sentences according to each model of P-CFG,
Briscoe and Carroll (B & C), and our P-LR. Es-
timation of the free parameter, the Briscoe and
Carroll’s model has the largest number because
a reduce action has to be divided according to
all reachable states while for the P-CFG model
has the smallest number. We compute the prob-
abilities for the P-CFG model equivalent to the
product of all employed grammar rules. Since
our bracketed sentences have no ambiguity in the
bracketing, it is more meaningful to evaluate the

?The grammar is provided by Shirai, K. at TIT

performance by counting the percentage of ex-
act match of the candidate parse to the standard
parse rather than the crossing bracket measure-
ment.

Model | P-CFG | B & C’s | P-LR
Exact-1 | 43.6% 33.5% | 53.2%
Exact-5 | 74.3% 70.2% | 83.7%

Exact-10 | 83.8% 80.4% | 90.2%
Exact-20 | 88.6% 87.2% | 93.8%
Perplexity 7.15 11.23 2.24

Table 2: Model Performance

The Table 2 shows that our model (P-LR)
gives the highest percentage of accuracy in every
range of ranking and the smallest perplexity per
state transition. Though the Briscoe and Car-
roll’s model requires the largest number of free
parameter for training, the performance is ap-
parently lower than the simplest P-CFG model.

5 Conclusion

We formalized the probabilistic model for GLR
parsing and exhibited the method in construct-
ing the probabilistic LR parsing table. Our
model requires just a sequence of state transition
of the parse to compute the probability. There-
fore, we need only to associate the probability to
each action in the LR parsing table. In the fu-
ture task, we plan to apply our model to LALR
parsing table which is more cost effective parsing
table comparing to the CLR parsing table.
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